Химические свойства всех углеводородов. Строение, свойства и значение углеводородов

Электронное и пространственное строения В бензоле все атомы углерода находятся во втором валентном состоянии (sр 2 -гибридизация). В результате на плоскости образуются три сигма-связи с атомами углерода и водорода. (Шесть р-электронов, которые не участвовали в гибридизации, образуют общее 6р-электронное облако, которое стягивает бензольное кольцо, делая его более прочным, так как в результате перекрывания возникает единая делокализованная шестиэлектронная -система (4n + 2 = 6, где n = 1). Электронная плотность -> связи равномерно распределена по всему циклу, что приводит к выравненности длин связей С-С (0,1397 нм). Однозамещенные бензола не имеют изомеров. Основные химические свойства. Реакции замещения: Задача. В каком направлении пойдет реакция толуола с бромом:
  • а) в присутствии катализатора;
  • б) при освещении смеси веществ?
Напишите уравнения реакций. Решение. а) В присутствии катализатора замещение произойдет в бензольном кольце: б) При освещении замещение произойдет в метильной группе: Это объясняется взаимным влиянием бензольного кольца и заместителя. Задача. Приведите примеры реакций, показывающих сходство бензола:
  • а) с предельными углеводородами;
  • б) с непредельными углеводородами.
В чем заключается различие в проявлении общих свойств? Решение. Сходство бензола с предельными углеводородами - реакции замещения: Сходство с непредельными углеводородами - реакции присоединения (хлора или водорода): гексахлор-циклогексан Реакции замещения идут у бензола легче, чем у предельных углеводородов, а реакции присоединения - труднее, чем у непредельных. Задача. Напишите уравнения химических синтезов, используя схему: Укажите условия реакций. Решение. Задача. У каких из приведенных ниже соединений возможна цистрансизомерия? 1. а) бутена-1, б) пентена-2, 3) 2-метилбутена-2, г) 2-метил-пропена, д) олеиновой кислоты, е) изопренового каучука. 2. Приведите структурные формулы цис-, трансизомеров. 3. Чем объясняется наличие цис-, трансизомерии у веществ? Решение. 1) а), в), г) не имеют, б), д), е) имеют цис-, трансизомеры: цис-форма изопренового каучука транс-форма изопренового каучука 3) Наличие цис-, трансизомерии объясняется отсутствием свободного вращения молекулы относительно двойной связи. Оно затруднено, потому что молекула в этом месте имеет плоскостное строение (sр 2 -гибридизация двух атомов углерода, образующих двойную связь). Необходимым условием для наличия цис-, трансизомеров является также наличие разных заместителей у атомов углерода, образующих двойную связь.

Характерные химические свойства углеводородов: алканов, алкенов, диенов, алкинов, ароматических углеводородов

Алканы

Алканы — углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле $С_{n}Н_{2n+2}$.

Гомологический ряд метана

Как вы уже знаете, гомологи — это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп $СН_2$.

Предельные углеводороды составляют гомологический ряд метана.

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Как вам уже известно, простейший алкан, для которого характерны структурные изомеры, — это бутан:

Рассмотрим подробнее для алканов основы номенклатуры ИЮПАК:

1. Выбор главной цепи.

Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2.

Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (—$СН_3$), затем пропил ($—СН_2—СН_2—СН_3$), этил ($—СН_2—СН_3$) и т. д.

Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3. Формирование названия.

В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую ($2.2-$). После номера через дефис указывают количество заместителей (ди — два, три — три, тетра — четыре, пента — пять) и название заместителя (метил, этил, пропил ). Затем без пробелов и дефисов — название главной цепи. Главная цепь называется как углеводород — член гомологического ряда метана (метан, этан, пропан и т. д. ).

Названия веществ, структурные формулы которых приведены выше, следующие:

— структура А: $2$-метилпропан;

— структура Б: $3$-этилгексан;

— структура В: $2,2,4$-триметилпентан;

— структура Г: $2$-метил $4$-этилгексан.

Физические и химические свойства алканов

Физические свойства. Первые четыре представителя гомологического ряда метана — газы. Простейший из них — метан — газ без цвета, вкуса и запаха (запах газа, почувствовав который, надо звонить $104$, определяется запахом меркаптанов — серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от $С_5Н_{12}$ до $С_{15}Н_{32}$ — жидкости; более тяжелые углеводороды — твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства.

1. Реакции замещения. Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

$CH_4+Cl_2→CH_3Cl+HCl$.

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

$CH_3Cl+Cl_2→HCl+{CH_2Cl_2}↙{\text"дихлорметан(хлористый метилен)"}$,

$CH_2Cl_2+Cl_2→HCl+{CHСl_3}↙{\text"трихлорметан(хлороформ)"}$,

$CHCl_3+Cl_2→HCl+{CCl_4}↙{\text"тетрахлорметан(четыреххлористый углерод)"}$.

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). В ходе пропускания алканов над катализатором ($Pt, Ni, Al_2O_3, Cr_2O_3$) при высокой температуре ($400-600°С$) происходит отщепление молекулы водорода и образование алкена:

$CH_3—CН_3→СH_2=CH_2+Н_2$

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов — это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

$СН_4+2О_2→СО_2+2Н_2O+880 кДж.$

В общем виде реакцию горения алканов можно записать следующим образом:

$C_{n}H_{2n+2}+({3n+1}/{2})O_2→nCO_2+(n+1)H_2O$

Термическое расщепление углеводородов:

$C_{n}H_{2n+2}{→}↖{400-500°C}C_{n-k}H_{2(n-k)+2}+C_{k}H_{2k}$

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов:

$R—CH_2CH_2:CH_2—R→R—CH_2CH_2·+·CH_2—R$.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

$R—CH_2CH_2·+·CH_2—R→R—CH=CH_2+CH_3—R$.

Реакции термического расщепления лежат в основе промышленного процесса — крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры $1000°С$ начинается пиролиз метана — разложение на простые вещества:

$CH_4{→}↖{1000°C}C+2H_2$

При нагревании до температуры $1500°С$ возможно образование ацетилена:

$2CH_4{→}↖{1500°C}CH=CH+3H_2$

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью и более углеродными атомами в цепи в присутствии катализатора циклизируются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии $sp^3$-гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных $С—С$ (углерод — углерод) связей и слабополярных $С—Н$ (углерод — водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т.е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т.к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкадиены (полиены), алкины. Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство непредельности связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов — алканов.

Алкены — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n}$.

Свое второе название — олефины — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел (от лат. oleum — масло).

Гомологический ряд этена

Неразветвленные алкены составляют гомологический ряд этена (этилена):

$С_2Н_4$ — этен, $С_3Н_6$ — пропен, $С_4Н_8$ — бутен, $С_5Н_{10}$ — пентен, $С_6Н_{12}$ — гексен и т. д.

Изомерия и номенклатура

Для алкенов, так же, как и для алканов, характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, — это бутен:

Особым видом структурной изомерии является изомерия положения двойной связи:

$СН_3—{СН_2}↙{бутен-1}—СН=СН_2$ $СН_3—{СН=СН}↙{бутен-2}—СН_3$

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии — геометрической, или цис-транс изомерии.

Цис- изомеры отличаются от транс- изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости $π$-связи, а следовательно, и свойствами.

