Система защиты от коррозии и старения. Единая система защиты от коррозии и старения

Электрохимическая защита конструкций из металла от коррозионных проявлений базируется на наложении на предохраняемое изделие отрицательного потенциала. Высокий уровень эффективности она демонстрирует в тех случаях, когда металлоконструкции подвергаются активному электрохимическому разрушению.

1 Суть антикоррозионной электрохимической защиты

Любая конструкция из металла с течением времени начинает разрушаться в результате коррозионного воздействия. По этой причине металлические поверхности перед эксплуатацией в обязательном порядке покрывают специальными составами, состоящими из различных неорганических и органических элементов. Такие материалы в течение определенного периода надежно предохраняют металл от окисления (ржавления). Но через некоторое время их необходимо обновлять (наносить новые составы).

Тогда, когда защитный слой не удается возобновить, защита от коррозии трубопроводов, кузова автомобиля и других конструкций выполняется при помощи электрохимической методики. Она незаменима для предохранения от ржавления резервуаров и емкостей, работающих под землей, днищ морских кораблей, разнообразных подземных коммуникаций, когда потенциал коррозии (ее называют свободной) находится в зоне перепассивации основного металла изделия или активного его растворения.

Суть электрохимической защиты заключается в том, что к конструкции из металла подключают извне постоянный электроток, который формирует на поверхности металлоконструкции поляризацию катодного типа электродов микрогальванопар. В итоге на металлической поверхности наблюдается преобразование анодных областей в катодные. После такого превращения негативное влияние среды воспринимает анод, а не сам материал, из которого изготовлено защищаемое изделие.

Электрохимическая защита может быть либо катодной, либо анодной. При катодной потенциал металла смещается в отрицательную сторону, при анодной – в положительную.

2 Катодная электрозащита – как она действует?

Механизм процесса, если разобраться в нем, достаточно прост. Погруженный в электролитический раствор металл является системой с большим количеством электронов, которая включает в себя разделенные в пространстве катодные и анодные зоны, электрически замкнутые друг с другом. Подобное положение вещей обусловлено гетерогенной электрохимической структурой металлических изделий (например, подземных трубопроводов). Коррозионные проявления образуются на анодных областях металла из-за его ионизации.

При присоединении материала с большим потенциалом (отрицательным) к основному металлу, находящемуся в электролите, наблюдается образование общего катода за счет процесса поляризации катодных и анодных зон. Под большим потенциалом при этом понимают такую его величину, которая превосходит потенциал анодной реакции. В сформированной гальванопаре материал с малым потенциалом электрода растворяется, что приводит к приостановке коррозии (так как ионы предохраняемого металлического изделия не могут попадать в раствор).

Требуемый для защиты кузова автомобиля, подземных резервуаров и трубопроводов, днищ кораблей электрический ток может поступать от внешнего источника, а не только от функционирования микрогальванической пары. В подобной ситуации предохраняемая конструкция подключается к "минусу" источника электротока. Анод же, сделанный из материалов с малой степенью растворимости, подсоединяют к "плюсу" системы.

Если ток получают только от гальванопар, говорят о процессе с расходуемыми анодами. А при использовании тока от внешнего источника речь идет уже о защите трубопроводов, деталей транспортных и водных средств при помощи наложенного тока. Применение любой из этих схем обеспечивает качественную защиту объекта от общего коррозионного распада и от ряда особых его вариантов (селективная, питтинговая, растрескивающая, межкристаллитная, контактная виды коррозии).

3 Как работает анодная методика?

Данная электрохимическая методика предохранения металлов от коррозии применяется для конструкций из:

  • углеродистых сталей;
  • пассивирующихся разнородных материалов;
  • высоколегированных и ;
  • титановых сплавов.

Анодная схема предполагает смещение потенциала предохраняемой стали в положительную сторону. Причем этот процесс ведется до тех пор, пока система не входит в устойчиво пассивное состояние. Такая защита от коррозии возможна в средах, хорошо проводящих электрический ток. Преимущество анодной методики состоит в том, что она существенно замедляет скорость окисления защищаемых поверхностей.

Кроме того, подобная защита может осуществляться посредством насыщения специальными компонентами-окислителями (нитраты, бихроматы и другие) коррозионной среды. В этом случае ее механизм примерно идентичен традиционному методу анодной поляризации металлов. Окислители значительно увеличивают на поверхности стали эффект от катодного процесса, но они обычно негативно влияют на окружающую среду, выбрасывая в нее агрессивные элементы.

Анодная защита используется реже, чем катодная, так как к предохраняемому объекту выдвигается множество специфических требований (например, безупречное качество сварных швов трубопроводов или кузова автомобиля, постоянное нахождение электродов в растворе и пр.). Катоды при анодной технологии располагают по строго определенной схеме, которая принимает во внимание все особенности металлоконструкции.

Для анодной методики используются малорастворимые элементы (из них делают катоды) – платину, никель, нержавеющие высоколегированные сплавы, свинец, тантал. Сама же установка для такой защиты от коррозии состоит из следующих компонентов:

  • защищаемая конструкция;
  • источник тока;
  • катод;
  • специальный электрод сравнения.

Допускается применять анодную защиту для емкостей, где хранятся минеральные удобрения, аммиачные составы, серная кислота, для цилиндрических установок и теплообменников, эксплуатируемых на химических предприятиях, для резервуаров, в которых выполняют химическое никелирование.

4 Особенности протекторной защиты стали и металла

Достаточно часто применяемым вариантом катодной защиты является технология использования специальных материалов-протекторов. При подобной методике электроотрицательный металл подсоединяется к конструкции. На протяжении заданного временного промежутка коррозия воздействует именно на протектор, а не на предохраняемый объект. После того, как протектор разрушается до определенного уровня, вместо него ставят нового "защитника".

Протекторная электрохимическая защита рекомендована для обработки объектов, находящихся в грунте, воздухе, воде (то есть в нейтральных с точки зрения химии средах). При этом эффективной она будет лишь тогда, когда между средой и материалом-протектором имеется некоторое переходное сопротивление (его величина варьируется, но в любом случае является небольшой).

На практике протекторы используют при экономической нецелесообразности либо физической невозможности подвести требуемый заряд электрического тока к объекту из стали или металла. Стоит отдельно отметить тот факт, что защитные материалы характеризуются определенным радиусом, на который распространяется их положительное действие. По этой причине следует правильно высчитывать дистанцию для удаления их от металлоконструкции.

Популярные протекторы:

  • Магниевые. Применяются в средах с рН 9,5–10,5 единиц (земля, пресная и малосоленая вода). Производятся из сплавов на основе магния с дополнительным легированием алюминием (не более 6–7 %) и цинком (до 5 %). Для экологии такие протекторы, защищающие объекты от коррозии, потенциально небезопасны из-за того, что они могут стать причиной растрескивания и водородного охрупчивания металлических изделий.
  • Цинковые. Данные "защитники" незаменимы для конструкций, функционирующих в воде с большим содержанием соли. В других средах применять их нет смысла, так как на их поверхности появляются гидроксиды и оксиды в виде толстой пленки. В составе протекторов на базе цинка имеются незначительные (до 0,5 %) добавки железа, свинца, кадмия, алюминия и некоторых других химических элементов.
  • Алюминиевые. Их используют в морской проточной воде и на объектах, находящихся на прибрежном шельфе. В алюминиевых протекторах имеется магний (около 5 %) и цинк (около 8%), а также в очень малых количествах таллий, кадмий, кремний, индий.

Кроме того, иногда применяются железные протекторы, которые производят из железа без каких-либо добавок либо из обычных углеродистых сталей.

5 Как выполняется катодная схема?

Температурные перепады и ультрафиолетовые лучи наносят серьезный вред всем внешним узлам и составным частям транспортных средств. Защита кузова автомобиля и некоторых других его элементов от коррозии электрохимическими методами признается весьма эффективным способом продления идеального внешнего вида машины.

Принцип действия такой защиты ничем не отличается от схемы, описанной выше. При предохранении от ржавления кузова автомобиля функцию анода может выполнить почти любая поверхность, которая способна качественно проводить электроток (влажное покрытие автодороги, металлические пластины, сооружения из стали). Катодом при этом является непосредственно корпус транспортного средства.

Элементарные способы электрохимической защиты кузова автомобиля:

  1. Подключаем через монтажный провод и дополнительный резистор к плюсу АКБ корпус гаража, в котором стоит машина. Данная защита от коррозии кузова автомобиля особенно продуктивна в летний период, когда в автогараже присутствует парниковый эффект. Этот эффект как раз и предохраняет наружные части авто от окисления.
  2. Монтируем специальный заземляющий металлизированный "хвост" из резины в задней части транспортного средства так, чтобы на него во время движения в дождливую погоду попадали капли влаги. При высокой влажности между автотрассой и кузовом автомобиля образуется разность потенциалов, которая и предохраняет наружные части ТС от окисления.

Также защита кузова автомобиля осуществляется при помощи протекторов. Их крепят на порогах машины, на днище, под крыльями. Протекторами в данном случае являются небольшие пластинки из платины, магнетита, карбоксила, графита (неразрушающиеся с течением времени аноды), а также из алюминия и "нержавейки" (их следует менять каждый несколько лет).

6 Нюансы антикоррозионной защиты трубопроводов

Системы труб в настоящее время защищаются посредством дренажной и катодной электрохимической методики. При предохранении трубопроводов от коррозии по катодной схеме используются:

  • Внешние источники тока. Их плюс подключат к анодному заземлению, а минус – к самой трубе.
  • Аноды-защитники, использующие ток от гальванических пар.

