Датчики влажности - как устроены и работают. Устойчивый к коррозии датчик влажности почвы, годный для дачной автоматики Индикаторы и регуляторы влажности грунта

Я немало обзоров написал про дачную автоматику, а раз речь идет про дачу - то автоматический полив - это одно из приоритетных направлений автоматизации. При этом, всегда хочется учитывать осадки, чтобы не гонять понапрасну насосы и не заливать грядки. Немало копий сломано на пути к беспроблемному получению данных о влажности почвы. В обзоре еще один вариант, устойчивый к внешним воздействиям.


Пара датчиков приехала за 20 дней в индивидуальных антистатических пакетиках:




Характеристики на сайте продавца:):
Бренд:ZHIPU
Тип: Датчик вибрации
Материал: Смесь
Выход: Коммутирующий датчик

Распаковываем:


Провод имеет длину в районе 1-го метра:


Помимо самого датчика в комплект входит управляющая платка:




Длина сенсоров датчика порядка 4 см:


Кончики датчика, похоже на графит - пачкаются черным.
Припаиваем контакты к платке и пробуем подключить датчик:




Самым распространенным датчиком влажности почвы в китайских магазинах является такой:


Многие знают, что через непродолжительное время его съедает внешняя среда. Эффект влияния коррозии можно немного снизить подавая питание непосредственно перед измерением и отключая, при отсутствии измерений. Но это мало что меняет, вот так выглядел мой через пару месяцев использования:




Кто-то пробует использовать толстую медную проволоку или пруты из нержавейки, альтернатива предназначенная специально для агрессивной внешней среды выступает в качестве предмета обзора.

Отложим плату из комплекта в сторону, и займемся самим датчиком. Датчик резистивного типа, меняет свое сопротивление в зависимости от влажности среды. Логично, что без влажной среды сопротивление датчика огромное:


Опустим датчик в стакан с водой и видим, что его сопротивление составит порядка 160 кОм:


Если вынуть, то все вернется в исходное состояние:


Перейдем к испытаниям на земле. В сухой почве видим следующее:


Добавим немного воды:


Еще (примерно литр):


Почти полностью вылил полтора литра:


Долил еще литр и подождал 5 минут:

Плата имеет 4 вывода:
1 + питания
2 земля
3 цифровой выход
4 аналоговый выход
После прозвонки выяснилось, что аналоговый выход и земля напрямую соединены с датчиком, так что, если планируете использовать этот датчик подключая к аналоговому входу, плата не имеет большого смысла. Если нет желания использовать контроллер, то можно использовать цифровой выход, порог срабатывания настраивается потенциометром на плате. Рекомендуемая продавцом схема подключения при использовании цифрового выхода:


При использовании цифрового входа:


Соберем небольшой макет:


Arduino Nano я использовал тут как источник питания, не загружая программу. Цифровой выход подключил к светодиоду. Забавно что светодиоды на плате красный и зеленый горят при любом положении потенциометра и влажности среды датчика, единственное при срабатывании порога, зеленый светит чуть слабже:


Выставив порог получаем, что при достижении заданной влажности на цифровом выходе 0, при недостатки влажности напряжение питания:




Ну раз уж у нас в руках контроллер, то напишем программу для проверки работы аналогового выхода. Аналоговый выход датчика подключим к выводу А1, а светодиод к выводу D9 Arduino Nano.
const int analogInPin = A1; // сенсор const int analogOutPin = 9; // Вывод на светодиод int sensorValue = 0; // считанное значение с сенсора int outputValue = 0; // значение выдаваемое на ШИМ вывод со светодиодом void setup() { Serial.begin(9600); } void loop() { // считываем значение сенсора sensorValue = analogRead(analogInPin); // переводим диапазон возможных значений сесора (400-1023 - установлено экспериметально) // в диапазон ШИМ вывода 0-255 outputValue = map(sensorValue, 400, 1023, 0, 255); // включаем светодиод на заданную яркость analogWrite(analogOutPin, outputValue); // выводим наши цифры Serial.print("sensor = "); Serial.print(sensorValue); Serial.print("\t output = "); Serial.println(outputValue); // задержка delay(2); }
Весь код я прокомментировал, яркость светодиода обратно-пропорциональна влажности детектируемой сенсором. Если необходимо чем-то управлять, то достаточно сравнить полученное значение с определенным экспериментально порогом и, например, включить реле. Единственное, рекомендую обработать несколько значений и использовать среднее для сравнения с порогом, так возможны случайные всплески или спады.
Погружаем датчик и видим:


Вывод контроллера:

Если вынуть то вывод контроллера изменится:

Видео работы данной тестовой сборки:

В целом, датчик мне понравился, производит впечатление устойчивого к воздействию внешней среды, так ли это - покажет время.
Данный датчик не может использоваться как точный показатель влажности (как впрочем и все аналогичные), основным его применением, является определение порога и анализ динамики.

