Оксиды серы. Серная кислота

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Оксид серы (IV) проявляет свойства

1) только основного оксида

2) амфотерного оксида

3) кислотного оксида

4) несолеобразующего оксида

Ответ: 3

Пояснение:

Оксид серы (IV) SO 2 является кислотным оксидом (оксидом неметалла), в котором сера имеет заряд +4. Этот оксид образует соли сернистой кислоты при H 2 SO 3 и при взаимодействии с водой образует саму сернистую кислоту H 2 SO 3 .

К несолеобразующим оксидам (оксидам, не проявляющих ни кислотных, ни основных, ни амфотерных свойств и не образующим соли) относятся NO, SiO, N 2 O (закись азота), CO.

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кислотным и основным оксидом являются соответственно

2) CO 2 и Al 2 O 3

Ответ: 1

Пояснение:

Кислотные оксиды – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Из представленного списка к ним относятся: SO 2 , SO 3 и CO 2 . При взаимодействии с водой они образуют следующие кислоты:

SO 2 + H 2 O = H 2 SO 3 (сернистая кислота)

SO 3 + H 2 O = H 2 SO 4 (серная кислота)

CO 2 + H 2 O = H 2 CO 3 (угольная кислота)

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления. Из представленного списка к основным оксидам относятся: MgO, FeO.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Из представленного списка к амфотерным оксидам относятся: Al 2 O 3 , ZnO.

Оксид серы (VI) взаимодействует с каждым из двух веществ:

1) вода и соляная кислота

2) кислород и оксид магния

3) оксид кальция и гидроксид натрия

Ответ: 3

Пояснение:

Оксид серы (VI) SO 3 (степень окисления серы +6) является кислотным оксидом, реагирует с водой с образованием соответствующей серной кислоты H 2 SO 4 (степень окисления серы также +6):

SO 3 + H 2 O = H 2 SO 4

Как кислотный оксид SO 3 не взаимодействует с кислотами, т. е. с HCl реакция не идет.

Сера в SO 3 проявляет высшую степень окисления +6 (равную номеру группы элемента), поэтому SO 3 с кислородом не реагирует (кислород не окисляет серу в степени окисления +6).

С основным оксидом MgO образуется соответствующая соль – сульфат магния MgSO 4:

MgO + SO 3 = MgSO 4

Поскольку оксид SO 3 является кислотным, он взаимодействует с основными оксидами и основаниями с образованием соответствующих солей:

MgO + SO 3 = MgSO 4

NaOH + SO 3 = NaHSO 4 или 2NaOH +SO 3 = Na 2 SO 4 + H 2 O

Как было отмечено выше, с водой SO 3 реагирует с образованием серной кислоты.

С переходным металлом CuSO 3 не взаимодействует.

Оксид углерода (IV) реагирует с каждым из двух веществ:

1) водой и оксидом кальция

2) кислородом и оксидом серы (IV)

3) сульфатом калия и гидроксидом натрия

4) фосфорной кислотой и водородом

Ответ: 1

Пояснение:

Оксид углерода (IV) CO 2 является кислотным оксидом, поэтому взаимодействует с водой с образованием неустойчивой угольной кислоты H 2 CO 3 и с оксидом кальция с образованием карбоната кальция CaCO 3:

CO 2 + H 2 O = H 2 CO 3

CO 2 + CaO = CaCO 3

С кислородом углекислый газ CO 2 не реагирует, поскольку кислород не может окислить элемент, находящийся в высшей степени окисления (для углерода это +4 по номеру группы, в которой он находится).

С оксидом серы (IV) SO 2 реакция не идет, поскольку, являясь кислотным оксидом, CO 2 не взаимодействует с оксидом, обладающим также кислотными свойствами.

Углекислый газ CO 2 не взаимодействует с солями (например, с сульфатом калия K 2 SO 4), но взаимодействует с щелочами, поскольку он обладает основными свойствами. Реакция протекает с образованием кислой или средней соли в зависимости от избытка или недостатка реагентов:

NaOH + CO 2 = NaHCO 3 или 2NaOH + CO 2 = Na 2 CO 3 + H 2 O

CO2, являясь кислотным оксидом, не реагирует ни с кислотными оксидами, ни с кислотами, поэтому реакция между углекислым газом и фосфорной кислотой H 3 PO 4 не происходит.