Катодная методика предполагает поляризацию предохраняемой стальной поверхности. При этом осуществляется подключение подземных трубопроводов к "минусу" комплекса катодной защиты (по сути, он представляет собой источник тока). "Плюс" подключают к добавочному внешнему электроду при помощи специального кабеля, который изготавливается из проводящей резины или графита. Данная схема позволяет получать электроцепь замкнутого типа, включающую в себя следующие компоненты:

  • электрод (наружный);
  • электролит, находящийся в почве, где выполнена прокладка трубопроводов;
  • непосредственно трубы;
  • кабель (катодный);
  • источник тока;
  • кабель (анодный).

Для протекторной защиты трубопроводов применяют материалы на основе алюминий, магния и цинка, коэффициент полезного действия которых равняется 90 % при использовании протекторов на базе алюминия и цинка и 50 % для протекторов из магниевых сплавов и чистого магния.

Для дренажной защиты систем труб применяется технология отвода в грунт блуждающих токов. Существует четыре варианта дренажной трубопроводов – поляризованный, земляной, усиленный и прямой. При прямом и поляризованном дренаже между "минусом" блуждающих токов и трубой ставят перемычки. Для земляной защитной схемы необходимо произвести посредством добавочных электродов заземление. А при усиленном дренаже трубных систем в цепь добавляют преобразователь, который необходим для повышения величины дренажного тока.

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия (металлические, неметаллические); электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью .

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов, например Al 2 O 3 и Cr 2 O 3 .

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств (износостойкость, электрическую проводимость и др.). Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия (или наличии пор) образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными . К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

Так, например, по отношению к железу никелевое покрытие является катодным, а цинковое – анодным (рис. 2.).

При повреждении никелевого покрытия (рис. 2,а) на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках - восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках - восстановление водорода (рис. 2,б).

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия);погружение в расплавленный металл (горячее цинкование, лужение);металлизация (нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха);химический (получение металлических покрытий с помощью восстановителей, например гидразина).

Рис. 2. Коррозия железа в кислотном растворе с катодным (а) и анодным (б) покрытиями: 1 – основной металл; 2 – покрытие; 3 – раствор электролита.

Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.).

Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды.

В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединение хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.

Неорганические эмали по своему составу являются силикатами, т.е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах.

Лакокрасочные покрытия наиболее распространены. Лакокрасочное покрытие должно быть сплошным, газо -и водонепроницаемым, химически стойким, эластичным, обладать высоким сцеплением с материалом, механической прочностью и твердостью.

Химические способы очень разнообразны. К ним относится, например, обработка поверхности металла веществами, вступающими с ним в химическую реакцию и образующими на его поверхности пленку устойчивого химического соединения, в формировании которой принимает участие сам защищаемый металл. К числу таких способов относится оксидирование , фосфатирование, сульфи-дирование и др.

Оксидирование - процесс образования оксидных пленок на поверхности металлических изделий.

Современный метод оксидирования – химическая и электрохимическая обработка деталей в щелочных растворах.

Для железа и его сплавов наиболее часто используется щелочное оксидирование в растворе, содержащем NaOH, NaNO 3 , NaNO 2 при температуре 135-140 О С. Оксидирование черных металлов называется воронением.

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления:

2 Н 2 О + О 2 + 4
4ОН -

На поверхности металла в результате работы микрогальванических элементов образуется Fe(OH) 2 , который затем окисляется в Fe 3 O 4 . Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистой стали – черный с сероватым оттенком.

Fe 2+ + 2OH -
Fe(OH) 2 ;

12 Fe(OH) 2 + NaNO 3
4Fe 3 O 4 + NaOH + 10 H 2 O + NH 3

Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение – декоративная отделка. Воронение используется в том случае, когда необходимо сохранить исходные размеры, так как оксидная пленка составляет всего 1,0 – 1,5 микрона.

Фосфатирование - метод получения фосфатных пленок на изделиях из цветных и черных металлов. Для фосфатирования металлическое изделие погружают в растворы фосфорной кислоты и ее кислых солей (H 3 PO 4 + Mn(H 2 PO 4) 2) при температуре 96-98 о С.

На поверхности металла в результате работы микрогальванических элементов образуется фосфатная пленка, которая имеют сложный химический состав и содержит малорастворимые гидраты двух- и трех замещенных фосфатов марганца и железа: MnHPO 4 , Mn 3 (PO 4) 2 , FeHPO 4 ,Fe 3 (PO 4) 2 n H 2 O.

На анодных участках происходит процесс окисления:

Fe
Fe 2+ + 2

На катодных участках происходит процесс восстановления водорода:

2Н + + 2
Н 2 (рН < 7)

При взаимодействии ионов Fe 2+ с анионами ортофосфорной кислоты и ее кислых солей образуются фосфатные пленки:

Fe 2+ + H 2 PO - 4
FeHPO 4 + H +

3Fe 2+ + 2 PO 4 3-
Fe 3 (PO 4) 2

Образующаяся фосфатная пленка химически связана с металлом и состоит из сросшихся между собой кристаллов, разделенных порами ультрамикроскопических размеров. Фосфатные пленки обладают хорошей адгезией, имеют развитую шероховатую поверхность. Они являются хорошим грунтом для нанесения лакокрасочных покрытий и пропитывающих смазок. Фосфатные покрытия применяются в основном для защиты металлов от коррозии в закрытых помещениях, а также как метод подготовки поверхности к последующей окраске или покрытию лаком. Недостатком фосфатных пленок является низкая прочность и эластичность, высокая хрупкость.

Анодирование – это процесс образования оксидных пленок на поверхности металла и прежде всего алюминия. В обычных условиях на поверхности алюминия присутствует тонкая оксидная пленка оксидов Al 2 O 3 или Al 2 O 3 ∙ nH 2 O, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем продуктов коррозии. Процесс искусственного образования оксидных пленок может быть осуществлен химическим и электрохимическим способами. При электрохимическом оксидировании алюминия алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, ортофосфорной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например нержавеющая сталь. На катоде выделяется водород, на аноде происходит образование оксида алюминия. Суммарный процесс на аноде можно представить следующим уравнением:

2 Al + 3 H 2 O
Al 2 O 3 + 6 H + + 6

    Эти методы можно разделить на 2 группы. Первые 2 метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние 2 метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.

    Вторая группа методов позволяет при необходимости создавать новые режимы защиты, обеспечивающие наименьшую коррозию изделия. Например, на отдельных участках трубопровода в зависимости от агрессивности почвы можно менять плотность катодного тока. Или для разных сортов нефти, прокачиваемой через трубы, использовать разные ингибиторы.

    Вопрос: Как применяются ингибиторы коррозии?

    Ответ: Для борьбы с коррозией металлов широко распространены ингибиторы коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную пленку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов.

    Вопрос: Каковы способы защиты металлов от коррозии с применением лакокрасочных материалов?

    Ответ: В зависимости от состава пигментов и пленкообразующей основы лакокрасочные покрытия могут выполнять функции барьера, пассиватора или протектора.

    Барьерная защита – это механическая изоляция поверхности. Нарушение целостности покрытия даже на уровне появления микротрещин предопределяет проникновение агрессивной среды к основанию и возникновение подпленочной коррозии.

    Пассивация поверхности металла с помощью ЛКП достигается при химическом взаимодействии металла и компонентов покрытия. К этой группе относят грунты и эмали, содержащие фосфорную кислоту (фосфатирующие), а также составы с ингибирующими пигментами, замедляющими или предотвращающими процесс коррозии.

    Протекторная защита металла достигается добавлением в материал покрытия порошковых металлов, создающих с защищаемым металлом донорские электронные пары. Для стали таковыми являются цинк, магний, алюминий. Под действием агрессивной среды происходит постепенное растворение порошка добавки, а основной материал коррозии не подвергается.

    Вопрос: Чем определяется долговечность защиты металла от коррозии лакокрасочными материалами?

    Ответ: Во-первых, долговечность защиты металла от коррозии зависит от типа (и вида) применяемого лакокрасочного покрытия. Во-вторых, определяющую роль играет тщательность подготовки поверхности металла под покраску. Наиболее трудоемким процессом при этом является удаление продуктов коррозии, образовавшихся ранее. Наносят специальные составы, разрушающие ржавчину, с последующим их механическим удалением металлическими щетками.

    В некоторых случаях удаление ржавчины практически невозможно осуществить, что предполагает широкое применение материалов, которые можно наносить непосредственно на поверхности, поврежденные коррозией – ЛКМ по ржавчине. К этой группе относят некоторые специальные грунты и эмали, используемые в многослойных или самостоятельных покрытиях.

    Вопрос: Что такое высоконаполненные двухкомпонентные системы?

    Ответ: Это – антикоррозийные лакокрасочные материалы с уменьшенным содержанием растворителя (процентное содержание летучих органических веществ в них не превышает 35%). На рынке материалов для домашнего применения в основном предлагаются однокомпонентные материалы. Главное преимущество высоконаполненных систем по сравнению с обычными – значительно лучшая коррозионная стойкость при сопоставимой толщине слоя, меньший расход материала и возможность нанесения более толстым слоем, что обеспечивает получение необходимой антикоррозионной защиты всего за 1-2 раза.

    Вопрос: Как предохранить от разрушения поверхность гальванизированной стали?