Алкены изомерны циклоалканам (межклассовая изомерия), например:

Номенклатура алкенов, разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи.

Образование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи.

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения:

$5$-метилгексен-$2$, а не $2$-метилгексен-$4$, как можно было бы предположить.

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей, так же, как для предельных углеводородов.

3. Формирование названия.

Названия алкенов формируются так же, как и названия алканов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс, обозначающий принадлежность соединения к классу алкенов, — -ен.

Например:

Физические и химические свойства алкенов

Физические свойства. Первые три представителя гомологического ряда алкенов — газы; вещества состава $С_5Н_{10}$ - $С_{16}Н_{32}$ — жидкости; высшие алкены — твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства.

Реакции присоединения. Напомним, что отличительной чертой представителей непредельных углеводородов — алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов — платины, палладия, никеля:

$CH_3—CH_2—CH=CH_2+H_2{→}↖{Pt}CH_3—CH_2—CH_2—CH_3$.

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т.к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция — дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе ($CCl_4$) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалоген алканов:

$СН_2=СН_2+Br_2→CH_2Br—CH_2Br$.

3.

$CH_3-{CH}↙{пропен}=CH_2+HBr→CH_3-{CHBr}↙{2-бромпропен}-CH_3$

Эта реакция подчиняется правилу Марковникова:

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т.е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

${CH_2}↙{этен}=CH_2+H_2O{→}↖{t,H_3PO_4}CH_3-{CH_2OH}↙{этанол}$

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция протекает также в соответствии с правилом Марковникова — катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа — к менее гидрированному.

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

$nCH_2{=}↙{этен}CH_2{→}↖{УФ-свет,R}(...{-CH_2-CH_2-}↙{полиэтилен}...)_n$

Эта реакция присоединения протекает по свободнорадикальному механизму.

6. Реакция окисления.

Как и любые органические соединения, алкены горят в кислороде с образованием $СО_2$ и $Н_2О$:

$СН_2=СН_2+3О_2→2СО_2+2Н_2О$.

В общем виде:

$C_{n}H_{2n}+{3n}/{2}O_2→nCO_2+nH_2O$

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:

Алкадиены (диеновые углеводороды)

Алкадиены — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, две двойные связи между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n-2}$.

В зависимости от взаимного расположения двойных связей различают три вида диенов:

— алкадиены с кумулированным расположением двойных связей:

— алкадиены с сопряженными двойными связями;

$CH_2=CH—CH=CH_2$;

— алкадиены с изолированными двойными связями

$CH_2=CH—CH_2—CH=CH_2$.

Эти все три вида алкадиенов существенно отличаются друг от друга по строению и свойствам. Центральный атом углерода (атом, образующий две двойные связи) в алкадиенах с кумулированными связями находится в состоянии $sp$-гибридизации. Он образует две $σ$-связи, лежащие на одной прямой и направленные в противоположные стороны, и две $π$-связи, лежащие в перпендикулярных плоскостях. $π$-Связи образуются за счет негибридизированных р-орбиталей каждого атома углерода. Свойства алкадиенов с изолированными двойными связями весьма специфичны, т.к. сопряженные $π$-связи существенно влияют друг на друга.

р-Орбитали, образующие сопряженные $π$-связи, составляют практически единую систему (ее называют $π$-системой), т.к. р-орбитали соседних $π$-связей частично перекрываются.

Изомерия и номенклатура

Для алкадиенов характерна как структурная изомерия, так и цис-, транс-изомерия.

Структурная изомерия.

изомерия углеродного скелета:

изомерия положения кратных связей:

${CH_2=CH—CH=CH_2}↙{бутадиен-1,3}$ ${CH_2=C=CH—CH_3}↙{бутадиен-1,2}$

Цис-, транс- изомерия (пространственная и геометрическая)

Например:

Алкадиены изомерны соединениям классов алкинов и циклоалкенов.

При формировании названия алкадиена указывают номера двойных связей. Главная цепь должна обязательно содержать две кратные связи.

Например:

Физические и химические свойства алкадиенов

Физические свойства.

В обычных условиях пропандиен-1,2, бутадиен-1,3 — газы, 2-метилбутадиен-1,3 — летучая жидкость. Алкадиены с изолированными двойными связями (простейший из них — пентадиен-1,4) — жидкости. Высшие диены — твердые вещества.

Химические свойства.

Химические свойства алкадиенов с изолированными двойными связями мало отличаются от свойств алкенов. Алкадиены с сопряженными связями обладают некоторыми особенностями.

1. Реакции присоединения. Алкадиены способны присоединять водород, галогены, галогеноводороды.

Особенностью присоединения к алкадиенам с сопряженными связями является способность присоединять молекулы как в положениях 1 и 2, так и в положениях 1 и 4.

Соотношение продуктов зависит от условий и способа проведения соответствующих реакций.

2. Реакция полимеризации. Важнейшим свойством диенов является способность полимеризоваться под воздействием катионов или свободных радикалов. Полимеризация этих соединений является основой синтетических каучуков:

$nCH_2={CH—CH=CH_2}↙{бутадиен-1,3}→{(... —CH_2—CH=CH—CH_2— ...)_n}↙{\text"синтетический бутадиеновый каучук"}$.

Полимеризация сопряженных диенов протекает как 1,4-присоединение.

В этом случае двойная связь оказывается центральной в звене, а элементарное звено, в свою очередь, может принимать как цис- , так и транс- конфигурацию.

Алкины

Алкины — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну тройную связь между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n-2}$.

Гомологический ряд этина

Неразветвленные алкины составляют гомологический ряд этина (ацетилена):

$С_2Н_2$ — этин, $С_3Н_4$ — пропин, $С_4Н_6$ — бутин, $С_5Н_8$ — пентин, $С_6Н_{10}$ — гексин и т. д.

Изомерия и номенклатура

Для алкинов, так же как и для алкенов, характерна структурная изомерия: изомерия углеродного скелета и изомерия положения кратной связи. Простейший алкин, для которого характерны структурные изомеры положения кратной связи класса алкинов, — это бутин:

$СН_3—{СН_2}↙{бутин-1}—С≡СН$ $СН_3—{С≡С}↙{бутин-2}—СН_3$

Изомерия углеродного скелета у алкинов возможна, начиная с пентина:

Так как тройная связь предполагает линейное строение углеродной цепи, геометрическая (цис-, транс- ) изомерия для алкинов невозможна.

Наличие тройной связи в молекулах углеводородов этого класса отражается суффиксом -ин , а ее положение в цепи — номером атома углерода.

Например:

Алкинам изомерны соединения некоторых других классов. Так, химическую формулу $С_6Н_{10}$ имеют гексин (алкин), гексадиен (алкадиен) и циклогексен (циклоалкен):

Физические и химические свойства алкинов

Физические свойства. Температуры кипения и плавления алкинов, так же, как и алкенов, закономерно повышаются при увеличении молекулярной массы соединений.

Алкины имеют специфический запах. Они лучше растворяются в воде, чем алканы и алкены.

Химические свойства.

Реакции присоединения. Алкины относятся к непредельным соединениям и вступают в реакции присоединения. В основном это реакции электрофильного присоединения.