CO 2 восстанавливается водородом до метана и воды:

CO 2 + 4H 2 = CH 4 + 2H 2 O

Основные свойства проявляет высший оксид элемента

Ответ: 3

Пояснение:

Основные свойства проявляют основные оксиды — оксиды металлов в степенях окисления +1 и +2. К ним относятся:

Из представленных вариантов к основным оксидам относится только оксид бария BaO. Все остальные оксиды серы, азота и углерода относятся либо к кислотным, либо к несолеобразующим: CO, NO, N 2 O.

Оксиды металлов со степенью окисления + 6 и выше являются

1) несолеобразующими

2) основными

3) амфотерными

Ответ: 4

Пояснение:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид металла в степени окисления +6 обладает кислотными свойствами.

Кислотные свойства проявляет оксид, формула которого

Ответ: 1

Пояснение:

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид кремния SiO 2 с зарядом кремния +6 обладает кислотными свойствами.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO. CO – несолеобразующий оксид.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

BaO принадлежит к основным оксидам.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Амфотерным оксидом является и оксид алюминия Al 2 O 3 .

Степень окисления хрома в его амфотерных соединениях равна

Ответ: 3

Пояснение:

Хром – элемент побочной подгруппы 6-й группы 4-го периода. Для него характерны степени окисления 0, +2, +3, +4, +6. Степени окисления +2 соответствуют оксид CrO, обладающий основными свойствами. Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 . Это — наиболее устойчивая степень окисления хрома. Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, простейшие из которых хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 .

К амфотерным оксидам относится

Ответ: 3

Пояснение:

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. ZnO – амфотерный оксид.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr (к этой группе относится оксид калия K 2 O);

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, SO 3 – кислотный оксид, соответствующий серной кислоте H 2 SO 4 .

7FDBA3 Какие из приведенных утверждений верны?

А. Основные оксиды – это оксиды, которым соответствуют основания.

Б. Основные оксиды образуют только металлы.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба утверждения неверны

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Основным оксидам в качестве гидроксида соответствуют основания.

Оба утверждения верны.

C водой при обычных условиях реагирует

1) оксид азота (II)

2) оксид железа (II)

3) оксид железа (III)

Ответ: 4

Пояснение:

Оксид азота (II) NO является несолеобразующим оксидом, поэтому не взаимодействует ни с водой, ни с основаниями.

Оксид железа (II) FeO является основным оксидом, не растворимым в воде. С водой не реагирует.

Оксид железа (III) Fe 2 O 3 является амфотерным оксидом, не растворимым в воде. С водой также не реагирует.

Оксид азота (IV) NO 2 является кислотным оксидом и реагирует с водой с образованием азотной (HNO 3 ; N +5) и азотистой (HNO 2 ; N +3) кислот:

2NO 2 + H 2 O = HNO 3 + HNO 2

В перечне веществ: ZnO, FeO, CrO 3 , CaO, Al 2 O 3 , Na 2 O, Cr 2 O 3
число оснόвных оксидов равно

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Из предложенных вариантов к группе основных оксидов относятся FeO, CaO, Na 2 O.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

К амфотерным оксидам относятся ZnO, Al 2 O 3 , Cr 2 O 3 .

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, CrO 3 – кислотный оксид, соответствующий хромовой кислоте H 2 CrO 4 .

382482

Оксид калия взаимодействует с

Ответ: 3

Пояснение:

Оксид калия (K 2 O) относится к основным оксидам. Как основный оксид K 2 O может взаимодействовать с амфотерными оксидами, т.к. с оксидами, проявляющими как кислотные, так и основные свойства (ZnO). ZnO является амфотерным оксидом. Не реагирует с основными оксидами (CaO, MgO, Li 2 O).

Реакция протекает следующим образом:

K 2 O + ZnO = K 2 ZnO 2

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды – солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кроме того, существуют несолеобразующие оксиды N 2 O, NO, SiO, CO. Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли.

Оксид кремния (IV) взаимодействует с каждым из двух веществ

2) H 2 SO 4 и BaCl 2

Ответ: 3

Пояснение:

Оксид кремния (SiO 2) является кислотным оксидом, поэтому взаимодействует с щелочами и основными оксидами:

SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O

Строение молекулы SO2

Строение молекулы SO2 аналогично строению молекулы озона. Атом серы находится в состоянии sp2-гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.

Строение соответствует следующим резонансным структурам:

В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.

Соединения серы +4 – проявляют окислительно-восстановительную двойственность, но с преобладанием восстановительных свойств.