    Ответ: Антикоррозионная грунтовка на основе модифицированных винилакриловых смол на растворителе «Гальвапласт» применяется для внутренних и наружных работ на основаниях из черных металлов со снятой окалиной, гальванизированной стали, оцинкованного железа. Растворитель – уайт-спирит. Нанесение – кистью, валиком, распылением. Расход 0,10-0,12 кг/кв.м; высыхание 24 часа.

    Вопрос: Что собой представляет патина?

    Ответ: Слово «патина» обозначает пленку различных оттенков, образующуюся на поверхности меди и медьсодержащих сплавов под воздействием атмосферных факторов при естественном или искусственном старении. Иногда патиной называют оксиды на поверхности металлов, а также пленки, вызывающие со временем потускнение на поверхности камней, мрамора или деревянных предметов.

    Появление патины не является признаком коррозии, скорее всего это естественный защитный слой на медной поверхности.

    Вопрос: Можно ли искусственно создать патину на поверхности медных изделий?

    Ответ: В естественных условиях зеленая патина образуется на поверхности меди в течение 5-25 лет, в зависимости от климата и химического состава атмосферы и осадков. При этом из меди и двух ее основных сплавов – бронзы и латуни – образуются карбонаты меди: ярко-зеленый малахит Сu 2 (СО 3)(ОН) 2 и лазурно-голубой азурит Сu 2 (СО 3) 2 (ОН) 2 . Для цинксодержащей латуни возможно образование зелено-синего розазита состава (Cu,Zn) 2 (CO 3)(OH) 2 . Основные карбонаты меди можно легко синтезировать и в домашних условиях, приливая водный раствор кальцинированной соды к водному раствору соли меди, например медного купороса. При этом в начале процесса, когда в избытке находится соль меди, образуется продукт, более близкий по составу к азуриту, а в конце процесса (при избытке соды) – к малахиту.

    Сберегающее окрашивание

    Вопрос: Как защитить металлические или железобетонные конструкции от влияния агрессивной среды – солей, кислот, щелочей, растворителей?

    Ответ: Для создания химстойких покрытий существует несколько защитных материалов, у каждого из которых своя область защиты. Наиболее широкий спектр защиты имеют: эмали ХC-759, «ЭЛОКОР СБ-022» лак , ФЛК-2, грунтовки , ХС-010 и др. В каждом отдельном случае подбирается конкретная схема окраски, согласно условиям эксплуатации. Краски тиккурилла Коутингс Темабонд, Темакоут и Темахлор.

    Вопрос: Какие составы могут применяться при окраске внутренних поверхностей цистерн для керосина и других нефтепродуктов?

    Ответ: Темалайн ЛП – двухкомпонентная эпоксидная глянцевая краска с отвердителем на основе аминоаддукта. Нанесение – кистью, распылением. Высыхание 7 час.

    ЭП-0215 – грунт для защиты от коррозии внутренней поверхности кессон-баков, работающих в среде топлива с примесью воды. Наносится на поверхности из стали, магниевых, алюминиевых и титановых сплавов, эксплуатируемых в условиях различных климатических зон, при повышенных температурах и воздействии загрязненной среды.

    Пригодны для применения грунтовки БЭП-0261 и эмали БЭП-610.

    Вопрос: Какие составы могут применяться для защитного покрытия металлических поверхностей в морской и промышленной среде?

    Ответ: Краска толстопленочного типа на хлоркаучуковой основе применяется для окраски металлических поверхностей в морской и промышленной среде, подвергающихся умеренному химическому воздействию: мосты, краны, конвейеры, портовое оборудование, наружность цистерн.

    Темакоут ХБ – двухкомпонентная модифицированная эпоксидная краска применяется для грунтовки и окраски металлических поверхностей, подвергающихся атмосферному, механическому и химическому воздействию. Нанесение – кистью, распылением. Высыхание 4 часа.

    Вопрос: Какие составы следует применять для покрытия сложноочищаемых металлических поверхностей, в том числе погруженных в воду?

    Ответ: Темабонд СТ-200 – двухкомпонентная модифицированная эпоксидная краска с алюминиевым пигментированием и низким содержанием растворителей. Применяется для окраски мостов, цистерн, стальных конструкций и оборудования. Нанесение – кистью, распылением. Высыхание – 6 час.

    Темалайн БЛ – двухкомпонентное эпоксидное покрытие, не содержащее растворителей. Применяется для окраски стальных поверхностей, подвергающихся износу, химическому и механическому воздействию при погружении в воду, контейнеров для нефти или бензина, цистерн и резервуаров, очистных сооружений для сточных вод. Нанесение – безвоздушным распылением.

    Темацинк – однокомпонентная цинконасыщенная эпоксидная краска с отвердителем на основе полиамида. Используется в качестве грунтовки в эпоксидных, полиуретановых, акриловых, хлоркаучуковых системах окраски для стальных и чугунных поверхностей, подвергающихся сильным атмосферным и химическим воздействиям. Применяется для окраски мостов, кранов, стальных каркасов, стальных конструкций и оборудования. Высыхание 1 час.

    Вопрос: Как уберечь подземные трубы от образования свищей?

    Ответ: Причин прорыва любых труб может быть две: механические повреждения или действие коррозии. Если первая причина – результат случайности и безалаберности – трубу чем-то зацепили или разошелся сварной шов, то коррозии избежать никак нельзя, это закономерное явление, вызванное влажностью почвы.

    Кроме использования специальных покрытий, существует широко применяемая во всем мире защита – катодная поляризация. Она представляет собой источник постоянного тока, обеспечивающий полярный потенциал min 0,85 В, max – 1,1 В. Состоит всего лишь из обычного трансформатора переменного напряжения и диодного выпрямителя.

    Вопрос: Сколько стоит катодная поляризация?

    Ответ: Стоимость приборов катодной защиты в зависимости от их конструкции составляет от 1000 до 14 тысяч рублей. Бригада ремонтников легко может проверять поляризационный потенциал. Установка защиты – тоже не составляет больших затрат и не сопряжена с трудоемкими земляными работами.

    Защита оцинкованных поверхностей

    Вопрос: Почему оцинкованные металлы нельзя подвергать дробеструйной обработке?

    Ответ: Такая подготовка нарушает естественную коррозионную стойкость металла. Поверхности такого рода обрабатывают с помощью специального абразивного агента – круглых частиц стекла, не разрушающих защитный слой цинка на поверхности. В большинстве случаев достаточно бывает просто обработать раствором аммиака для удаления с поверхности жирных пятен и продуктов коррозии цинка.

    Вопрос: Чем восстановить поврежденное цинковое покрытие?

    Ответ: Цинкнаполненными композициями ЦинкКОС, ЦНК, «Виникор-цинк» и др., которые наносятся методом холодного цинкования и обеспечивают анодную защиту металла.

    Вопрос: Как производится защита металла с применением ЦНК (цинкнаполненных композиций)?

    Ответ: Технология холодного цинкования с применением ЦНК гарантирует абсолютную нетоксичность, пожаробезопасность, термостойкость до +800°С. Покрытие металла данным составом производится методом распыления, валиком или даже просто кистью и обеспечивает изделию, по сути, двойную защиту: и катодную, и пленочную. Срок действия такой защиты составляет 25-50 лет.

    Вопрос: В чем основные преимущества метода «холодного цинкования» перед горячим цинкованием?

    Ответ: У данного метода есть следующие преимущества:

    1. Ремонтопригодность.
    2. Возможность нанесения в условиях строительной площадки.
    3. Нет ограничений по габаритным размерам защищаемых конструкций.

    Вопрос: При какой температуре происходит нанесение термодиффузионного покрытия?

    Ответ: Нанесение термодиффузионного цинкового покрытия проводится при температурах от 400 до 500°С.

    Вопрос: Есть ли отличия коррозионной стойкости покрытия, полученного методом термодиффузионного цинкования, по сравнению с другими видами цинковых покрытий?

    Ответ: Коррозионная стойкость термодиффузионного цинкового покрытия в 3-5 раз выше гальванического и в 1,5-2 раза превышает коррозионную стойкость горячего цинкового покрытия.

    Вопрос: Какие лакокрасочные материалы можно использовать для защитно-декоративной окраски оцинкованного железа?

    Ответ: Для этого можно использовать как водоразбавляемые – грунт Г-3, краска Г-4, так и органоразбавляемые – ЭП-140, «ЭЛОКОР СБ-022» и др. Могут использоваться защитные системы Тиккурила Коутингс: 1 Темакоут ГПЛС-Праймер+Темадур, 2 Темапрайм ЕЕ+Темалак, Темалак и Темадур колеруется по RAL и TVT.

    Вопрос: Какой краской могут окрашиваться водосточные и дренажные оцинкованные трубы?

    Ответ: Sockelfarg – латексная краска черного и белого цвета на водной основе. Предназначена для нанесения как на новые, так и на ранее окрашенные поверхности на открытом воздухе. Устойчива к воздействию атмосферных явлений. Растворитель – вода. Высыхание 3 часа.

    Вопрос: Почему средства антикоррозийной защиты на водной основе применяются редко?

    Ответ: Существуют 2 основные причины: повышенная по сравнению с обычными материалами цена и бытующее в определенных кругах мнение, что водные системы обладают худшими защитными свойствами. Однако по мере ужесточения экологического законодательства, как в Европе, так и во всем мире, популярность водных систем растет. Специалисты же, испытавшие качественные материалы на водной основе, смогли убедиться, что их защитные свойства не хуже, чем у традиционных материалов, содержащих растворители.

    Вопрос: Какой прибор используется для определения толщины лакокрасочной пленки на металлических поверхностях?