Если будет интересно, продолжу писать про свои дачные поделки.
Спасибо всем, кто дочитал этот обзор до конца, надеюсь кому-то данная информация окажется полезной. Всем полного контроля над влажностью почвы и добра!

Планирую купить +74 Добавить в избранное Обзор понравился +55 +99 Датчик влажности почвы Arduino предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Подключение данного модуля к контроллеру позволяет автоматизировать процесс полива ваших растений, огорода или плантации (своего рода "умный полив").

Модуль состоит из двух частей: контактного щупа YL-69 и датчика YL-38, в комплекте идут провода для подключения.. Между двумя электродами щупа YL-69 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная - сопротивление меньше, ток - чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности. Щуп YL-69 соединен с датчиком YL-38 по двум проводам. Кроме контактов соединения с щупом, датчик YL-38 имеет четыре контакта для подключения к контроллеру.

  • Vcc – питание датчика;
  • GND – земля;
  • A0 - аналоговое значение;
  • D0 – цифровое значение уровня влажности.
Датчик YL-38 построен на основе компаратора LM393, который выдает напряжение на выход D0 по принципу: влажная почва – низкий логический уровень, сухая почва – высокий логический уровень. Уровень определяется пороговым значением, которое можно регулировать с помощью потенциометра. На вывод A0 подается аналоговое значение, которое можно передавать в контроллер для дальнейшей обработки, анализа и принятия решений. Датчик YL-38 имеет два светодиода, сигнализирующих о наличие поступающего на датчик питания и уровня цифрового сигналы на выходе D0. Наличие цифрового вывода D0 и светодиода уровня D0 позволяет использовать модуль автономно, без подключения к контроллеру.

Технические характеристики модуля

  • Напряжение питания: 3.3-5 В;
  • Ток потребления 35 мА;
  • Выход: цифровой и аналоговый;
  • Размер модуля: 16×30 мм;
  • Размер щупа: 20×60 мм;
  • Общий вес: 7.5 г.

Пример использования

Рассмотрим подключение датчика влажности почвы к Arduino. Создадим проект индикатора уровня влажности почвы для комнатного растения (ваш любимый цветок, который вы иногда забываете поливать). Для индикации уровня влажности почвы будем использовать 8 светодиодов. Для проекта нам понадобятся следующие детали:
  • Плата Arduino Uno
  • Датчик влажности почвы
  • 8 светодиодов
  • Макетная плата
  • Соединительные провода.
Соберем схему, показанную на рисунке ниже


Запустим Arduino IDE. Создадим новый скетч и внесем в него следующие строчки: // Датчик влажности почвы // http://сайт // контакт подключения аналогового выхода датчика int aPin=A0; // контакты подключения светодиодов индикации int ledPins={4,5,6,7,8,9,10,11}; // переменная для сохранения значения датчика int avalue=0; // переменная количества светящихся светодиодов int countled=8; // значение полного полива int minvalue=220; // значение критической сухости int maxvalue=600; void setup() { // инициализация последовательного порта Serial.begin(9600); // настройка выводов индикации светодиодов // в режим OUTPUT for(int i=0;i<8;i++) { pinMode(ledPins[i],OUTPUT); } } void loop() { // получение значения с аналогового вывода датчика avalue=analogRead(aPin); // вывод значения в монитор последовательного порта Arduino Serial.print("avalue=");Serial.println(avalue); // масштабируем значение на 8 светодиодов countled=map(avalue,maxvalue,minvalue,0,7); // индикация уровня влажности for(int i=0;i<8;i++) { if(i<=countled) digitalWrite(ledPins[i],HIGH); //зажигаем светодиод else digitalWrite(ledPins[i],LOW); // гасим светодиод } // пауза перед следующим получением значения 1000 мс delay(1000); } Аналоговый вывод датчика подключен к аналоговому входу Arduino, который представляет собой аналого-цифровой преобразователь (АЦП) с разрешением 10 бит, что позволяет на выходе получать значения от 0 до 1023. Значение переменных для полного полива (minvalue) и сильной сухости почвы (maxvalue) получим экспериментально. Большей сухости почвы соответствует большее значение аналогового сигнала. С помощью функции map масштабируем аналоговое значение датчика в значение нашего светодиодного индикатора. Чем больше влажность почвы, тем больше значение светодиодного индикатора (количество зажженных светодиодов). Подключив данный индикатор к цветку, мы издали можем видеть на индикаторе степень влажности и при определять необходимость полива.

