Монтаж гибкой ошиновки ОРУ. Комплектные трансформаторные подстанции блочные Жесткая ошиновка 110 кв

Жест-кая оши-нов-ка ком-плект-ная про-из-вод-ства ООО «Т-ЭНЕРГИЯ» пред-на-зна-че-на для вы-пол-не-ния элек-три-че-ских со-еди-не-ний меж-ду вы-со-ко-вольт-ны-ми ап-па-ра-та-ми от-кры-тых (ОРУ) и за-кры-тых (ЗРУ) рас-пре-де-ли-тель-ных устройств 35-500 кВ. Жест-кая оши-нов-ка мо-жет при-ме-нять-ся вме-сте с гиб-кой, на-при-мер, в ви-де со-че-та-ния жест-ких сбор-ных шин с гиб-ки-ми внут-ри-я-чей-ко-вы-ми свя-зя-ми.
Ком-плек-ты жест-кой оши-нов-ки на но-ми-наль-ные то-ки от 630 А до 4000 А из-го-тав-ли-ва-ют-ся как для ти-по-вых, так и для нети-по-вых схем рас-пре-де-ли-тель-ных устройств.

В со-ста-ве жест-кой оши-нов-ки ис-поль-зу-ют-ся уни-каль-ные, с точ-ки зре-ния на-деж-но-сти, со-еди-ни-тель-ные эле-мен-ты - ли-тые ши-но-дер-жа-те-ли с гиб-ки-ми свя-зя-ми. Ши-но-дер-жа-те-ли слу-жат для вос-при-я-тия ме-ха-ни-че-ских уси-лий, воз-ни-ка-ю-щих в уз-лах со-еди-не-ний, гиб-кие свя-зи ис-поль-зу-ют-ся для со-зда-ния на-деж-ных элек-три-че-ских кон-так-тов меж-ду то-ко-ве-ду-щи-ми ча-стя-ми. Ли-тые ши-но-дер-жа-те-ли с гиб-ки-ми свя-зя-ми ис-поль-зу-ют-ся для со-еди-не-ния шин меж-ду со-бой и для при-со-еди-не-ния к обо-ру-до-ва-нию. Для луч-шей адап-та-ции к усло-ви-ям вза-им-но-го рас-по-ло-же-ния со-еди-ня-е-мых шин, кон-крет-ным осо-бен-но-стям кон-струк-ции вы-со-ко-вольт-ных ап-па-ра-тов и др. раз-ра-бо-та-но несколь-ко мо-ди-фи-ка-ций ши-но-дер-жа-те-лей. В рас-пре-де-ли-тель-ных устрой-ствах 220 кВ со-еди-не-ния шин гиб-ки-ми свя-зя-ми вы-пол-ня-ют-ся ме-то-дом об-жим-ки.

Тех-ни-че-ские ха-рак-те-ри-сти-ки до 110 кВ

6(10) кВ ОЖК 35 кВ ОЖК 110 кВ
6 (10) 35 110
7,2 (12) 40,5 126
Но-ми-наль-ный ток, А до 2500, 3150, 4000 1000, 1250, 1600,
2000, 2500, 3150, 4000
3 3
до 50 до 50
<0,1 сек), кА до 128 до 128
32 32
20 20
Ка-те-го-рия раз-ме-ще-ния 1 1,3
У, ХЛ, УХЛ У, ХЛ, УХЛ
16 16
до 9 до 9

Тех-ни-че-ские ха-рак-те-ри-сти-ки 220 - 500 кВ

На-име-но-ва-ние па-ра-мет-ра
ОЖК 220 кВ ОЖК 330 кВ ОЖК 500 кВ
Но-ми-наль-ное на-пря-же-ние, кВ 220 330 500
Наи-боль-шее ра-бо-чее на-пря-же-ние, кВ 252 363 525
Но-ми-наль-ный ток, А 1000, 1600, 2000, 2500, 3150 1600, 2500, 3150
Вре-мя про-те-ка-ния то-ка тер-ми-че-ской стой-ко-сти, сек. 3 3
Но-ми-наль-ный крат-ковре-мен-ный ток тер-ми-че-ской стой-ко-сти (3 сек.), кА до 50 до 63
Наи-боль-ший ток элек-тро-ди-на-ми-че-ской стой-ко-сти (удар-ное зна-че-ние <0,1 сек), кА до 128 до 160
Мак-си-маль-ный ско-рост-ной на-пор вет-ра, м/с 32 36
До-пу-сти-мая тол-щи-на стен-ки льда, мм 20 25
Ка-те-го-рия раз-ме-ще-ния 1,3 1
Кли-ма-ти-че-ское ис-пол-не-ние и ка-те-го-рия раз-ме-ще-ния по ГОСТ 15 150 У, ХЛ, УХЛ У, ХЛ, УХЛ
Мак-си-маль-ный ско-рост-ной на-пор вет-ра при го-ло-ле-де, м/с 16 16
Сей-смич-ность рай-о-на в бал-лах по шка-ле MSK-64 до 9 до 9

Выбор сборных шин РУ-10 кВ

Сборные шины РУ-10 кВ выбираются по следующим условиям:

По допустимому току:

Расчетный ток сборных шин, А.