    Ответ: Наиболее прост в употреблении прибор «Константа МК» – он измеряет толщину ЛКП на ферромагнитных металлах. Значительно больше функций выполняет многофункциональный толщиномер «Константа К-5», который измеряет толщину обычных ЛКП, гальванических и горячецинковых покрытий как на ферромагнитных, так и на неферромагнитных металлах (алюминий, его сплавы и др.), а также измеряет шероховатость поверхности, температуру и влажность воздуха и т.п.

    Ржавчина отступает

    Вопрос: Чем можно обработать предметы, сильно изъеденные ржавчиной?

    Ответ: Первый рецепт: смесью 50 г молочной кислоты и 100 мл вазелинового масла. Кислота превращает метагидроксид железа из ржавчины в растворимую в вазелиновом масле соль – лактат железа. Очищенную поверхность протирают тряпочкой, смоченной вазелиновым маслом.

    Второй рецепт: раствором 5 г хлорида цинка и 0,5 г гидротартрата калия, растворенного в 100 мл воды. Хлорид цинка в водном растворе подвергается гидролизу и создает кислую среду. Метагидроксид железа растворяется за счет образования в кислой среде растворимых комплексов железа с тартрат-ионами.

    Вопрос: Как открутить заржавевшую гайку подручными средствами?

    Ответ: Заржавевшую гайку можно смочить керосином, скипидаром или олеиновой кислотой. Через некоторое время ее удается отвернуть. Если гайка «упорствует», можно поджечь керосин или скипидар, которым ее смачивали. Обычно этого достаточно для разъединения гайки и болта. Самый радикальный способ: к гайке прикладывают сильно нагретый паяльник. Металл гайки расширяется, и ржавчина отстает от резьбы; теперь в зазор между болтом и гайкой можно влить несколько капель керосина, скипидара или олеиновой кислоты. На этот раз гайка уж точно отвернется!

    Есть и другой способ разъединения ржавых гаек и болтов. Вокруг заржавевшей гайки делают «чашечку» из воска или пластилина, бортик которой выше уровня гайки на 3-4 мм. В нее заливают разбавленную серную кислоту и кладут кусочек цинка. Через сутки гайка легко отвернется ключом. Дело в том, что чашечка с кислотой и металлическим цинком на железном основании – это миниатюрный гальванический элемент. Кислота растворяет ржавчину, и образовавшиеся катионы железа восстанавливаются на поверхности цинка. А металл гайки и болта не растворяется в кислоте до тех пор, пока у нее есть контакт с цинком, поскольку цинк более активный в химическом отношении металл, чем железо.

    Вопрос: Какие составы, наносимые по ржавчине, выпускает наша промышленность?

    Ответ: К отечественным органоразбавляемым составам, наносимым «по ржавчине», относятся известные материалы: грунт (некоторые производители выпускают его под названием «Инкор») и грунт-эмаль «Грэмируст». Эти эпоксидные двухкомпонентные краски (основа + отвердитель) содержат ингибиторы коррозии и целевые добавки, позволяющие наносить их на плотную ржавчину толщиной до 100 мкм. Достоинства этих грунтовок: отвердение при комнатной температуре, возможность нанесения на частично прокорродированную поверхность, высокая адгезия, хорошие физико-механические свойства и химическая стойкость, обеспечивающие длительную эксплуатацию покрытия.

    Вопрос: Чем можно окрашивать старый ржавый металл?

    Ответ: По плотнодержащейся ржавчине возможно применение нескольких лакокрасочных материалов, содержащих преобразователи ржавчины:

  • грунтовка Г-1, грунт-краска Г-2 (водоразбавляемые материалы) – при температурах до +5°;
  • грунт-эмаль ХВ-0278, грунт-эмаль АС-0332 – до минус 5°;
  • грунт-эмаль «ЭЛОКОР СБ-022» (материалы на органических растворителях) – до минус 15°С.
  • Грунт-эмаль Тиккурила Коутингс, Темабонд (колеруется по RAL иTVT)

Вопрос: Как остановить процесс ржавления металла?

Ответ: Это можно сделать с помощью «нержамет-грунта». Грунт может использоваться как в качестве самостоятельного покрытия по стали, чугуну, алюминию, так и в системе покрытий, включающей 1 слой грунтовки и 2 слоя эмали. Препарат также применяется для грунтования прокорродировавших поверхностей.

«Нержамет-грунт» работает на поверхности металла как преобразователь ржавчины, связывая ее химически, а образующаяся полимерная пленка надежно изолирует поверхность металла от атмосферной влаги. При применении состава полные затраты на ремонтно-восстановительные работы по перекраске металлоконструкций снижаются в 3-5 раз. Грунт выпускается готовым к применению. При необходимости его надо разбавить до рабочей вязкости уайт-спиритом. Препарат наносится на металлические поверхности с остатками плотно держащейся ржавчины и окалины кистью, валиком, краскопультом. Время высыхания при температуре +20° - 24 часа.

Вопрос: Часто кровельное покрытие выцветает. Какую краску можно использовать для окраски оцинкованных крыш и водостоков?

Ответ: Нержамет-цикрон. Покрытие обеспечивает длительную защиту от атмосферных воздействий, влажности, ультрафиолетового излучения, дождя, снега и т.д.

Обладает высокой укрывистостью и светостойкостью, не выцветает. Значительно продлевает срок службы оцинкованных крыш. Также покрытия Тиккурила Коутингс, Темадур и Темалак.

Вопрос: Могут ли хлоркаучуковые краски предохранить металл от ржавчины?

Ответ: Эти краски приготовлены из хлорированного каучука, диспергированного в органических растворителях. По своему составу относятся к летуче-смоляным и обладают высокой водо– и химической стойкостью. Поэтому возможно применять их для защиты от коррозии металлических и бетонных поверхностей, водопроводных труб и резервуаров.Из материалов Тиккурил Коутингс можно использовать систему Теманил МС-Праймер+ Темахлор.

Антикор в бане, ванной, бассейне

Вопрос: Каким покрытием можно защитить от коррозии банные емкости для холодной питьевой и горячей мытьевой воды?

Ответ: Для емкостей под холодную питьевую и мытьевую воду рекомендуется краска КО-42;,Эповин п од горячую воду – композиции ЦинкКОС и «Теплокор ПИГМА».

Вопрос: Что представляют собой эмалированные трубы?

Ответ: По химической стойкости они не уступают медным, титановым и свинцовым, а по себестоимости в несколько раз дешевле. Применение эмалированных труб из углеродистых сталей вместо нержавеющих дает десятикратную экономию средств. К числу достоинств такой продукции относится большая механическая прочность, в том числе в сравнении с другими видами покрытий – эпоксидными, полиэтиленовыми, пластмассовыми, а также более высокая стойкость против истирания, благодаря чему появляется возможность уменьшить диаметр труб без снижения их пропускной способности.

Вопрос: В чем особенности повторной эмалировки ванн?

Ответ: Эмалировку можно осуществлять кистью или распылением с участием профессионалов, а также кистью самостоятельно. Предварительная подготовка поверхности ванны заключается в удалении старой эмали и зачистке ржавчины. Весь процесс занимает не более 4-7 часов, еще 48 часов ванна сохнет, а пользоваться ею можно через 5-7 суток.

Ванны повторной эмалировки требуютспециального ухода. Такие ванны нельзя мыть порошками типа «Комет» и «Пемолюкс», или применяя средства, содержащие кислоту, такие, как «Силит». Недопустимо попадание на поверхность ванны лаков, в том числе и для волос, использование отбеливателя при стирке. Такие ванны, как правило, чистят мыльными средствами: стиральными порошками или средствами для мытья посуды, нанесенными на губку или мягкую тряпку.

Вопрос: Какими ЛКМ можно выполнить повторную эмалировку ванн?

Ответ: Композиция «Светлана» включает в себя эмаль, щавелевую кислоту, отвердитель, колеровочные пасты. Ванну промывают водой, протравливают щавелевой кислотой (удаляют пятна, камень, загрязнения, ржавчину и создают шероховатую поверхность). Промывают стиральным порошком. Сколы заделывают заранее. Затем в течение 25-30 минут следует нанести эмаль. При работе с эмалью и отвердителем не допускается контакт с водой. Растворитель – ацетон. Расход на ванну – 0,6 кг; высыхание – 24 часа. Полностью набирает свойства через 7 суток.

Также можно применить краску двухкомпонентную на эпоксидной основе Tikkurila «Реафлекс-50». При использовании эмали для ванн глянцевой (белая, колерующаяся) для очистки используют либо стиральные порошки, либо хозяйственное мыло. Полностью набирает свойства через 5 суток. Расход на ванну – 0,6 кг. Растворитель – технический спирт.

Б-ЭП-5297В применяют для реставрации эмалевого покрытия ванн. Это краска глянцевая, белая, возможна колеровка. Покрытие гладкое, ровное, прочное. Не следует применять для чистки абразивные порошки типа «Санитарный». Полностью набирает свойства через 7 суток. Растворители – смесь спирта с ацетоном; Р-4, №646.

Вопрос: Как обеспечить защиту от обрыва стальной арматуры в чаше плавательного бассейна?

Ответ: При неудовлетворительном состоянии кольцевого дренажа бассейна возможно размягчение и суффозия грунта. Проникновение воды под днище резервуара способно вызвать просадку грунта и образование трещин в бетонных конструкциях. В этих случаях арматура в трещинах может коррозировать до обрыва.

В таких сложных случаях реконструкция поврежденных железобетонных конструкций резервуара должна включать в себя выполнение защитного жертвенного слоя из торкрет-бетона на поверхностях железобетонных конструкций, подвергающихся выщелачивающему действию воды.