1. Галогенирование (присоединение молекулы галогена). Алкин способен присоединить две молекулы галогена (хлора, брома):

$CH≡CH+Br_2→{CHBr=CHBr}↙{1,2-дибромэтан},$

$CHBr=CHBr+Br_2→{CHBr_2-CHBr_2}↙{1,1,2,2-тетрабромэтан}$

2. Гидрогалогенирование (присоединение галогеноводорода). Реакция присоединения галогеноводорода, протекающая по электрофильному механизму, также идет в две стадии, причем на обеих стадиях выполняется правило Марковникова:

$CH_3-C≡CH+Br→{CH_3-CBr=CH_2}↙{2-бромпропен},$

$CH_3-CBr=CH_2+HBr→{CH_3-CHBr_2-CH_3}↙{2,2-дибромпропан}$

3. Гидратация (присоединение воды). Боль шое значение для промышленного синтеза кетонов и альдегидов имеет реакция присоединения воды (гидратация), которую называют реакцией Кучерова:

4. Гидрирование алкинов. Алкины присоединяют водород в присутствии металлических катализаторов ($Pt, Pd, Ni$):

$R-C≡C-R+H_2{→}↖{Pt}R-CH=CH-R,$

$R-CH=CH-R+H_2{→}↖{Pt}R-CH_2-CH_2-R$

Так как тройная связь содержит две реакционноспособные $π$-связи, алканы присоединяют водород ступенчато:

1) тримеризация.

При пропускании этина над активированным углем образуется смесь продуктов, одним из которых является бензол:

2) димеризация.

Помимо тримеризации ацетилена, возможна его димеризация. Под действием солей одновалентной меди образуется винилацетилен:

$2HC≡CH→{HC≡C-CH=CH_2}↙{\text"бутен-1-ин-3(винилацетилен)"}$

Это вещество используется для получения хлоропрена:

$HC≡C-CH=CH_2+HCl{→}↖{CaCl}H_2C={CCl-CH}↙{хлоропрен}=CH_2$

полимеризацией которого получают хлоропреновый каучук:

$nH_2C=CCl-CH=CH_2→(...-H_2C-CCl=CH-CH_2-...)_n$

Окисление алкинов.

Этин (ацетилен) горит в кислороде с выделением очень большого количества теплоты:

$2C_2H_2+5O_2→4CO_2+2H_2O+2600кДж$ На этой реакции основано действие кислородно-ацетиленовой горелки, пламя которой имеет очень высокую температуру (более $3000°С$), что позволяет использовать ее для резки и сварки металлов.

На воздухе ацетилен горит коптящим пламенем, т.к. содержание углерода в его молекуле выше, чем в молекулах этана и этена.

Алкины, как и алкены, обесцвечивают подкисленные растворы перманганата калия; при этом происходит разрушение кратной связи.

Ионный (правило В. В. Марковникова) и радикальный механизмы реакции в органической химии

Типы химических реакций в органической химии

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации). Очевидно, что все многообразие реакций органических соединений невозможно свести к предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам из курса неорганической химии реакциями, протекающими между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом, а другой компонент реакции условно рассматривают как реагент.

Реакции замещения

Реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов, называются реакциями замещения.

В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены.

Приведем примеры таких реакций.

Под действием света атомы водорода в молекуле метана способны замещаться на атомы галогена, например, на атомы хлора:

$CH_4+Cl_2→CH_3Cl+HCl$

Другим примером замещения водорода на галоген является превращение бензола в бромбензол:

Уравнение этой реакции может быть записано иначе:

При этой форме записи реагенты, катализатор, условия проведения реакции записывают над стрелкой, а неорганические продукты реакции — под ней.

Реакции присоединения

Реакции, в результате которых две или более молекул реагирующих веществ соединяются в одну, называют реакциями присоединения.

В реакции присоединения вступают ненасыщенные соединения, такие как алкены или алкины.

В зависимости от того, какая молекула выступает в качестве реагента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1. Гидрирование — реакция присоединения молекулы водорода по кратной связи:

$CH_3{-CH=}↙{\text"пропен"}CH_2+H_2{→}↖{Pt}CH_3{-CH_2-}↙{\text"пропан"}-CH_3$

2. Гидрогалогенирование — реакция присоединения галогеноводорода (гидрохлорирование):

${CH_2=}↙{\text"этен"}CH_2+HCl→CH_3{-CH_2-}↙{\text"хлорэтан"}-Cl$

3. Галогенирование — реакция присоединения галогена:

${CH_2=}↙{\text"этен"}CH_2+Cl_2→{CH_2Cl-CH_2Cl}↙{\text"1.2-дихлорэтан"}$

4. Полимеризация — особый тип реакций присоединения, в ходе которых молекулы вещества с небольшой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой — макромолекул.

Реакции полимеризации — это процессы соединения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

Примером реакции полимеризации может служить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и радикального инициатора полимеризации $R:$

${nCH_2=}↙{\text"этен"}CH_2{→}↖{\text"УФ-свет,R"}{(...-CH_2-CH_2-...)_n}↙{\text"полиэтилен"}$

Наиболее характерная для органических соединений ковалентная связь образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

Типы реакционноспособных частиц в органической химии

Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

$H + H→H:H,$ или $H-H$

Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону. В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:

Такие частицы называются свободными радикалами.

Свободные радикалы — атомы или группы атомов, имеющие неспаренные электроны.

Реакции, которые протекают под действием и при участии свободных радикалов, называются свободнорадикальными реакциями.

В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогенами, реакции горения. Обратите внимание, что реакции этого типа отличаются высокой скоростью, выделением большого количества тепла.

Ковалентная связь может образоваться и по донорно-акцепторному механизму. Одна из орбиталей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается незаполненной орбиталью другого атома (или катиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь, например:

$H^{+}+{:O-H^{-}}↙{\text"акцептор"}→{H-O-H}↙{\text"донор"}$

Разрыв ковалентной связи приводит к образованию положительно и отрицательно заряженных частиц; так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у второго атома получается незаполненная орбиталь:

$R:|R=R:^{-}+R^{+}$

Рассмотрим электролитическую диссоциацию кислот:

$H:|Cl=H^{+}+Cl^{-}$

Можно легко догадаться, что частица, имеющая неподеленную электронную пару $R:^{-}$, т. е. отрицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к атомам, на которых существует по крайней мере частичный или эффективный положительный заряд. Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus — ядро, положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

Нуклеофилы ($Nu$) — анионы или молекулы, имеющие неподеленную пару электронов, взаимодействующие с участками молекул, на которых сосредоточен эффективный положительный заряд.

Примеры нуклеофилов: $Cl^{-}$ (хлорид-ион), $ОН^{-}$ (гидроксид-анион), $СН_3О^{-}$ (метоксид-анион), $СН_3СОО^{-}$ (ацетат-анион).

Частицы, имеющие незаполненную орбиталь, напротив, будут стремиться заполнить ее и, следовательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами, «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

Электрофилы — катионы или молекулы, имеющие незаполненную эле к трон ную орбиталь, стремящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигурации атома.

Примеры электрофилов: $NO_2$ (нитрогруппа), —$СООН$ (карбоксил), —$СN$ (нитрильная группа), —$СОН$ (альдегидная группа).