1. Взаимодействие SO2 c кислородом

2S+4О2 + О 2 S+6О

2. При пропускании SO2 через сероводородную кислоту образуется сера.

S+4О2 + 2Н2S-2 → 3So + 2 Н2О

4 S+4 + 4 → So 1 - окислитель (восстановление)

S-2 - 2 → Sо 2 - восстановитель (окисление)

3. Сернистая кислота медленно окисляется кислородом воздуха в серную кислоту.

2H2S+4O3 + 2О → 2H2S+6O

4 S+4 - 2 → S+6 2 - восстановитель (окисление)

О + 4 → 2О-2 1 - окислитель (восстановление)

Получение:

1) оксида серы (IV) в промышленности:

горение серы:

обжиг пирита:

4FeS2 + 11O2 = 2Fe2O3

в лаборатории:

Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O

Сернистый газ , предупреждая брожение, облегчает осаждение загрязняющих веществ, обрывков тканей винограда с болезнетворной микрофлорой и позволяет проводить алкогольное брожение на чистых культурах дрожжей с целью увеличения выхода этилового спирта и улучшении состава других продуктов алкогольного брожения.

Роль сернистого газа таким образом не ограничивается антисептирующими действиями, оздоровляющими среду, но и распространяется на улучшение технологических условий брожения и хранения вина.

Эти условия при правильном использовании сернистого газа (ограничение дозировки и времени соприкосновения с воздухом) ведут к повышению качества вин и соков, их аромата, вкуса, а также прозрачности и цвета - свойств, связанных с устойчивостью вина и сока к помутнениям.

Сернистый газ - самый распространенный загрязнитель воздуха. Он выделяется всеми энергетическими установками при сжигании органического топлива. Сернистый газ может также выделяться предприятиями металлургической промышленности (источник -коксующиеся угли), а также рядом химических производств (например, производство серной кислоты). Он образуется при разложении содержащих серу аминокислот, входивших в состав белков древних растений, образовавших залежи угля, нефти, горючих сланцев.


Находит применение в промышленности для беления различных продуктов: сукна, шелка, бумажной массы, перьев, соломы, воска, щетины, конского волоса, пищевых продуктов, для дезинфекции фруктов и консервов и т. д. В качестве побочного продукта С. г. образуется и выделяется в воздух рабочих помещений в ряде производств: серной к-ты, целлюлезы, при обжиге руд, содержащих, сернистые металлы, в травилках на металлозаводах, при производстве стекла, ультрамарина и др., весьма часто С. г. содержится в воздухе котельных и зольных помещений, где он образуется при сжигании содержащих серу углей.

При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

SO2 + H2O ↔ H2SO3

Сернистая кислота диссоциирует ступенчато:

H2SO3 ↔ H+ + HSO3- (первая ступень, образуется гидросульфит – анион)

HSO3- ↔ H+ + SO32- (вторая ступень, образуется анион сульфит)

H2SO3 образует два ряда солей - средние (сульфиты) и кислые (гидросульфиты).

Качественной реакцией на соли сернистой кислоты является взаимодействие соли с сильной кислотой, при этом выделяется газ SO2 с резким запахом:

Na2SO3 + 2HCl → 2NaCl + SO2 + H2O 2H+ + SO32- → SO2 + H2O

Сера распространена в земной коре, среди других элементов занимает шестнадцатое место. Она встречается как в свободном состоянии, так и в связанном виде. Неметаллические свойства характерны для этого химического элемента. Ее латинское название «Sulfur», обозначается символом S. Элемент входит в состав различных ионов соединений, содержащих кислород и/или водород, образует много веществ, относящихся к классам кислот, солей и несколько окислов, каждый из которых может быть назван оксид серы с добавлением символов, обозначающих валентность. Степени окисления, которые она проявляет в различных соединениях +6, +4, +2, 0, −1, −2. Известны окислы серы с различной степенью окисления. Самые распространенные — это диоксид и триоксид серы. Менее известными являются монооксид серы, а также высшие (кроме SO3) и низшие окислы этого элемента.

