Устойчивое равновесие. Механическое равновесие

Следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+...= 0$

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо -- пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

Рисунок 2. Различные виды равновесия шара на опоре. (1) -- безразличное равновесие, (2) -- неустойчивое равновесие, (3) -- устойчивое равновесие

Шар, находящийся в верхней точке сферического выступа, -- пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси -- состояние равновесия неустойчиво (рис. 3).

Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C -- центр массы диска; ${\overrightarrow{F}}_т\ $-- сила тяжести; ${\overrightarrow{F}}_{у\ }$-- упругая сила оси; d -- плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

Задача 1

Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

Рисунок 4

Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$. Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$. Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}^\circ -30{}^\circ -45{}^\circ \right)\ }=1,035\ кГ$.

При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}^\circ$. Какова сила давления ветра?

\[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}^\circ \ }=981\ Н\]

Рыночное равновесие называют устойчивым, если при отклонении от равновесного состояния в действие вступают рыночные силы, восстанавливающие его. В противном случае равновесие неустойчиво.

Чтобы проверить, соответствует ли ситуация, представленная на рис. 4.7, устойчивому равновесию, допустим, что цена повысилась с Р 0 до P 1. В результате на рынке образуется избыток в размере Q2 – Q1. По поводу того, что произойдет вслед за этим, существуют две версии: Л. Вальраса и А. Маршалла.

По мнению Л. Вальраса, при избытке возникает конкуренция между продавцами. Для привлечения покупателей они начнут снижать цену. По мере уменьшения цены объем спроса будет возрастать, а объем предложения сокращаться до тех пор, пока не восстановится исходное равновесие. В случае отклонения цены вниз от своего равновесного значения спрос будет превышать предложение. Между покупателями начнется конкуренция

Рис. 4.7. Восстановление равновесия. Давление: 1 – по Маршаллу; 2 – по Вальрасу

за дефицитный товар. Они станут предлагать продавцам более высокую цену, что позволит увеличить предложение. Так будет продолжаться до возвращения цены к равновесному уровню Р0. Следовательно, по Вальрасу комбинация Р0, Q0 представляет устойчивое рыночное равновесие.

По-иному рассуждал А. Маршалл. Когда объем предложения меньше равновесного значения, тогда цена спроса превышает цену предложения. Фирмы получают прибыль, которая стимулирует расширение производства, и объем предложения будет расти, пока не достигнет равновесного значения. В случае превышения равновесного объема предложения цена спроса окажется ниже цены предложения. В такой ситуации предприниматели несут убытки, что приведет к сокращению производства до равновесного безубыточного объема. Следовательно, и по Маршаллу точка пересечения кривых спроса и предложения на рис. 4.7 представляет устойчивое рыночное равновесие.

По версии Л. Вальраса, в условиях дефицита активной стороной рынка являются покупатели, а в условиях избытка – продавцы. По мнению А. Маршалла, доминирующей силой в формировании рыночной конъюнктуры всегда являются предприниматели.

Однако два рассмотренных варианта диагностики устойчивости рыночного равновесия приводят к одинаковому результату только в случаях положительного наклона кривой предложения и отрицательного – кривой спроса. Когда это не так, тогда диагноз устойчивости равновесных состояний рынка по Вальрасу и Маршаллу не совпадают. Четыре варианта таких состояний показаны на рис. 4.8.

Рис. 4.8.

Ситуации, представленные на рис. 4.8, а, в, возможны в условиях растущего эффекта от масштаба, когда производители могут снижать цену предложения по мере увеличения выпуска. Положительный наклон кривой спроса в ситуациях, показанных на рис. 4.8, б, г, может отражать парадокс Гиффена или эффект сноба.

По Вальрасу отраслевое равновесие, представленное на рис. 4.8, а, б, является неустойчивым. Если цена поднимется до Р 1, то на рынке возникнет дефицит: QD > QS. В таких условиях конкуренция покупателей вызовет дальнейшее повышение цены. Если цена опустится до Р0, то предложение превысит спрос, что по Вальрасу должно привести к дальнейшему понижению цены. По Маршаллу сочетание Р*, Q* представляет устойчивое равновесие. При меньшем, чем Q*, предложении цена спроса окажется выше цены предложения, а это стимулирует увеличение выпуска. В случае повышения Q* цена спроса станет ниже цены предложения, поэтому оно уменьшится.

Когда кривые спроса и предложения расположены так, как показано на рис. 4.8, в, г, тогда по логике Вальраса равновесие в точке Р*, Q* устойчиво, поскольку при P1 > Р* возникает избыток, а при Р0 < Р* –дефицит. По логике Маршалла–это варианты неустойчивого равновесия, так как при Q < Q* цена предложения оказывается выше цены спроса, предложение будет уменьшаться, а в случае Q > Q* – наоборот.