Не любая частица с незаполненной орбиталью является электрофилом. Так, например, катионы щелочных металлов имеют конфигурацию инертных газов и не стремятся к приобретению электронов, так как имеют низкое сродство к электрону. Из этого можно сделать вывод, что, несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

Основные механизмы протекания реакций

Мы выделили три основных типа реагирующих частиц — свободные радикалы, электрофилы, нуклеофилы — и три соответствующих им типа механизма реакций:

— свободнорадикальные;

— электрофильные;

— нуклеофильные.

Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от лат. eliminaue — удалять, отщеплять) и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособных частиц, можно выделить несколько основных механизмов протекания реакций.

1. Свободнорадикальное замещение:

${CH_4}↙{\text"метан"}+Br_2{→}↖{\text"УФ-свет"}{CH_3Br}↙{\text"бромметан"}+HBr$

2. Свободнорадикальное присоединение:

$nCH_2=CH_2{→}↖{\text"УФ-свет,R"}(...-CH_2-CH_2-...)_n$

3. Электрофильное замещение:

4. Электрофильное присоединение:

$CH_3-{CH=}↙{\text"пропен"}CH_2+HBr{→}↖{\text"раствор"}{CH_3-CHBr-CH_3}↙{\text"2-бромпропан"}$

$СH_3{-C≡}↙{\text"пропин"}CH+Cl_2{→}↖{\text"раствор"}{CH_3-CCl=CHCl}↙{\text"1,2-дихлорпропен"}$

5. Нуклеофильное присоединение:

Кроме того, мы рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц — оснований.

6. Элиминирование:

$СH_3-CHBr-CH_3+NaOH{→}↖{\text"спиртовой раствор"}CH_3-CH=CH_2+NaBr+H_2O$

Правило В. В. Марковникова

Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Гидрогалогенирование (присоединение галогеноводо рода):

$СH_3{-CH-}↙{\text"пропен"}CH_2+HBr→CH_3{-CHBr-CH_3}↙{\text"2-бромпропан"}$

Эта реакция подчиняется правилу В. В. Марковникова: при присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т.е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

алканы, алкены, алкины, арены - характеристика, использование, реакции

1) Алканы – это предельные углеводороды, в молекулах которых все атомы связаны одинарными связями. Состав их отражает одна общая формула: С n Н 2n+2 .

Физические свойства алканов зависят от состава их молекул, т.е. от относительной молекулярной массы. С увеличением относительной молекулярной массы у алканов увеличивается температура кипения и плотность, а так же изменяется агрегатное состояние: первые четыре алкана – газообразные вещества, следующие одиннадцать – жидкости, а начиная с гексадекана – твердые вещества.

Основным химическим свойством предельных углеводородов, определяющим использование алканов в качестве топлива, является реакция горения .

Для алканов, как для предельных углеводородов, наиболее характерны реакции замещения . Так атомы водорода в молекуле метана способны последовательно замещаться на атомы галогенов.

Нитрование

Алканы реагируют с азотной кислотой или N 2 O 4 в газовой фазе с образованием нитропроизводных. Все имеющиеся данные указывают на свободно радикальный механизм. В результате реакции образуются смеси продуктов.

Крекинг

При нагревании выше 500°C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции.

Получение

Главным источником алкановявляется нефть и природный газ, которые обычно встречаются совместно.

Применение

Газообразные алканы используются в качестве ценного топлива. Жидкие в свою очередь составляют значительную долю в моторных и ракетных топливах.

2) Алкены – это непредельные углеводороды содержащие в молекуле, кроме одинарных связей, одну двойную углерод-углеродную связь. Состав их отображает формула:С n Н 2n .

Физические свойства

Температуры плавления и кипения алкенов увеличиваются с молекулярной массой и длиной главной углеродной цепи. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Химические свойства

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее типичными являются реакции присоединения:

1) Водорода, 2) Воды, 3) Галогенов, 4) Галогенводородов.

Алкены легко вступают в реакции окисления, окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.Полимеризация алкенов может протекать как по свободнорадикальному, так и катионно-анионному механизму.


Методы получения алкенов

Основным промышленным методом получения алкенов является каталитический и высокотемпературный крекингуглеводородовнефти и природного газа. Для производства низших алкенов используют также реакцию дегидратации соответствующих спиртов.

В лабораторной практике обычно применяют метод дегидратации спиртов в присутствии сильных минеральных кислот.В природе ациклические алкены практически не встречаются. Простейший представитель этого класса органических соединений - этилен (C 2 H 4) - является гормоном для растений и в незначительном количестве в них синтезируется.

Применение

Алкены являются важнейшим химическим сырьем. Алкены применяются в качестве исходных продуктов в производстве полимерных материалов (пластмасс, пленок) и других органических веществ. Высшие алкены применяют для получения высших спиртов.

3) Алкины – это непредельные углеводороды, молекулы которых содержат, помимо одинарных связей, одну тройную углерод-углеродную связь. Состав отображает формула: С n Н 2n-2 .

Физические свойства

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С 4) - газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, но лучше - в органических растворителях.Наличие тройной связи в цепи приводит к повышению температуры кипения, плотности и растворимости их в воде.

Химические свойства

Как и все непредельные соединения, алкины активно вступают в реакции присоединения: 1) галогенов, 2) водорода, 3) галогенводородов, 4) воды. Вступают в реакции окисления.Ввиду наличия тройной связи склонны к реакциям полимеризации, которые могут протекать в нескольких направлениях:

a) Под воздействием комплексных солей меди происходит димеризация и линейная

тримеризация ацетилена.

b)При нагревании ацетилена в присутствии активированного угля (реакция Зелинского) осуществляется циклическая тримеризация с образованием бензола.

Методы получения

Основным промышленным способом получения ацетилена является электро- или термокрекинг метана, пиролиз природного газа и карбидный метод.Алкины можно получить из дигалогенопроизводных парафинов отщеплением галогеноводорода при действии спиртового раствора щелочи.

Применение

Серьёзное промышленное значение имеет только ацетилен, который является важнейшим химическим сырьём. При горении ацетилена в кислороде температура пламени достигает 3150°C, поэтому ацетилен используют для резки и сварки металлов.

4) Арены - ароматические углеводороды, содержащие одно или несколько бензольных колец.

Физические свойства

Как правило, ароматические соединения - твердые или жидкие вещества. Отличаются высокими показателями преломления и поглощения.Нерастворимы в воде, но хорошо растворимы во многих органических жидкостях. Огнеопасны, бензол является токсичным.

Химические свойства

Для ароматических соединений характерны реакции замещения атомов водорода, связанных с циклом. Возможны реакции присоединения и окисления, но проходят с трудом, так как нарушают ароматичность.

Методы получения

Основными природными источниками ароматических углеродов являются

каменный уголь и нефть.Тримеризация ацетилена и его гомологов над активированным углем при 600 °C.Каталитическое дегидрирование циклогексана и его производных.

Применение - Ароматические углеводороды, в первую очередь бензол, широко применяются в промышленности: в качестве добавки к бензину, при производстве растворителей, взрывчатых веществ, красителя анилина, лекарственных средств.