Препятствия для биоразрушений

Вопрос: Какие внешние условия определяют развитие дереворазрушающих грибов?

Ответ: Наиболее благоприятными условиями для развития дереворазрушающих грибов считаются: наличие питательных веществ воздуха, достаточная влажность древесины и благоприятная температура. Отсутствие какого-либо из этих условий будет задерживать развитие гриба, даже если он прочно укрепится в древесине. Большинство грибов хорошо развивается только при высокой относительной влажности воздуха (80-95%). При влажности древесины ниже 18% развитие грибов практически не происходит.

Вопрос: Каковы основные источники увлажнения древесины и в чем их опасность?

Ответ: К основным источникам увлажнения древесины в конструкциях различных зданий и сооружений следует отнести грунтовые (подземные) и поверхностные (ливневые и сезонные) воды. Они особенно опасны для деревянных элементов открытых сооружений, находящихся в грунте (столбов, свай, опор ЛЭП и связи, шпал и т.п.). Атмосферная влага в виде дождя и снега угрожает наземной части открытых сооружений, а также наружным деревянным элементам зданий. Эксплуатационная влага в капельно-жидком или парообразном виде в жилых помещениях присутствует в виде бытовой влаги, выделяемой при приготовлении пищи, стирке, сушке белья, мытье полов и т.д.

Большое количество влаги вносится в здание при укладке сырой древесины, применении кладочных растворов, бетонировании и др. Например, 1 кв.м уложенной древесины с влажностью до 23% при высыхании до 10-12% выделяет до 10 л воды.

Древесина зданий, просыхающая естественным путем, в течение длительного времени находится под угрозой загнивания. Если не были предусмотрены химические меры защиты, она, как правило, поражается домовым грибом в такой степени, что конструкции приходят в полную негодность.

Конденсационная влага, возникающая на поверхности или в толще конструкций, опасна потому, что она обнаруживается, как правило, уже тогда, когда в ограждающей деревянной конструкции или ее элементе произошли необратимые изменения, например, внутреннее загнивание.

Вопрос: Кто является «биологическими» врагами дерева?

Ответ: Это плесень, водоросли, бактерии, грибки и антимицеты (это нечто среднее между грибками и водорослями). Почти со всеми из них можно бороться с помощью антисептиков. Исключение составляют грибки (сапрофиты), так как антисептики действуют лишь на некоторые их виды. А ведь именно грибки – причина так широко распространенной гнили, с которой справиться сложнее всего. Профессионалы подразделяют гнили по цветам (красная, белая, серая, желтая, зеленая и коричневая). Красная гниль поражает хвойные породы дерева, белая и желтая – дуб и березу, зеленая – дубовые бочки, а также деревянные балки и перекрытия погребов.

Вопрос: Существуют ли способы нейтрализации белого домового гриба?

Ответ: Белый домовой гриб является наиболее опасным врагом деревянных сооружений. Скорость разрушения древесины белым домовым грибом такова, что за 1 месяц он полностью «съедает» четырехсантиметровый дубовый пол. Раньше в деревнях, если избу поражал этот гриб, ее немедленно сжигали, чтобы спасти от заражения все прочие строения. После чего пострадавшей семье на другом месте всем миром строили новую избу. В настоящее время, чтобы избавиться от белого домового гриба, разбирают и сжигают пораженный участок, а остальную часть пропитывают 5%-ным хромпиком (5%-ный раствор бихромата калия в 5%-ной серной кислоте), при этом рекомендуется обработать и землю на 0,5 м глубины.

Вопрос: Каковы способы защиты дерева от гниения на ранних стадиях этого процесса?

Ответ: Если процесс гниения уже начался, его можно остановить только тщательной просушкой и вентиляцией деревянных конструкций. На ранних стадиях могут помочь дезинфицирующие растворы, например, такие, как антисептические составы «Древесный лекарь». Они выпускаются в трех различных модификациях.

Марка 1 предназначена для профилактики деревянных материалов сразу после их покупки или сразу после постройки дома. Состав защищает от грибка и жука-древоточца.

Марка 2 используется, если на стенах дома уже появились грибок, плесень или «синева». Этот состав уничтожает уже имеющиеся болезни и защищает от их будущих проявлений.

Марка 3 – самый мощный антисептик, он полностью останавливает процесс гниения. Совсем недавно был разработан специальный состав (марка 4) для борьбы с насекомыми – «антижук».

SADOLIN Bio Clean – это дезинфицирующее средство для зараженных плесенью, мхом, водорослями поверхностей, созданное на основе гипохлорита натрия.

DULUX WEATHERSHIELD FUNGICIDAL WASH – высокоэффективный нейтрализатор плесени, лишайников и гнили. Эти составы применяются как внутри, так и снаружи помещения, но эффективны они лишь на ранних стадиях борьбы с гнилью. При серьезных поражениях деревянных конструкций можно остановить гниение специальными методами, но это достаточно сложная работа, выполняемая, как правило, профессионалами с помощью реставрационных химических составов.

Вопрос: Какие защитные пропитки и консервационные составы, представленные на отечественном рынке, препятствуют биокоррозии?

Ответ: Из российских антисептических препаратов необходимо упомянуть метацид (100%-ный сухой антисептик) или полисепт (25%-ный раствор того же вещества). Хорошо себя зарекомендовали такие консервационные составы, как «БИОСЕПТ», «КСД» и «КСДА». Они предохраняют древесину от поражения плесенью, грибками, бактериями, а последние два, кроме того, делают древесину трудновоспламеняемой. Текстурные покрытия «АКВАТЕКС», «СОТЕКС» и «БИОКС» избавляют от возникновения грибка, плесени и древесной синевы. Они воздухопроницаемы и имеют стойкость свыше 5 лет.

Хорошим отечественным материалом для защиты дерева является лессирующая пропитка ГЛИМС-ЛecSil. Это готовая к применению водная дисперсия на основе стирол-акрилатного латекса и реакционно-способного силана с модифицирующими добавками. При этом состав не содержит органических растворителей и пластификаторов. Лессировка резко снижает водопоглощение дерева, в результате чего его можно даже мыть, в том числе и водой с мылом, предохраняет от вымывания противопожарной пропитки, благодаря антисептическим свойствам уничтожает грибки и плесень и предупреждает их дальнейшее образование.

Из импортных антисептических составов для защиты дерева хорошо зарекомендовали себя антисептики фирмы TIKKURILA. Pinjasol Color – антисептик, образующий сплошную водоотталкивающую и атмосферостойкую.

Вопрос: Что такое инсектициды и как их применяют?

Ответ: Для борьбы с жуками и их личинками применяют ядовитые химические вещества – инсектициды контактные и кишечные. Фтористый и кремнефтористый натрий разрешены Минздравом и применяются с начала прошлого века; при их применении обязательно соблюдение мер безопасности. Для предотвращения поражения древесины жучком применяется профилактическая обработка кремнефтористыми соединениями или 7-10%-ным раствором поваренной соли. В исторические периоды повсеместного деревянного строительства вся древесина обрабатывалась на этапе заготовки. В защитный раствор добавляли анилиновые красители, что изменяло цвет древесины. В старых домах и по сей день можно встретить балки красного цвета.

Материал подготовили Л.РУДНИЦКИЙ, А.ЖУКОВ, Е.АБИШЕВ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система защиты от коррозии и старения

МЕТАЛЛЫ И СПЛАВЫ

Методы определения
показателей коррозии
и коррозионной стойкости

ГОСТ 9.908-85

МОСКВА
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
1999

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дата введения 01.01.87

Настоящий стандарт устанавливает основные показатели коррозии и коррозионной стойкости (химического сопротивления) металлов и сплавов при сплошной, питтинговой, межкристаллитной, расслаивающей коррозии, коррозии пятнами, коррозионном растрескивании, коррозионной усталости и методы их определения. Показатели коррозии и коррозионной стойкости используют при коррозионных исследованиях, испытаниях, проверках оборудования и дефектации изделий в процессе производства, эксплуатации, хранения.

1. ПОКАЗАТЕЛИ КОРРОЗИИ И КОРРОЗИОННОЙ СТОЙКОСТИ

1.1. Показатели коррозии и коррозионной стойкости металла определяют в заданных условиях, учитывая их зависимость от химического состава и структуры металла, состава среды, температуры, гидро- и аэродинамических условий, вида и величины механических напряжений, а также назначение и конструкцию изделия. 1.2. Показатели коррозионной стойкости могут быть количественными, полуколичественными (балльными) и качественными. 1.3. Коррозионную стойкость следует, как правило, характеризовать количественными показателями, выбор которых определяется видом коррозии и эксплуатационными требованиями. Основой большинства таких показателей является время достижения заданной (допустимой) степени коррозионного поражения металла в определенных условиях. Показатели коррозионной стойкости, в первую очередь время до достижения допустимой глубины коррозионного поражения, во многих случаях определяют срок службы, долговечность и сохраняемость конструкций, оборудования и изделий. 1.4. Основные количественные показатели коррозии и коррозионной стойкости металла приведены в таблице. Для ряда коррозионных эффектов (интегральных показателей коррозии) приведены соответствующие им скоростные (дифференциальные) показатели коррозии.