Расхождения между Л. Вальрасом и А. Маршаллом при описании механизма функционирования рынка вызваны тем, что, по мнению первого, рыночные цены совершенно гибки и мгновенно реагируют на любые изменения конъюнктуры, а по мнению второго, цены недостаточно гибки и при возникновении диспропорций между спросом и предложением объемы рыночных сделок быстрее реагируют на них, чем цены. Интерпретация процесса установления рыночного равновесия по Вальрасу соответствует условиям совершенной конкуренции, а по Маршаллу – несовершенной конкуренции в коротком периоде.

  • Л. Вальрас (1834–1910) – основатель концепции общего экономического равновесия.

Следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+...= 0$

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо -- пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

Рисунок 2. Различные виды равновесия шара на опоре. (1) -- безразличное равновесие, (2) -- неустойчивое равновесие, (3) -- устойчивое равновесие

Шар, находящийся в верхней точке сферического выступа, -- пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси -- состояние равновесия неустойчиво (рис. 3).

Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C -- центр массы диска; ${\overrightarrow{F}}_т\ $-- сила тяжести; ${\overrightarrow{F}}_{у\ }$-- упругая сила оси; d -- плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

Задача 1

Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

Рисунок 4

Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$. Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$. Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}^\circ -30{}^\circ -45{}^\circ \right)\ }=1,035\ кГ$.

При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}^\circ$. Какова сила давления ветра?

\[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}^\circ \ }=981\ Н\]

Механическое равновесие

Механи́ческое равнове́сие - состояние механической системы , при котором сумма всех сил , действующих на каждую её частицу, равна нулю и сумма моментов всех сил, приложенных к телу относительно любой произвольно взятой оси вращения, также равна нулю.

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета либо движется равномерно прямолинейно или вращается без касательного ускорения.

Определение через энергию системы

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

  • неустойчивое равновесие;
  • устойчивое равновесие;
  • безразличное равновесие.

Неустойчивое равновесие

В случае, когда вторая производная отрицательна, потенциальная энергия системы находится в состоянии локального максимума. Это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему.

Устойчивое равновесие

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво (см. Теорема Лагранжа об устойчивости равновесия). Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия. Равновесие устойчиво, если центр тяжести тела занимает наинизшее положение по сравнению со всеми возможными соседними положениями.

Безразличное равновесие

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении.

Устойчивость в системах с большим числом степеней свободы

Если система имеет несколько степеней свободы, то может оказаться, что в сдвигах одних направлениях равновесие устойчиво, а в других - неустойчиво. Простейшим примером такой ситуации является "седловина" или "перевал" (в этом месте хорошо бы разместить картинку).

Равновесие системы с несколькими степенями свободы будет устойчивым только в том случае, если оно устойчиво во всех направлениях .


Wikimedia Foundation . 2010 .

Смотреть что такое "Механическое равновесие" в других словарях:

    механическое равновесие - mechaninė pusiausvyra statusas T sritis fizika atitikmenys: angl. mechanical equilibrium vok. mechanisches Gleichgewicht, n rus. механическое равновесие, n pranc. équilibre mécanique, m … Fizikos terminų žodynas

    - … Википедия

    Фазовые переходы Статья я … Википедия

    Состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция… … Большая советская энциклопедия

    РАВНОВЕСИЕ - (1) механическое состояние неподвижности тела, являющееся следствием Р. сил, действующих на него (когда сумма всех сил, действующих на тело, равна нулю, т. е. не сообщает ускорения). Различают Р.: а) устойчивое, когда при отклонении от… … Большая политехническая энциклопедия

    Состояние механич. системы, при к ром все её точки неподвижны по отношению к данной системе отсчёта. Если эта система отсчёта является инерциальной, то Р. м. наз. абсолютным, в противном случае относительным. В зависимости от поведения тела после … Большой энциклопедический политехнический словарь

    Термодинамическое равновесие состояние изолированной термодинамической системы, при котором в каждой точке для всех химических, диффузионных, ядерных, и других процессов скорость прямой реакции равна скорости обратной. Термодинамическое… … Википедия

    Равновесие - наиболее вероятное макросостояние вещества, когда переменные величины независимо от выбора остаются постоянными при полном описании системы. Различают равновесие: механическое, термодинамическое, химическое, фазовое и др.: Смотри… … Энциклопедический словарь по металлургии

    Содержание 1 Классическое определение 2 Определение через энергию системы 3 Виды равновесия … Википедия

    Фазовые переходы Статья является частью серии «Термодинамика». Понятие фазы Равновесие фаз Квантовый фазовый переход Разделы термодинамики Начала термодинамики Уравнение состояния … Википедия

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

здесь скриншот игры про равновесие

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Похожие публикации