10. Struktura, vlastnosti a význam derivátů uhlovodíků

halové deriváty, nitrosloučeniny, aminosloučeniny, alkoholy a fenoly, aldehydy a ketony, karboxylové sloučeniny – charakteristika, použití, reakce

10. Строение, свойства и значение производных углеводородов


галогеноалканы, нитросоединения, аминосоединения, спирты и фенолы, альдегиды и кетоны, карбоновые кислоты - характеристика, использование, реакции

1) Галогеналканы - органические соединения, которые содержат в своём составе связь «углерод-галоген». В силу того, что атомы галогенов являются более электроотрицательными, чем атом углерода, связь С-Х поляризована таким образом, что атом галогена приобретает частичный отрицательный заряд, а атом углерода - частичный положительный.Большинство галогеноалканов в чистом виде являются бесцветными соединениями.Чем больше атомов углерода, тем выше температуры плавления и кипения. Если же у одного атома углерода содержатся 2 или 3 атома галогена, то температура плавления и кипения такого соединения, напротив, снижаются.Характерные реакции - реакция Вюрца, нуклеофильное замещение, элиминирование, взаимодействие с щелочными и щёлочноземельными металлами. Получают галогеналканы путем хлорирования алканов на свету, гидрохлорированием ненасыщенных углеродов или получают из спиртов.Галогеналканыиспользуются:какрастворителидляжировимасел; тефлон;вкачествехладагентов.

2) Нитросоединения - органические соединения, содержащие одну или несколько нитрогрупп– NO 2 . Под нитросоединениями обычно подразумевают C-нитросоединения, в которых нитрогруппа связана с атомом углерода.Нитросоединенияпредставляютсобойбесцветныемалорастворимыевводеихорошорастворимыеворганическихрастворителяхжидкости, обладающиехарактернымминдальнымзапахом. Всенитросоединенияявляютсядовольносильнымиядамидляцентральнойнервнойсистемы.Благодарявысокойполярностинитросоединениямогутрастворятьтакиевещества, которыенерастворяютсявобычныхрастворителях. Полинитросоединенияобычнослабоокрашены, взрывчатыеприудареидетонации.

По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях: Восстановление нитросоединений (Реакция Зинина), реакции конденсации, Таутомерия (явление обратной изомерии) нитросоединений.

Нитросоединения широко применяются в органическом синтезе для получения различных веществ, используемых в производстве красителей и лекарственных препаратов. Некоторые из нитросоединений применяются в качестве противогрибковых и противомикробных средств. Полинитропроизводные – тротил, пикриновая кислота и ее соли – используются как взрывчатые вещества.

4)Аминосоединения – это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал. Амины классифицируются по двум структурным признакам: 1) По количеству радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины. 2) По характеру углеводородного радикала амины разделяются на алифатические, ароматические и смешанные.

Метиламин, диметиламин и триметиламин - газы, средние члены алифатического ряда - жидкости, высшие - твердые вещества.Подобно аммиаку, низшие амины прекрасно растворяются вводе, образуя щелочные растворы. С повышением молекулярного весарастворимостьаминов вводе ухудшается.Запах аминов напоминает запах аммиака, высшие амины практически лишены запаха.Температурыкипения первичных аминов значительно ниже, чем у соответствующих спиртов.

Амины жирного ряда, подобно аммиаку, способны соединяться с кислотами, даже с такими слабыми, как угольная кислота, и дают при этом соответствующие соли замещенных аммониевых оснований. Действие азотистой кислоты на амины является их характерной реакцией, позволяющей различить первичные, вторичные и третичные амины.

Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов.Амины широко распространены в природе, так как образуются при гниении живых организмов.Амины используют при получении лекарственных веществ, красителей и исходных продуктов для органического синтеза.

5) Спирты - органические соединения, содержащие одну или более гидроксильных групп.По числу гидроксильных групп, содержащихся в молекуле, спирты делятся на одноатомные двухатомные,трехатомные и многоатомные.В зависимости от того, при каком атоме углерода находится гидроксил, различают первичные, вторичные, и третичные спирты.Молекулы спиртов, подобны молекуле воды,однако спирты имеют существенно более высокие температуры плавления и кипения. Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы. Спирты взаимодействуют с: щелочными и щелочноземельными металлами, с галогенводородами и

с органическими и неорганическими кислотами с образованием сложных эфиров. Также бывают реакции межмолекулярной дегидратации спиртов, дегидрирования и реакции окисления спиртов. Спирты широко распространены в природе как в свободном виде, так и в составе сложных эфиров. Спирты могут быть получены из самых разных классов соединений, таких как углеводороды, галогеналканы, амины икарбонильные соединения. В основном, все методы сводятся к реакциям окисления, восстановления, присоединения и замещения. В промышленности спирты получают при помощи химических методов либо биохимических методов производства. Области использования спиртов многочисленны и разнообразны, особенно учитывая широчайший спектр соединений, относящихся к этому классу. Спирты используют в качестве растворителей и очистителей, этиловый спирт является основой алкогольной продукции, также широко используются в парфюмерной промышленности и многих других сферах.

6) Фенолы – это органические соединения, в молекулах которых радикал фенил связан с одной или несколькими гидроксильными группами. По числу ОН-групп различают одноатомные и многоатомные фенолы. Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.У фенола ярко выражены кислотные свойства. Это связано с тем, что свободная электронная пара кислорода в феноле оттянута к ядру. При взаимодействии фенола со щелочами образуются соли – феноляты. За счёт гидроксильной группы фенол будет взаимодействовать со щелочными металлами.

С участием бензольного кольца протекают также реакции замещения и присоединения.

Фенолы в значительных количествах содержатся каменноугольной смоле. Фенол получают также сплавлением натриевой соли бензолсульфокислоты с едким натром.

Фенол используется в производстве пластических масс, пикриновой кислоты, красителей, средств для борьбы с насекомыми. Все фенолы обладают бактерицидным действием, поэтому они применяются в качестве дезинфицирующих средств в медицине и ветеринарии.

Альдегиды и кетоны

Альдегиды – это органические соединения, молекулы которых содержат карбоксильную группу, связанную с атомом водорода и углеводородным радикалом.

Кетоны – это органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами.

Так как альдегиды и кетоны – полярные соединения, они имеют более высокие температуры кипения, чем неполярные, однако ниже, чем у спиртов, что указывает на отсутствие молекулярной ассоциации. Хорошо растворимы в воде, однако с увеличением размера молекул растворимость резко уменьшается. Высшие альдегиды и кетоны обладают приятным запахом, средние гомологи ряда альдегидов обладают устойчивым характерным запахом, низшие альдегиды имеют резкий неприятный запах.Для альдегидов и кетонов характерны реакции присоединения по двойной связи. Кроме реакции присоединения по карбонильной группе, для альдегидов характерны также реакции с участием альфа-атомов водорода, соседних с карбонильной группой. Их реакционная способность связана с электроноакцепторным влиянием карбонильной группы, которое проявляется в повышенной полярности связи. Это приводит к тому, что альдегиды, в отличие от кетонов, легко окисляются. Их взаимодействие с аммиачным раствором оксида серебра является качественной реакцией на альдегиды. Общим способом получения альдегидов и кетонов является окисление спиртов на медном катализаторе.В промышленности альдегиды и кетоны получают дегидрированием спиртов. В промышленности кетоны используют как растворители, фармацевтические препараты и для изготовления различных полимеров.Из всех альдегидов больше всего производится формальдегида. Он, в основном, используется в производстве смол. Также из него синтезируют лекарственные средства используют как консервант биологических препаратов.