Часто задаваемые вопросы FAQ

1. Не горит светодиод питания
  • Проверьте наличие и полярность подаваемого на датчик YL-38 питания (3,3 – 5 В).
2. При поливе почвы не загорается светодиод индикации влажности почвы
  • Настройте потенциометром порог срабатывания. Проверьте соединение датчика YL-38 с щупом YL-69.
3. При поливе почвы не изменяется значение выходного аналогового сигнала
  • Проверьте соединение датчика YL-38 с щупом YL-69.
  • Проверьте наличие щупа в земле.

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Нередко в продаже можно встретить такие приспособления, которые устанавливаются на цветочный горшок и следят за уровнем влажности почвы, включая при необходимости насос и поливая растение. Благодаря такому устройству можно будет спокойно уезжать в отпуск на недельку, не боясь, что любимый фикус завянет. Однако цена на такие приспособления неоправданно высока, ведь их устройство предельно простое. Так зачем покупать, если можно сделать самому?

Схема

Предлагаю к сборке схему простого и проверенного датчика влажности почвы, схема которого изображена ниже:

В почку горшка опускаются два металлических прутка, сделать которые можно, например, разогнув скрепку. Их нужно воткнуть в землю на расстоянии примерно 2-3 сантиметра друг от друга. Когда почва сухая, она плохо проводит электрический ток, сопротивление между прутками очень велико. Когда почва влажная – её электропроводность значительно повышается и сопротивление между прутками уменьшается, именно это явление лежит в основе работы схемы.
Резистор 10 кОм и участок почвы между прутками образуют делитель напряжения, выход которого соединён с инвертирующим входом операционного усилителя. Т.е. напряжение на нём зависит лишь от того, насколько увлажнена почва. Если поместить датчик во влажную почву, то напряжение на входе ОУ будет равно примерно 2-3 вольтам. По мере высыхания земли это напряжение будет увеличиваться и достигнет значения 9-10 вольт при совершенно сухой земле (конкретные значения напряжения зависят от типа почвы). Напряжение на неинвертирующем входе ОУ задаётся вручную переменным резистором (10 кОм на схеме, его номинал можно менять в пределах 10-100 кОм) в пределах от 0 до 12-ти вольт. С помощью этого переменного резистора задаётся порог срабатывания датчика. Операционный усилитель в этой схеме работает в качестве компаратора, т.е. он сравнивает напряжения на инвертирующем и неинвертирующем входах. Как только напряжение с инвертирующего входа превысит напряжение с неинвертирующего, на выходе ОУ появится минус питания, загорится светодиод и откроется транзистор. Транзистор, в свою очередь, активирует реле, управляющее водяным насосом или электрическим клапаном. Вода начнёт поступать в горшок, земля вновь станет влажной, её электропроводность увеличиться, и схема отключит подачу воды.
Печатная плата, предлагающаяся к статье, рассчитана на использования сдвоенного операционного усилителя, например, TL072, RC4558, NE5532 или других аналогов, одна его половинка при этом не используется. Транзистор в схеме используется малой или средней мощности и структуры PNP, можно применить, например, КТ814. Его задача – включение и выключение реле, также вместо реле можно применить ключ на полевом транзисторе, как это сделал я. Напряжение питания схемы – 12 вольт.
Скачайте плату:

(cкачиваний: 371)

Сборка датчика влажности почвы

Может случиться такое, что при высыхании почвы реле включается не чётко, а сначала начинает быстро щёлкать, и только после этого устанавливается в открытом состоянии. Это говорит о том, что провода от платы до горшка с растением улавливают сетевые наводки, пагубно влияющие на работу схемы. В таком случае, не помешает заменить провода на экранированные и поставить электролитический конденсатор ёмкостью 4.7 – 10 мкФ параллельно участку почвы, вдобавок к ёмкости 100 нФ, указанной на схеме.
Работа схемы мне очень понравилась, рекомендую к повторению. Фото собранного мной устройства:

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.


Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.


Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Обратите внимание!

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Фото датчиков влажности почвы

Обратите внимание!

Обратите внимание!

Похожие публикации