Монооксид серы

Неорганическое соединение, называемое оксид серы II, SO, по внешнему виду это вещество является бесцветным газом. При контакте с водой он не растворяется, а реагирует с ней. Это очень редкое соединение, которое встречается только в разреженной газовой среде. Молекула SO термодинамически неустойчива, превращается изначально в S2O2, (называют disulfur газ или пероксид серы). Из-за редкого появления монооксида серы в нашей атмосфере и низкой стабильности молекулы трудно в полной мере определить опасности этого вещества. Но в сконденсированном или более концентрированном виде окисел превращается в пероксид, который является относительно токсичным и едким. Это соединение также легко воспламеняется (напоминает этим свойством метан), при сжигании получается диоксид серы — ядовитый газ. Оксид серы 2 был обнаружен около Ио (одного из в атмосфере Венеры и в межзвездной среде. Предполагается, что на Ио он получается в результате вулканических и фотохимических процессов. Основные фотохимические реакции выглядят следующим образом: O + S2 → S + SO и SO2 → SO + O.

Сернистый газ

Оксид серы IV, или двуокись серы (SO2) является бесцветным газом с удушливым резким запахом. При температуре минус 10 С он переходит в жидкое состояние, а при температуре минус 73 С затвердевает. При 20С в 1 литре воды растворяется около 40 объемов SO2.

Этот оксид серы, растворяясь в воде, образует сернистую кислоту, так как является ее ангидридом: SO2 + H2O ↔ H2SO3.

Он взаимодействует с основаниями и 2NaOH + SO2 → Na2SO3 + H2O и SO2 + CaO → CaSO3.

Для сернистого газа характерны свойства и окислителя, и восстановителя. Он окисляется кислородом воздуха до серного ангидрида в присутствии катализатора: SO2 + O2 → 2SO3. С сильными восстановителями, такими как сероводород, играет роль окислителя: H2S + SO2 → S + H2O.

Сернистый газ в промышленности используют в основном для получения серной кислоты. Диоксид серы получают сжиганием серы или железного колчедана: 11O2 + 4FeS2 → 2Fe2O3 + 8SO2.

Серный ангидрид

Оксид серы VI, или трехокись серы (SO3) является промежуточным продуктом и самостоятельного значения не имеет. По внешнему виду это бесцветная жидкость. Она кипит при температуре 45 С, а ниже 17 С превращается в белую кристаллическую массу. Этот серы (со степенью окисления атома серы + 6) отличается крайней гигроскопичностью. С водой он образует кислоту серную: SO3 + H2O ↔ H2SO4. Растворяясь в воде, выделяет большое количество тепла и, если прибавлять не постепенно, а сразу большое количество оксида, то может произойти взрыв. Триоксид серы хорошо растворяется в концентрированной кислоте серной с образованием олеума. Содержание SO3 в олеуме достигает 60 %. Для этого соединения серы характерны все свойства

Высшие и низшие оксиды серы

Серы представляют собой группу химических соединений с формулой SO3 + х, где х может быть 0 или 1. Мономерный окисел SO4 содержат пероксогруппу (O-O) и характеризуется, как и окисел SO3, степенью окисления серы +6. Этот оксид серы может быть получен при низких температурах (ниже 78 К) в результате реакции SO3 и или фотолизе SO3 в смеси с озоном.

Низшие оксиды серы представляют собой группу химических соединений, в которую входят:

  • SO (оксид серы и его димер S2O2);
  • монооксиды серы SnO (представляют собой циклические соединения, состоящие из колец, образованных атомами серы, при этом n может быть от 5 до 10);
  • S7O2;
  • полимерные оксиды серы.

Интерес к низшим оксидам серы увеличился. Это связано с необходимостью изучения их содержания в наземной и внеземной атмосферах.

Оксид серы (IV) и сернистая кислота

Оксид серы (IV), или сернистый газ, при обычных условиях бесцветный газ с резким удушливым запахом. При охлаждении до -10°С сжижается в бесцветную жидкость.

Получение

1. В лабораторных условиях оксид серы (IV) получают из солей сернистой кислоты действием на них сильными кислотами:

Na 2 SO 3 +H 2 SO 4 =Na 2 SO 4 +S0 2 ­+H 2 O 2NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +2SO 2 ­+2H 2 O 2HSO - 3 +2H + =2SO 2 ­+2H 2 O

2. Также сернистый газ образуется при взаимодействии концент­рированной серной кислоты при нагревании с малоактивными металлами:

Cu+2H 2 SO 4 =CuSO 4 +SO 2 ­+2Н 2 О

Cu+4Н + +2SO 2- 4 =Cu 2+ + SO 2- 4 +SO 2 ­+2H 2 O

3. Оксид серы (IV) образуется также при сжигании серы в воздухе или кислороде:

4. В промышленных условиях SO 2 получают при обжиге пирита FeS 2 или сернистых руд цветных металлов (цинковой обманки ZnS, свинцового блеска PbS и др.):

4FeS 2 +11О 2 =2Fe 2 O 3 +8SO 2

Структурная формула молекулы SO 2:

В образовании связей в молекуле SO 2 принимают участие че­тыре электрона серы и четыре электрона от двух атомов кислоро­да. Взаимное отталкивание связывающих электронных пар и не­поделенной электронной пары серы придает молекуле угловую форму.