8) Карбоновые кислоты – это органические соединения, молекулы которых содержат карбоксильную группу -СООН, связанную с углеводородным радикалом.Температуры кипения и плавления карбоновых кислот намного выше, не только чем у соответствующих углеводородов, но и чем у спиртов. Хорошая растворимость в воде, но с увеличением углеводородного радикала ухудшается.Низшие члены гомологического ряда при обычных условиях представляют собой жидкости, обла­дающие характерным острым запахом. Средние представители этого гомологического ряда - вязкие жидкости; начиная с С 10 - твердые вещества.Карбоксильная группа устроена таким образом, что молекула достаточно легко может отщеплять водород - проявлять свойства кислоты. Карбоновые кислоты реагируют с металлами и их соединениями, вытесняют более слабые кислоты из их солей, взаимодействуют с основными и амфотерными оксидами и гидроксидами, а так же участвуют в реакции этерификации. Карбоновые кислоты получают путем окисления альдегидов и спиртов и гидролизом сложных эфиров. Муравьиную кислоту применяют в медицине, уксусная кислота применяется в пищевой промышленности, а так же используется в качестве растворителя.

11. Makromolekulární látky vznikající polymerací, polykondenzací a polyadicí

stavební a strukturní jednotka

vlastnosti makromolekulárních látek

polymery, polyestery, polyamidy, fenoplasty, aminoplasty, polyuretany – příklady, použití

Алканы

Предельные углеводороды - алканы - вступают в реакции замещения и не вступают в реакции присоединения. В то время как практически для всех непредельных соединений, т.е. веществ, содержащих двойные и тройные связи, этот тип реакций является наиболее характерным.

1. Реакции замещения

а) Галогенирование :

Где hv - формула кванта света хлорметан

При достаточном количестве хлора реакция продолжается дальше и приводит к образованию смеси продуктов замещения двух, трех и четырех атомов водорода:

Реакция галогенирования алканов протекает по радикальному цепному механизму, т.е. как цепь последовательных превращений с участием свободно-радикальных частиц.

Рассмотрим механизм радикального замещения на примере монохлорирования метана:

Стадия 1 - зарождение цепи - появление в зоне реакции свободных радикалов. Под действием световой энергии гомо- литически разрушается связь в молекуле Cl: Сl на два атома хлора с неспаренными электронами (свободные радикалы):

Стадия 2 - рост (развитие) цепи . Свободные радикалы, взаимодействуя с молекулами, порождают новые радикалы и развивают цепь превращений:

Стадия 3 - обрыв цепи . Радикалы, соединяясь друг с другом, образуют молекулы и обрывают цепь превращений:

При хлорировании или бромировании алкана с вторичными или третичными атомами углерода легче всего идет замещение водорода у третичного атома, труднее у вторичного и еще труднее у первичного. Это объясняется большей устойчивостью третичных и вторичных углеводородных радикалов по сравнению с первичными вследствие делокализации неспаренного электрона. Поэтому, например, при хлорировании пропана основным продуктом реакции является 2-хлорпропан:

б) Нитрование алканов (реакция Коновалова)

На алканы воздействуют разбавленной азотной кислотой при нагревании (140-150 °С) и давлении. В результате происходит замещение атома водорода на остаток азотной кислоты - нитрогруппу NO 2 . Эту реакцию называют реакцией нитрования, а продукты реакции - нитросоединениями.

Схема реакции:

2. Реакции окисления

а) все алканы горят с образованием углекислого газа и воды:

б) частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С-С и С-Н:

В результате реакций окисления, в зависимости от строения алкана, могут быть получены и другие вещества: кетоны, альдегиды, спирты.

3. Реакции изомеризации (с участием катализатора АlСl 3):

4. Реакции разложения :

Циклоалканы

Химические свойства циклоалканов во многом зависят от числа атомов углерода в цикле. Трех- и четырехчленные циклы (малые циклы ), являясь насыщенными, тем не менее резко отличаются от всех остальных предельных углеводородов. Валентные углы в циклопропане и циклобутане значительно меньше нормального тетраэдрического угла 109°28", свойственного sр 3 -гибридизованному атому углерода. Это приводит к большой напряженности таких циклов и их стремлению к раскрытию под действием реагентов. Поэтому циклопропан, циклобутан и их производные вступают в реакции присоединения , проявляя характер ненасыщенных соединений. Легкость реакций присоединения уменьшается с уменьшением напряженности цикла в ряду:

циклопропан > циклобутан >> циклопентан.

Наиболее устойчивыми являются 6-членные циклы, в которых отсутствуют угловое и другие виды напряжения.

Малые циклы (С 3 -С 4) довольно легко вступают в реакции гидрирования:

Циклопропан и его производные присоединяют галогены и галогеноводороды:

Для циклоалканов (С 5 и выше) вследствие их большей устойчивости характерны реакции, в которых сохраняется циклическая структура, т.е. реакции замещения .

Хлорирование циклогексана идет по цепному механизму (подобно замещению в алканах):

Эти соединения, подобно алканам, вступают также в реакции дегидрирования в присутствии катализатора и др.

Дегидрирование циклогексана и его алкильных производных:

Алкены

Алкены относятся к непредельным углеводородам. В их молекулах присутствует одна двойная связь (σ-связь и π-связь). Именно с разрывом более слабой π-связи и протекают реакции присоединения.

Алкены вступают в разнообразные реакции присоединения. В качестве реагентов могут выступать молекулы водорода (реакция гидрирования ), галогенов (реакция галогенирования ), галогеноводородов (реакция гидрогалогенирования ), воды (реакция гидратации ). За счет разрыва π-связи протекает и реакция полимеризации. В общем виде схемы указанных процессов можно записать следующим образом.

Рассмотрим механизм реакции гидратации, происходящей в присутствии минеральных кислот по механизму электрофильного присоединения 1:

При взаимодействии несимметричных алкенов с молекулами галогеноводородов или воды соблюдается правило В.В. Марковникова: присоединение атома водорода к молекуле несимметричного алкена происходит преимущественно к более гидрогенизированному атому углерода (уже соединенному с большим числом атомов водорода).

Разновидностью реакции присоединения является реакция полимеризации , в ходе которой происходит образование высокомолекулярного соединения (полимера) путем последовательного присоединения молекул низкомолекулярного вещества (мономера) по схеме:

Число n в формуле полимера (М n) называется степенью полимеризации . Реакции полимеризации алкенов идут за счет присоединения по кратным связям:

Алкены вступают в реакции окисления, например с перманганатом калия.

В нейтральной и кислой среде реакции идут по-разному.

Алкадиены (диены)

Свойства алкадиенов (диенов) аналогичны свойствам алкенов. Главное отличие в их свойствах связано с наличием двух двойных связей в молекулах, причем важную роль играет именно их расположение. Наибольший интерес представляют сопряженные алкадиены (т.е. имеющие сопряженные двойные связи (разделенные одной σ-связью). Они отличаются характерными свойствами, обусловленными электронным строением молекул, а именно непрерывной последовательностью четырех sp 2 -атомов углерода, например, бутадиен-1,3: СН 2 = СН - СН =СН 2

Рассмотрим химические свойства диенов.