Вид коррозии

Основные количественные показатели коррозии и коррозионной стойкости

Коррозионный эффект (интегральный показатель коррозии)

Скоростной (дифференциальный) показатель коррозии

Показатель коррозионной стойкости

Сплошная коррозия Глубина проникновения коррозии Линейная скорость коррозии Время проникновения коррозии на допустимую (заданную) глубину*
Потеря массы на единицу площади Скорость убыли массы Время до уменьшения массы на допустимую (заданную) величину*
Коррозия пятнами Степень поражения поверхности
Питтинговая коррозия Максимальная глубина питтинга Максимальная скорость проникновения питтинга Минимальное время проникновения питтингов на допустимую (заданную) глубину*
Максимальный размер поперечника питтинга в устье Минимальное время достижения допустимого (заданного) размера поперечника питтинга в устье*
Степень поражения поверхности питтингами Время достижения допустимой (заданной) степени поражения*
Межкристаллитная коррозия Время проникновения на допустимую (заданную) глубину*
Снижение механических свойств (относительного удлинения, сужения, ударной вязкости, временного сопротивления разрыву) Время снижения механических свойств до допустимого (заданного) уровня*
Коррозионное растрескивание Глубина (длина) трещин Скорость роста трещин Время до появления первой трещины**
Снижение механических свойств (относительного удлинения, сужения) Время до разрушения образца** Уровень безопасных напряжений** (условный предел длительной коррозионной прочности**) Пороговый коэффициент интенсивности напряжений при коррозионном растрескивании**
Коррозионная усталость Глубина (длина) трещин Скорость роста трещин Количество циклов до разрушения образца** Условный предел коррозионной усталости** Пороговый коэффициент интенсивности напряжений при коррозионной усталости**
Расслаивающая коррозия Степень поражения поверхности отслоениями Суммарная длина торцов с трещинами
Глубина проникновения коррозии Скорость проникновения коррозии
При линейной зависимости коррозионного эффекта от времени соответствующий скоростной показатель находят отношением изменения коррозионного эффекта за определенный интервал времени к величине этого интервала. При нелинейной зависимости коррозионного эффекта от времени соответствующий скоростной показатель коррозии находят как первую производную по времени графическим или аналитическим способом. 1.5. Показатели коррозионной стойкости, отмеченные в таблице знаком*, определяют из временной зависимости соответствующего интегрального показателя коррозии графическим способом, приведенным на схеме, или аналитически из его эмпирической временной зависимости у = f (t), находя для допустимого (заданного) значения у доп соответствующую величину t доп. Показатели коррозионной стойкости при воздействии на металл механических факторов, в том числе остаточных напряжений, отмеченные в таблице знаком**, определяют непосредственно при коррозионных испытаниях.

Схема зависимости коррозионного эффекта (интегрального показателя) у от времени

1.6. Допускается использование наряду с приведенными в таблице показателями других количественных показателей, определяемых эксплуатационными требованиями, высокой чувствительностью экспериментальных методов или возможностью использования их для дистанционного контроля процесса коррозии, при предварительном установлении зависимости между основным и применяемым показателями. В качестве подобных показателей коррозии с учетом ее вида и механизма могут быть использованы: количество выделившегося и (или) поглощенного металлом водорода, количество восстановившегося (поглощенного) кислорода, увеличение массы образца (при сохранении на нем твердых продуктов коррозии), изменение концентрации продуктов коррозии в среде (при их полной или частичной растворимости), увеличение электрического сопротивления, уменьшение отражательной способности, коэффициента теплопередачи, изменение акустической эмиссии, внутреннего трения и др. Для электрохимической коррозии допускается использование электрохимических показателей коррозии и коррозионной стойкости. При щелевой и контактной коррозии показатели коррозии и коррозионной стойкости выбирают по таблице в соответствии с видом коррозии (сплошная или питтинговая) в зоне щели (зазора) или контакта. 1.7. Для одного вида коррозии допускается характеризовать результаты коррозионных испытаний несколькими показателями коррозии. При наличии двух или более видов коррозии на одном образце (изделии) каждый вид коррозии характеризуют собственными показателями. Коррозионную стойкость в этом случае оценивают по показателю, определяющему работоспособность системы. 1.8. При невозможности или нецелесообразности определения количественных показателей коррозионной стойкости допускается использовать качественные показатели, например, изменение внешнего вида поверхности металла. При этом визуально устанавливают наличие потускнения; коррозионных поражений, наличие и характер слоя продуктов коррозии; наличие или отсутствие нежелательного изменения среды и др. На основе качественного показателя коррозионной стойкости дают оценку типа: стоек - не стоек; годен - не годен и др. Изменение внешнего вида допускается оценивать баллами условных шкал, например, для изделий электронной техники по ГОСТ 27597. 1.9. Допустимые показатели коррозии и коррозионной стойкости устанавливают в нормативно-технической документации на материал, изделие, оборудование.

2. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ КОРРОЗИИ

2.1. Сплошная коррозия 2.1.1. Потерю массы на единицу площади поверхности D m , кг/м 2 , вычисляют по формуле

Где m 0 - масса образца до испытаний, кг; m 1 - масса образца после испытаний и удаления продуктов коррозии, кг; S - площадь поверхности образца, м 2 . 2.1.2. При образовании трудноудаляемых твердых продуктов коррозии или нецелесообразности их удаления количественную оценку сплошной коррозии проводят по увеличению массы. Увеличение массы на единицу площади поверхности вычисляют по разности масс образца до и после испытаний, отнесенной к единице площади поверхности образца. Для вычисления потери массы металла по увеличению массы образца необходимо знать состав продуктов коррозии. Данный показатель коррозии металла в газах при высокой температуре определяют по ГОСТ 6130. 2.1.3. Продукты коррозии удаляют по ГОСТ 9.907 . 2.1.4. Изменение размеров определяют прямыми измерениями по разности между размерами образца до и после испытаний и удаления продуктов коррозии. При необходимости изменение размеров по потере массы с учетом геометрии образца, например, изменение толщины плоского образца D L , м, вычисляют по формуле

Где D m - потери массы на единицу площади, кг/м 2 ; ρ - плотность металла, кг/м 3 . 2.2. Коррозия пятнами 2.2.1. Площадь каждого пятна определяют планиметром. При невозможности такого измерения пятно очерчивают прямоугольником и вычисляют его площадь. 2.2.2. Степень поражения поверхности металла коррозией пятнами ( G ) в процентах вычисляют по формуле

Где S i - площадь i -того пятна, м 2 ; n - количество пятен; S - площадь поверхности образца, м 2 . Допускается при коррозии пятнами определять степень поражения поверхности коррозией с помощью сетки квадратов. 2.3. Питтинговая коррозия 2.3.1. Максимальную глубину проникновения питтинговой коррозии определяют: измерением механическим индикатором с передвижным игольчатым щупом расстояния между плоскостью устья и дном питтинга после удаления продуктов коррозии в случаях, когда размеры питтинга позволяют осуществлять свободное проникновение игольчатого щупа к его дну; микроскопически, после удаления продуктов коррозии измерением расстояния между плоскостью устья и дном питтинга (метод двойной фокусировки); микроскопически на поперечном шлифе при соответствующем увеличении; последовательным механическим удалением слоев металла заданной толщины, например, по 0,01 мм до исчезновения последних питтингов. Учитывают питтинги с поперечником устья не менее 10 мкм. Суммарная площадь рабочей поверхности должна быть не менее 0,005 м 2 . 2.3.2. Шлиф для измерения максимальной глубины проникновения питтинговой коррозии вырезают из области расположения наиболее крупных питтингов на рабочей поверхности. Линия разреза должна проходить через возможно большее число таких питтингов. 2.3.3. Максимальную глубину проникновения питтинговой коррозии находят как среднее арифметическое измерений наиболее глубоких питтингов в зависимости от их количества ( n ) на поверхности: при n < 10 измеряют 1-2 питтинга, при n < 20 - 3-4, при n > 20 - 5. 2.3.4. При сквозной питтинговой коррозии за максимальную глубину проникновения принимают толщину образца. 2.3.5. Максимальный размер поперечника питтинга определяют с помощью измерительных инструментов или оптических средств. 2.3.6. Степень поражения поверхности металла питтингами выражают долей поверхности, занятой питтингами, в процентах. При наличии большого числа питтингов с поперечником более 1 мм рекомендуется степень поражения определять по п. 2.2. 2.4. Межкристаллитная коррозия 2.4.1. Глубину межкристаллитной коррозии определяют металлографическим методом по ГОСТ 1778 на травленом шлифе, изготовленном в поперечной плоскости образца, на расстоянии от кромок не менее чем 5 мм при увеличении 50 ´ и более. Допускается определять глубину проникновения коррозии алюминия и алюминиевых сплавов на нетравленых шлифах. Режим травления - по ГОСТ 6032, ГОСТ 9.021 и НТД. (Измененная редакция, Изм. № 1). 2.4.2. Изменение механических свойств при межкристаллитной коррозии - временного сопротивления разрыву, относительного удлинения, ударной вязкости - определяют сравнением свойств образцов металла, подвергавшихся и не подвергавшихся коррозии. Механические свойства образцов металла, не подвергавшихся коррозии, принимают за 100 %. 2.4.3. Образцы изготовляют по ГОСТ 1497 и ГОСТ 11701 при определении временного сопротивления разрыву и относительного удлинения и по ГОСТ 9454 - при определении ударной вязкости. 2.4.4. Допускается применять физические методы контроля глубины проникновения коррозии по ГОСТ 6032 . 2.5. Коррозионное растрескивание и коррозионная усталость 2.5.1. При коррозионном растрескивании и коррозионной усталости трещины выявляют визуально или с применением оптических или других дефектоскопических средств контроля. Допускается применение косвенных методов измерения, например, определение увеличения электрического сопротивления образца. 2.5.2. Изменение механических свойств определяют по п. 2.4.2. 2.6. Расслаивающая коррозия 2.6.1. Степень поражения поверхности при расслаивающей коррозии выражают долей в процентах площади с отслаиваниями на каждой поверхности образца по ГОСТ 9.904 . 2.6.2. Суммарную длину торцов с трещинами для каждого образца ( L ) в процентах вычисляют по формуле

Где L i - длина участка торца, пораженного трещинами, м; П - периметр образца, м. 2.6.3. Допускается использовать в качестве обобщенного полуколичественного (балльного) показателя расслаивающей коррозии балл условной шкалы по ГОСТ 9.904 .

3. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ КОРРОЗИОННОЙ СТОЙКОСТИ

3.1. Сплошная коррозия 3.1.1. Основные количественные показатели коррозионной стойкости против сплошной коррозии при отсутствии специальных требований, например, в части загрязнения среды, определяют по таблице. 3.1.2. При протекании сплошной коррозии с постоянной скоростью показатели коррозионной стойкости определяют по формулам:

Где t m - время до уменьшения массы на единицу площади на допустимую величину D m , год; v m - скорость убыли массы, кг/м 2 ∙год; t 1 - время проникновения на допустимую (заданную) глубину ( l ), год; v 1 - линейная скорость коррозии, м/год. 3.1.3. При протекании сплошной коррозии с непостоянной скоростью показатели коррозионной стойкости определяют по п. 1.5. 3.1.4. При наличии специальных требований к оптическим, электрическим и другим свойствам металла, его коррозионная стойкость оценивается временем изменения указанных свойств до допустимого (заданного) уровня. 3.2. Коррозия пятнами Показателем коррозионной стойкости при коррозии пятнами является время (t n ) достижения допустимой степени поражения поверхности. Значение t n определяют графически по п. 1.5. 3.3. Питтинговая коррозия 3.3.1. Основным показателем коррозионной стойкости против питтинговой коррозии является отсутствие питтингов или минимальное время (t пит) проникновения питтинга на допустимую (заданную) глубину. t пит определяют графически из зависимости максимальной глубины питтингов l max от времени. 3.3.2. Показателем стойкости против питтинговой коррозии может служить также время достижения допустимой степени поражения поверхности питтингами. 3.4. Межкристаллитная коррозия 3.4.1. Показатели коррозионной стойкости против межкристаллитной коррозии в общем случае определяют графически или аналитически из временной зависимости глубины проникновения или механических свойств в соответствии с п. 1.5. 3.4.2. Качественную оценку стойкости против межкристаллитной коррозии типа стоек - не стоек на основе ускоренных испытаний коррозионно-стойких сплавов и стали устанавливают по ГОСТ 6032 , алюминиевых сплавов - по ГОСТ 9.021 . 3.5. Коррозионное растрескивание 3.5.1. Количественные показатели стойкости против коррозионного растрескивания определяют для высокопрочных сталей и сплавов по ГОСТ 9.903 , для алюминиевых и магниевых сплавов - по ГОСТ 9.019 , сварных соединений стали, медных и титановых сплавов - по ГОСТ 26294-84 . 3.6. Расслаивающая коррозия 3.6.1. Показатели стойкости против расслаивающей коррозии для алюминия и его сплавов определяют по ГОСТ 9.904 , для других материалов - по НТД.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Рекомендуется проводить предварительную обработку результатов с целью выявления анормальных (выпадающих) значений. 4.2. Зависимость коррозионного эффекта (интегрального показателя коррозии) от времени в случае его монотонного изменения рекомендуется выражать графически, используя для построения не менее четырех значений показателя. 4.3. Результаты расчета показателей коррозии и коррозионной стойкости рекомендуется выражать доверительным интервалом числового значения показателя. 4.4. Уравнение регрессии, доверительные интервалы и точность анализа определяют по ГОСТ 20736 , ГОСТ 18321 . 4.5. Металлографический метод оценки коррозионных поражений приведен в приложении 1. (Введен дополнительно, Изм. № 1). ПРИЛОЖЕНИЕ. (Исключено, Изм. № 1).

ПРИЛОЖЕНИЕ 1

Обязательное

МЕТАЛЛОГРАФИЧЕСКИЙ МЕТОД ОЦЕНКИ КОРРОЗИОННЫХ ПОРАЖЕНИЙ

1. Сущность метода

Метод основан на определении типа коррозии, формы коррозионного поражения, распределения коррозионного поражения в металлах, сплавах и защитных металлических покрытиях (далее - материалах) с помощью сравнения с соответствующими типовыми формами, а также измерения глубины коррозионного поражения на металлографическом шлифе.

2. Образцы

2.1. Место отбора образцов из испытуемого материала выбирают на основании результатов визуального (невооруженным глазом или с помощью лупы) осмотра поверхности или неразрушающей дефектоскопии. 2.2. Образцы вырезают из следующих мест материала: 1) если коррозией поражена только часть поверхности материала, образцы отбирают в трех местах: из части, пораженной коррозией; из части, не пораженной коррозией, и на участке между ними; 2) если имеются участки поверхности материала с различными видами коррозии или с различной глубиной коррозионного поражения, образцы отбирают из всех участков, пораженных коррозией; 3) если на поверхности материала имеется один тип коррозионного поражения, образцы отбирают не менее чем из трех характерных участков исследуемого материала. 2.3. При необходимости отбирают не менее одного образца из не менее пяти функционально необходимых участков испытуемого материала. Размер образца определяют, исходя из размеров зоны коррозионного поражения. 2.4. Образцы вырезают таким образом, чтобы плоскость шлифа была перпендикулярна исследуемой поверхности. Способ изготовления не должен влиять на структуру материала и разрушать поверхностный слой и кромки образца. Для материалов с защитными покрытиями не допускается повреждение покрытия и отрыв его от основного материала. 2.5. Маркировка образца - по ГОСТ 9.905. 2.6. При изготовлении металлографического шлифа с поверхности образца удаляют все следы вырезки, например, заусенцы. 2.7. При операциях шлифования и полирования шлифа необходимо следить за тем, чтобы не изменился характер и размер коррозионного поражения. Кромки шлифа в месте коррозионного поражения не должны иметь закруглений. Допускаются закругления, не влияющие на точность определения коррозионного поражения. Для этого рекомендуется заливать образец в заливную массу таким образом, чтобы исследуемая кромка находилась на расстоянии не менее 10 мм от края шлифа. Полировку проводят кратковременно при помощи алмазных паст. 2.8. Оценку шлифа проводят до и после травления. Травление позволяет установить различие между коррозионным поражением и структурой материала. При травлении не должен быть изменен характер и размеры коррозионного поражения.

3. Проведение испытания

3.1. Определение и оценка типа коррозии, формы коррозионного поражения и его распределения в материале 3.1.1. При проведении испытания необходимо учитывать химический состав испытуемого материала, способ его обработки, а также все коррозионные факторы. 3.1.2. Испытание проводят на металлографическом шлифе под микроскопом при увеличении 50, 100, 500 и 1000 ´ . 3.1.3. При определении типа коррозии контроль коррозионного поражения проводят по всей длине шлифа. На одном образце допускается определять несколько типов коррозии. 3.1.4. При испытании защитных покрытий определение типа коррозии покрытия и основного материала проводят отдельно. 3.1.5. Если на материал кроме коррозионной среды действуют и другие факторы, влияющие на изменение структуры материала, например, высокая температура, механические воздействия, коррозионное поражение определяют путем сравнения материала с конкретным образцом, подвергнутым влиянию аналогичных факторов, но защищенным от воздействия коррозионной среды. 3.1.6. Оценку формы коррозионного поражения и определение типа коррозии проводят путем сравнения с типовыми схемами коррозионного поражения по приложению 2, распределение коррозионного поражения в материале - по приложению 3. 3.2. Измерение глубины коррозионного поражения 3.2.1. Глубину коррозионного поражения определяют на микрометаллографическом шлифе с помощью окулярной шкалы и микрометрического винта микроскопа. 3.2.2. Глубину коррозионного поражения определяют по разности толщины металла прокоррозировавшего участка поверхности шлифа и участка поверхности без наличия коррозии или измерением глубины поражения от поверхности, не разрушенной или незначительно разрушенной коррозией. При испытании материала с защитным покрытием результаты измерения глубины коррозионного поражения покрытия и основного металла определяют отдельно. 3.2.3. Если коррозией поражена вся поверхность образца и глубина коррозионного поражения на разных участках поверхности заметно не различается, например в случае межкристаллитной или транскристаллитной коррозии, глубину коррозионного поражения измеряют не менее чем на 10 участках поверхности. У образцов больших размеров проводят измерения не менее чем на 10 участках на каждые 20 мм длины контролируемой поверхности, учитывая самые глубокие поражения. 3.2.4. При локальном коррозионном поражении (например, питтинговая коррозия или коррозия пятнами) измерения проводят в местах данного коррозионного поражения, причем количество участков для измерений может отличаться от требований, приведенных в п. 3.2.3. 3.2.5. Для уточнения определения максимальной глубины коррозионного поражения после металлографической оценки шлифов проводят их повторную перешлифовку: 1) у образцов с локальным коррозионным поражением, например, коррозия пятнами или питтинговая коррозия - до максимальной глубины коррозионного поражения, т.е. до момента, когда измеренная глубина меньше, чем предшествующий результат измерения; 2) у образцов с почти одинаковой глубиной коррозионного поражения на разных участках поверхности после оценки проводят перешлифовку и изготовляют новый металлографический шлиф, на котором опять проводят оценку коррозионного поражения. 3.2.6. Погрешность измерения глубины коррозионного поражения не более ±10 %.