Химические свойства

1. Оксид серы (IV) проявляет все свойства кислотных оксидов:

Взаимодействие с водой,

Взаимодействие с щелочами,

Взаимодействие с основными оксидами.

2. Для оксида серы (IV) характерны восстановительные свойства:

S +4 O 2 +O 0 2 «2S +6 O -2 3 (в присутствии катализатора, при нагревании)

Но в присутствии сильных восстановителей SO 2 ведет себя как окислитель:

Окислительно-восстановительная двойственность оксида серы (IV) объясняется тем, что сера имеет в нем степень окисления +4, и поэтому она может, отдавая 2 электрона, окисляться до S +6 , а принимая 4 электрона, восстанавливаться до S°. Проявление этих или других свойств зависит от природы реагирующего ком­понента.

Оксид серы (IV) хорошо растворим в воде (в 1 объеме при 20°С растворяется 40 объемов SO 2). При этом образуется существую­щая только в водном растворе сернистая кислота:

SO 2 +Н 2 О«H 2 SO 3

Реакция обратимая. В водном растворе оксид серы (IV) и сер­нистая кислота находятся в химическом равновесии, которое можно смещать. При связывании H 2 SO 3 (нейтрализация кисло-

ты) реакция протекает в сторону образования сернистой кислоты; при удалении SO 2 (продувание через раствор азота или нагрева­ние) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который при­дает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В рас­творе диссоциирует ступенчато:

H 2 SO 3 «Н + +HSO - 3 HSO - 3 «Н + +SO 2- 3

Термически неустойчива, летуча. Сернистая кислота, как двухосновная, образует два типа солей:

Средние - сульфиты (Na 2 SO 3);

Кислые - гидросульфиты (NaHSO 3).

Сульфиты образуются при полной нейтрализации кислоты щелочью:

H 2 SO 3 +2NaOH=Na 2 SO 3 +2Н 2 О

Гидросульфиты получаются при недостатке щелочи:

H 2 SO 3 +NaOH=NaHSO 3 +Н 2 О

Сернистая кислота и ее соли обладают как окислительными, так и восстановительными свойствами, что определяется приро­дой партнера по реакции.

1. Так, под действием кислорода сульфиты окисляются до суль­фатов:

2Na 2 S +4 O 3 +О 0 2 =2Na 2 S +6 O -2 4

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

5H 2 S +4 O 3 +2KMn +7 O 4 =2H 2 S +6 O 4 +2Mn +2 S +6 O 4 +K 2 S +6 O 4 +3Н 2 O

2. В присутствии же более энергичных восстановителей сульфиты проявляют окислительные свойства:

Из солей сернистой кислоты растворяются почти все гидро­сульфиты и сульфиты щелочных металлов.

3. Поскольку H 2 SO 3 является слабой кислотой, при действии кис­лот на сульфиты и гидросульфиты происходит выделение SO 2 . Этот метод обычно используют при получении SO 2 в лаборатор­ных условиях:

NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +SO 2 ­+H 2 O

4. Растворимые в воде сульфиты легко подвергаются гидролизу, вследствие чего в растворе увеличивается концентрация OH - -ионов:

Na 2 SO 3 +НОН«NaHSO 3 +NaOH

Применение

Оксид серы (IV) и сернистая кислота обесцвечивают многие красители, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результа­те чего окраска восстанавливается. Следовательно, белящее дей­ствие SO 2 и H 2 SO 3 отличается от белящего действия хлора. Обычно рксидом серы (IV) белят шерсть, шелк и солому.

Оксид серы (IV) убивает многие микроорганизмы. Поэтому для уничтожения плесневых грибков им окуривают сырые подва­лы, погреба, винные бочки и др. Используется также при перевоз­ке и хранении фруктов и ягод. В больших количествах оксид серы IV) применяется для получения серной кислоты.

Важное применение находит раствор гидросульфита кальция CaHSO 3 (сульфитный щелок), которым обрабатывают древесину и бумажную массу.

Похожие публикации