1. Гидрирование

При гидрировании бутадиена-1,3 получается бутен-2, т.е. происходит 1,4-присоединение. При этом двойные связи разрываются, к крайним атомам углерода С 1 и С 4 присоединяются атомы водорода, а свободные валентности образуют двойную связь между атомами С 2 и С 3:

В присутствии катализатора Ni получается продукт полного гидрирования:

2. Галогенирование - происходит аналогично реакции гидрирования. Преимущественно атомы галогенов присоединяются к первому и четвертому атомам углерода (присоединение-1,4):

В качестве побочного процесса протекает 1,2-присоединение:

При избытке хлора присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1,2,3,4-тетрахлорбутана.

Присоединение галогенов, галогеноводородов, воды и других полярных реагентов происходит по электрофильному механизму (как в алкенах).

К реакциям присоединения относятся реакции полимеризации , характерные для диенов. Этот процесс имеет важное значение в производстве синтетических каучуков.

Полимеризация 1,3-диенов может протекать либо по типу 1,4-присоединения, либо по смешанному типу 1,2- и 1,4-присоединения. Направление присоединения зависит от условий проведения реакции.

Первый синтетический каучук, полученный по методу С.В. Лебедева при полимеризации дивинила под действием металлического натрия, представлял собой полимер нерегулярного строения со смешанным типом звеньев 1,2- и 1,4-присоединения:

Алкины

Основным типом реакции для алкинов, так же как и для алкенов и диенов, является реакция присоединения.

1. Гидрирование

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород (разрывается первая π-связь) с образованием алкенов, а затем разрывается вторая π-связь, и образуются алканы:

При использовании других (менее активных катализаторов) гидрирование останавливается на стадии образования алкенов.

2. Галогенирование

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая π-связь разрывается труднее, чем вторая):

Алкины обесцвечивают бромную воду (качественная реакция).

3. Гидрогалогенирование

Присоединение галогеноводородов к аминам также идет по электрофильному механизму. Продукты присоединения к несимметричным алкинам определяются правилом В.В. Марковникова:

Гидрохлорирование ацетилена используется в одном из промышленных способов получения винилхлорида:

Винилхлорид является исходным веществом (мономером) в производстве поливинилхлорида (ПВХ).

4. Гидратация (реакция Кучерова)

Присоединение воды к алкинам происходит в присутствии катализатора соли ртути(II) и идет через образование неустойчивого непредельного спирта, который изомеризуется в уксусный альдегид (в случае ацетилена):

или в кетон (в случае других алкинов):

5. Полимеризация

а) Димеризация под действием водно-аммиачного раствора CuCl:

б) Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):

6. Кислотные свойства ацетилена

Ацетилен и его гомологи с концевой тройной связью R-С ≡ С-Н (алкины-1) вследствие полярности связи C(sp)-Н проявляют слабые кислотные свойства: атомы водорода могут замещаться атомами металла. При этом образуются соли - ацетилениды :

Ацетилениды щелочных и щелочноземельных металлов используются для получения гомологов ацетилена.

При взаимодействии ацетилена (или R-С ≡ С-Н) с аммиачными растворами оксида серебра или хлорида меди(I) выпадают осадки нерастворимых ацетиленидов:

7. Окисление алкинов

Ацетилен и его гомологи легко окисляются различными окислителями (перманганатом калия в кислой и щелочной среде, дихроматом калия в кислой среде и др.). Строение продуктов окисления зависит от природы окислителя и условий проведения реакций.

Например, при окислении ацетилена в щелочной среде образуется оксалат:

При жестком окислении (нагревание, концентрированные растворы, кислая среда) происходит расщепление углеродного скелета молекулы алкина по тройной связи и образуются карбоновые кислоты:

Алкины обесцвечивают разбавленный раствор перманганата калия, что используется для доказательства их ненасыщенности. В этих условиях происходит мягкое окисление без разрыва σ-связи С-С (разрушаются только π-связи). Например, при взаимодействии ацетилена с разбавленным раствором КМnO 4 при комнатной температуре возможны следующие превращения с образованием щавелевой кислоты НООС-СООН:

При сгорании алкинов происходит их полное окисление до СO 2 и Н 2 O. Горение ацетилена сопровождается выделением большого количества теплоты:

Качественной реакцией на непредельные углеводороды служит обесцвечивание бромной воды и раствора перманганата калия (см. раздел 4).

Видеоурок 2: Циклоалканы: Химические свойства

Видеоурок 3: Алкены: Химические свойства

Видеоурок 4: Алкадиены (диены): Химические свойства

Видеоурок 5: Алкины: Химические свойства

Лекция: Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов

Химические свойства алканов и циклоалканов

Алканы - нециклические углеводороды. Атомы углерода в данных соединениях имеют sp 3 -гибридизацию. В молекулах данных углеводородах все атомы углерода связаны только одинарными неполярными и малополярными С-С связями. Перекрывание орбиталей происходит по оси, соединяющей ядра атомов. Это σ-связи. Данные органические соединения содержат максимальное число атомов водорода, поэтому их называют предельными (насыщенными). Из - за насыщенности, алканы не способны вступать в реакции присоединения. Поскольку атомы углерода и водорода имеют схожие электроотрицательности, данный фактор приводит к тому, что связи С-Н в их молекулах малополярны. Из - за этого, для алканов присущи реакции, проходящие с участием свободных радикалов.

1. Реакции замещения. Как было сказано, это наиболее характерные для алканов реакции. В таких реакциях происходит разрыв связей углерод-водород. Рассмотрим некоторые виды реакций замещения:

    Галогенирование. Алканы реагируют с галогенами (хлором и бромом) при воздействии ультрафиолетового света или сильном нагревании. К примеру: CH 4 + Cl 2 → CH 3 Cl + HCl. При избыточном содержании галогена реакция продолжается до образования смеси галогенпроизводных различной степени замещения атомов водорода: моно-, ди- три- и т.д. К примеру, реакция образования дихлорметана (хлористого метилена): CH 3 Cl + Cl 2 → HCl + CH 2 Cl 2 .

    Нитрование (реакция Коновалова). При нагревании и давлении алканы реагируют с разбавленной азотной кислотой. Впоследствии атом водорода замещается на нитрогруппу NO 2 и образуется нитроалкан. Общий вид данной реакции: R-H + HO-NO 2 → R-NO 2 + H 2 O. Где R-H - алкан, R- NO 2 - нитроалкан.

2. Реакции окисления. В обычных условиях алканы не реагируют с сильными окислителями (конц. серной и азотной кислотами, перманганатом калия КMnО 4 и дихроматом калия К 2 Cr 2 О 7).

    Для получения энергии широко применяются реакции горения алканов:

а) При полном сгорании при избытке кислорода образуются углекислый газ и вода: CH 4 + 2O 2 → CO 2 + 2H 2 O

б) Частичное сгорание при недостатке кислорода: CH 4 + O 2 → C + 2H 2 O. Эта реакция используется в промышленности для получения сажи.

    Нагревание алканов с кислородом (~200 о С) с использованием катализаторов приводит к разрыву части связей С–С и С–Н. В результате образуются альдегиды, кетоны, спирты, карбоновые кислоты. Например, при неполном окислении бутана получают уксусную кислоту: CH 3 -CH 2 -/-CH 2 -CH 3 + 3O 2 → 2CH 3 СООН + 2Н 2 О.