4. Протокол испытания - по ГОСТ 9.905

ПРИЛОЖЕНИЕ 1. (Введено дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 2

Обязательное

ТИПЫ КОРРОЗИИ

Тип коррозии

Характеристика формы коррозионного поражения

Схема типичного вида коррозионного поражения

1. Сплошная (равномерная) коррозия Формы коррозионного поражения 1а и 1б отличаются только неровностью поверхности. По изменению формы поверхности до и после коррозионного испытания выявляют наличие коррозии: она определяется изменением массы и размеров образцов до и после коррозионного испытания

Форма 1в может быть переходной между сплошной и избирательной коррозией, например, 10в, 10г и 10е Тип коррозии может быть уточнен по изменениям ее формы в зависимости от времени воздействия коррозионной среды, а также по структуре металла

2. Местная (неравномерная) коррозия По форме соответствует сплошной коррозии, но отличается тем, что коррозии подвержена часть поверхности или коррозия протекает с разной скоростью на его отдельных участках
3. Коррозия пятнами Мелкое коррозионное поражение неправильной формы; размер его площади в случае небольшого увеличения может превышать размер поля зрения

4. Коррозионная язва Коррозионное поражение глубиной приблизительно равной ширине

5. Питтинговая коррозия Коррозионное поражение глубиной значительно больше ширины

6. Подповерхностная коррозия Коррозионное поражение, характерное тем, что занимает на поверхности небольшую площадь и преимущественно сосредоточена под поверхностью металла

Форма коррозионного поражения, отдельные зоны которого находятся под поверхностью и обычно не имеют заметного прямого выхода на поверхность

7. Слоевая коррозия Коррозионное поражение, внутренние слои которого включают зерна различного размера, различные фазы, включения, выделения и др.
8. Межкристаллитная коррозия Коррозионное поражение характерно наличием прокорродировавшей зоны вдоль границ зерен металла, причем может затрагивать границы всех зерен или только отдельных зерен

9. Транскристаллитная коррозия Коррозионное поражение характерно наличием большого количества транскристаллитных трещин

10. Избирательная коррозия Коррозионное поражение, которому подвергнута определенная структурная фаза или компонент; если фаза образована эвтектикой, определяют, прокорродирована вся эвтектика или некоторая ее составляющая, например, цементит

Коррозионное поражение, которому подвергнута определенная фаза металла без прямого контакта с прокорродировавшей поверхностью. В этом случае определяют, корродируют ли фазы по границам зерен или внутри зерен основной структуры. Далее определяют, не отличаются ли границы между корродирующими фазами от остальных границ (наличие фазы, трещин). Из этого заключают, проникает ли коррозионная среда по границам зерен или диффузией по всему объему зерен
Коррозионное поражение, которому подвергнуты только отдельные зерна, физическое состояние которых изменилось, например, вследствие деформации

Коррозионное поражение, которому подвергнуты только деформируемые части зерен, при этом образующаяся зона коррозионного поражения уже, чем одно зерно и проходит через несколько зерен. Одновременно определяют, не повлияла ли деформация на изменение структуры металла, например, переход аустенита в мартенсит

Коррозионное поражение в виде зоны с рядами выделенных включений; при этом определяют возможное изменение структуры в данной зоне

Коррозионное поражение в виде широкой зоны вдоль границы зерна. Данная форма может быть временной и ее нельзя относить к межкристаллитной коррозии; она характерна тем, что не проникает в глубину металла. Более точно ее можно определить по изменениям формы поражения коррозией в зависимости от времени коррозионного воздействия и по выделению структурных частиц в корродирующем сплаве
Коррозионное поражение, в результате которого образуется новая фаза металлического вида, обладающая способностью понижать стойкость металла
Коррозионное поражение, в результате которого изменяется химический состав фазы при сохранении ее формы и местоположения, например, графитизация пластин цементита в чугуне, обесцинкование латуни и др. В зоне этого изменения могут образовываться и другие продукты коррозии, например, окислы

11. Коррозия в виде редких трещин Коррозионное поражение, в результате которого образуется глубокая, немного ветвистая трещина, широкая вблизи поверхности с постепенным переходом в незначительную ширину; трещина заполнена продуктами коррозии

Коррозионное поражение в виде глубокой трещины незначительной ширины, исходящей из коррозионной язвы на поверхности; трещина может иметь ветвистую форму

Коррозионное поражение, в результате которого образуется межкристаллитная трещина незначительной ширины при отсутствии продуктов коррозии. По сравнению с межкристаллитной коррозией имеет вид единичных (редких) трещин

Коррозионное поражение, в результате которого образуется транскристаллитная трещина незначительной ширины со значительным разветвлением. По сравнению с транскристаллитной коррозией имеет вид единичных (редких) трещин. Некоторые трещины могут иметь тип частично транскристаллитного и частично межкристаллитного коррозионного поражения
Коррозионное поражение, в результате которого образуются трещины незначительной ширины, имеющие вид нитей, преимущественно параллельные поверхности и создающие зону определенной глубины. Их нельзя относить к аналогичным трещинам, образующимся вследствие деформации или плохой обработки образца

Коррозионное поражение в виде мелких преимущественно коротких трещин внутри отдельных зерен. Трещины могут образоваться, например, вследствие действия молекулярного водорода, большого напряжения, коррозии определенной фазы
ПРИЛОЖЕНИ Е 2. (Введено дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 3

Обязательное

РАСПРЕДЕЛЕНИЕ КОРРОЗИИ

ПРИЛОЖЕНИЕ 3. (Введено дополнительно, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по управлению качеством продукции и стандартам РАЗРАБОТЧИКИ Л.И. Топчиашвили, Г.В. Козлова, канд. техн. наук (руководители темы); В.А. Атанова, Г.С. Фомин, канд. хим. наук, Л.М. Самойлова, И.Е. Трофимова 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.10.85 № 3526 3. Стандарт полностью соответствует СТ СЭВ 4815-84, СТ СЭВ 6445-88 4. ВВЕДЕН ВПЕРВЫЕ 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, приложения

Номер пункта, приложения

ГОСТ 9.019-74 3.5.1 ГОСТ 6032-89 2.4.1; 2.4.4; 3.4.2
ГОСТ 9.021-74 2.4.1; 3.4.2 ГОСТ 6130-71 2.1.2
ГОСТ 9.903-81 3.5.1 ГОСТ 9454-78 2.4.3
ГОСТ 9.904-82 2.6.1; 2.6.3; 3.6.1 ГОСТ 11701-84 2.4.3
ГОСТ 9.905-82 Приложение 1 ГОСТ 18321-73 4.4
ГОСТ 9.907-83 2.1.3 ГОСТ 20736-75 4.4
ГОСТ 1497-84 2.4.3 ГОСТ 26294-84 3.5.1
ГОСТ 1778-70 2.4.1 ГОСТ 27597-88 1.8
6. ПЕРЕИЗДАНИЕ с Изменением № 1, утвержденным в октябре 1989 г. (ИУС 2-90)

Система защита от коррозии: как и зачем?

Недостаток такого материала, как металл в том, что на нем может возникать коррозия. На сегодняшний день существует несколько способов, их нужно использовать в комплексе. Система защиты от коррозии поможет избавиться от ржавчины и предотвратит образования пластов.

Обработка металлической поверхности специальным покрытием – действенный способ. Металлическое покрытие повышает твердость и прочность материала, улучшает механические свойства. Нужно учитывать, что в данном случае потребуется дополнительная защита. Неметаллическое покрытие наносится на керамику, каучук, пластмассу, древесину.

Способы защиты от коррозии

Чаще всего используют пленкообразовательные покрытия, они устойчивы к воздействию внешней среды. На поверхности образуется пленка, которая тормозит процессы коррозии.

Для того чтобы снизить коррозийную активность, необходимо нейтрализовать среду, подверженную ее влиянию. В этом вам помогут ингибиторы, они вводятся в агрессивную среду, и образуется пленка, которая тормозит процессы и изменяет химические параметры металла.

Широко используется легирование, оно повышает свойства, которые помогают повысить устойчивость материала к коррозийным процессам. Сталь легированная содержит в своем составе много хрома, он образует пленки, которые и защищают металл.

Не лишним будет использование защитных пленок. Анодные покрытия применяются для цинка и хрома, катодные – олова, никеля, меди. Их наносят с помощью горячего метода, также может использоваться гальванизация. Изделие нужно поместить в емкость, в которой находится защитный металл в расплавленном состоянии.

Используя металлизацию, можно избежать появления коррозии. Поверхность покрывается металлом, находящемся в расплавленном состоянии, его распыляют воздухом. Преимущество такого метода в том, что покрывать им можно готовые и полностью собранные конструкции. Минус в том, что поверхность будет немного шероховатой. Такие покрытия наносятся при помощи диффузии в тот металл, который является основным.

Покрытие можно защитить оксидной пленкой, эта процедура называется оксидированием. Оксидная пленка, которая есть на металле, обрабатывается мощным окислителем, в результате чего она становится в несколько раз прочнее.

В промышленности также используется фосфатирование. Соли железа погружаются в горячий раствор фосфатов, в конечном итоге образуется поверхностная пленка.

Для временной защиты поверхности необходимо использовать этиноль, вазелин технический, ингибиторы. Последние замедляют реакцию, к результате чего коррозия развивается гораздо медленнее.

Похожие публикации