    Важное значение имеет реакция метана и водяного пара с образованием смеси газов оксида углерода (II) с водородом. Протекает при t 800 0 C: CH 4 + Н 2 О → 3Н 2 +СО. Данная реакция также позволяет получить различные углеводороды.

3. Термические превращения алканов. Нагревание алканов без доступа воздуха до высоких t приводит к разрыву связи С-С. К данному типу реакций относятся крекинг и изомеризация, используемые для переработки нефти. Также к данным реакциям относится дегидрирование, необходимое для получения алкенов, алкадиенов и ароматических углеводородов.

    Результатом крекинга становится разрыв углеродного скелета молекул алканов. Общий вид крекинга алканов при t 450-700 0 C: C n H 2n+2 → C n-k H 2(n-k)+2 + C k H 2k. При нагревании до 1000 0 С метан разлагается до простых веществ: CH 4 → С + 2Н 2 . Данная реакция называется пиролизом метана. При нагревании метана до 1500 0 С образуется ацетилен: 2 CH 4 → C 2 H 2 + 3Н 2 .

    Изомеризация. Если при крекинге использовать катализатор хлорид алюминия алканы с нормальной цепью превращаются в алканы с разветвленной цепью:


    Дегидрирование, т.е. отщепление водорода происходит в присутствии катализаторов и при t 400-600 0 С. В результате связь С-Н разрывается, образуется алкен: CH 3 -CH 3 → CH 2 =CH 2 + H 2 или алкадиен: CH 3 -CH 2 -CH 2 -CH 3 → СН 2 =СН-СН=СН 2 + 2H 2 .

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех практически схожи со свойствами алканов. Однако для циклопропана и циклобутана характерны реакции присоединения. Это объясняется большим напряжением внутри цикла, которое приводит к стремлении циклов к разрыву и раскрытию. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород. Например:

Химические свойства алкенов

1. Реакции присоединения. Алкены - активные соединения, потому что двойная связь в их молекулах состоит из одной прочной сигма- и одной слабой пи-связи. В реакции присоединения алкены часто вступают даже на холоде, в водных растворах и органических растворителях.

    Гидрирование, т.е. присоединение водорода возможно в присутствии катализаторов: CH 3 -СН=СН 2 + Н 2 → CH 3 -СН 2 -СН 3 . Для дегидрирования алканов до алкенов применяются те же катализаторы. Но процесс дегидрирования будет проходить при более высокой t и меньшем давлении.

    Галогенирование. Легко возникают реакции алкенов с бромом в водном растворе и в органических растворителях. В результате желтые растворы брома теряют свою окраску, то есть обесцвечиваются: СН 2 =СН 2 + Br 2 → CH 2 Br- CH 2 Br .

    Гидрогалогенирование. Присоединение молекулы галогеноводорода к молекуле несимметричного алкена приводит к смеси двух изомеров. В отсутствие специфических условий присоединение происходит селективно, по правилу В.В. Марковникова. Существует следующая закономерность присоединения: водород присоединяется к тому атому углерода, у которого больше атомов водорода, а галоген - к атому углерода с меньшим числом атомов водорода: СН 2 =СН-СН 3 + HBr → СН 3 -СНBr-СН 3 . Образовался 2-бромпропан.

    Гидратация алкенов приводит к образованию спиртов. Так как присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только при гидратации этилена: CH 2 =CH 2 + H 2 O → CH 3 - CH 2 - OH .

    Полимеризация протекает по свободно-радикальному механизму: nCH 2 =CH 2 → (- CH 2 - CH 2 -)n. Образовался полиэтилен.

2. Реакции окисления. Алкены, к ак и все остальные углеводороды сгорают в кислороде. Уравнение горения алкенов в избытке кислорода имеет вид: C n H 2n+2 + O 2 → nCO 2 + (n+1)H 2 O . Образовались углекислый газ и вода.

Алкены достаточно легко окисляются. При действии на алкены водного раствора KMnO 4 , происходит обесцвечивание.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе образует диолы: C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH (охлаждение).

В кислой среде проходит полный разрыв двойной связи с последующим превращение атомов углерода, образовывавших двойную связь в карбоксильные группы: 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K2SO 4 + 17H 2 O (нагревание).

Когда двойная С=С связь располагается в конце молекулы алкена, в роли продукта окисления крайнего углеродного атома при двойной связи будет выступать углекислый газ. Данный процесс связан с тем, что промежуточный продукт окисления, а именно муравьиная кислота, достаточно просто окисляется в избытке окислителя: 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O (нагревание).


Химические свойства алкинов

Алкины - ненасыщенные углеводороды, вступающие в реакции присоединения.

    Галогенирование алкинов приводит к присоединению их молекул как к одной, так и двум молекулам галогена. Это объясняется наличием в тройной связи молекул алкинов одной прочной сигма-связи и двух непрочных пи-связей. Присоединение одной молекулой алкина двух молекул галогена протекает по электрофильному механизму последовательно, в две стадии.

    Гидрогалогенирование также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение молекул галогеноводорода соответствует правилу Марковникова.

    Гидратация проходит с участием солей ртути в кислой среде и именуется реакцией Кучерова:

    Гидрирование (реакция с водородом) алкинов происходит в две фазы. В качестве катализаторов применяют такие металлы, как платина, палладий, никель.

    Тримеризация алкинов, к примеру ацетилена. Если пропустить данное вещество над активированным углем при высокой t образуется смесь различных продуктов, основным из которых является бензол:

    Димеризация алкинов протекает в присутствии солей меди как катализаторов: HC≡CH + HC≡CH → H 2 C= CH- C≡CH

    Окисление алкинов: С n H 2n-2 + (3n+1)/2 O 2 → nCO 2 + (n+1)H 2 O .

  • Алкины с тройной C≡C на конце молекулы взаимодействуют с основаниями. Например, реакция ацетилена с амидом натрия в жидком аммиаке: HC≡CH + NaNH 2 → NaC≡CNa + 2NH 3 . Реакция с аммиачным раствором оксида серебра образует ацетилениды (нерастворимые солеподобные вещества). Данную реакцию проводят если необходимо распознать алкины с концевой тройной связью или выделить такой алкин из смеси с другими алкинами. Все ацетилениды серебра и меди являются взрывоопасными веществами. Ацетилениды способны реагировать с галогенпроизводными. Данная возможность используется для синтеза более сложных органических соединений с тройной связью: СН 3 -C≡CН + NaNН 2 → СН 3 -C≡CNa + NН 3 ; СН 3 -C≡CNa + CH 3 Br → СН 3 -C≡C-СН 3 + NaBr.

Химические свойства диенов

По своим химическим свойствам алкадиены схожи с алкенами. Но есть некоторые особенности:

  • Галогенирование. Алкадиены способны присоединяться с водородом, галогенами и галогеноводородами в положениях 1,2-присоединения: CH 2 =CH-CH=CH 2 + Br 2 CH 2 =CH-CHBr- CH 2 Br

а также 1,4-присоединения: CH 2 =CH-CH=CH 2 + Br 2 Br CH 2 - CH=CH- CH 2 Br

  • Полимеризация: nCH 2 =CH-CH=CH 2 t,Na → (-CH 2 -CH=CH-CH 2 -) n . Так получают синтетический каучук.

Химические свойства ароматических углеводородов (аренов)

Похожие публикации