Расчетный ток сборных шин определяем по (8.1.3).

По номинальному напряжению:

По термической стойкости:

Выбор сборных шин 10 кВ представлен в таблице 18.

Таблица 18 - Выбор сборных шин 10 кВ

Наименование оборудования

Расчетные данные

Технические данные

Сборные шины КРУН-10 кВ (МТ-50х5)

Выбор токопровода 10 кВ

Токопроводы напряжением 6-10 кВ предназначены для электрического соединения трансформатора со шкафами комплектных распределительных устройств (КРУ), устанавливаемые в цепях трехфазного переменного тока частотой 50 и 60 Гц. Токопроводы могут применятся и на других объектах энергетики, промышленности, транспорта, сельского хозяйства и т.п.

Токопроводы выбираются по следующим условиям:

По допустимому току:

где - длительно допустимый ток нагрузки шин, А;

Максимальный расчетный ток получасового максимума нагрузки, который имеет место быть при выходе из строя одной из двух цепей двухцепного токопровода и переключении всей нагрузки на оставшуюся в работе цепь, А.

Максимальный расчетный ток токопровода определяем по (8.1.3).

По номинальному напряжению:

По электродинамической стойкости:

По термической стойкости:

На стороне 10 кВ принимаем к установке закрытый трехфазный токопровод типа ТКС-10 кВ (Т - токопровод; К - круглый; С - симметричный). Производитель: ПАО "АБС ЗЭиМ Автоматизация" (г. Чебоксары).

Выбор токопровода 10 кВ представлен в таблице 19.

Таблица 19 - Выбор токопровода 10 кВ

Наименование

оборудования

Расчетные данные

Технические данные

Токопровод

Выбор гибкой ошиновки ОРУ-110 и ОРУ-35 кВ и опорных изоляторов

Спуски и перемычки между оборудованием выполнены гибким неизолированным проводом марки АС.

Определим экономически целесообразное сечение проводника:

где - экономическая плотность тока, А/мм2 ;

Расчетный длительный ток сети, А.

Расчетный длительный ток сети определяется по формуле:

где: - сумма номинальной мощности потребителей, кВ;

Коэффициент распределения нагрузки на шинах (- при количестве присоединений менее пяти).

Номинальное напряжение сети, кВ.

Для стороны 110 кВ экономически целесообразное сечение проводника будет равно:

Полученное сечение округляем до ближайшего стандартного значения: . Однако, согласно ПУЭ, минимально допустимый диаметр провода для ВЛ-110 кВ по условиям короны - . Исходя из этого выбираем провод марки АС-70.

Аналогично определяем экономически целесообразное сечение проводника для стороны 35 кВ:

Полученное сечение округляем до ближайшего стандартного значения: . Выбираем один провод марки АС-50.

Гибкая ошиновка ОРУ-110 и ОРУ-35 кВ выбираются по следующим условиям:

По нагреву:

где: - допустимый ток выбранного сечения провода, А.

Для 110 кВ:

Проверка на термическую стойкость

Расчет по проверке гибкого неизолированного провода марки АС на термическую стойкость произведем согласно .

Расчет производим в следующей последовательности:

На рисунке 8.9 выбираем кривую, соответствующую материалу проверяемого проводника, и с помощью этой кривой, исходя из начальной температуры проводника, находим значение величины при этой температуре. В качестве начальной принята температура - , тогда:

Интеграл Джоуля при расчетных условиях КЗ определяем по формуле:

где: - трехфазный расчетный ток КЗ на линии, А;

Время действия релейной защиты, с;

Эквивалентная постоянная времени затухания апериодической составляющей тока КЗ, с.

Определим значение величины, соответствующее конечной температуре нагрева проводника, по формуле:

где: - площадь поперечного сечения проводника,

По найденному значению величины, используя выбранную кривую на рисунке 8.9 , определим температуру нагрева проводника к моменту отключения КЗ и сравним ее с предельно допустимой температурой (для сталеалюминевого провода).

Термическая стойкость проводника обеспечивается, так как выполняется условие:

Проверка сечения на электродинамическую стойкость при КЗ

Расчет по проверке гибкого неизолированного провода марки АС на электродинамическую стойкость произведем согласно .

При проверке гибких проводников на электродинамическую стойкость расчетными величинами являются максимальное тяжение и максимальное сближение проводников при КЗ.

Электродинамическая стойкость гибких проводников обеспечивается, если выполняются условия:

где - допустимое тяжение в проводах, Н;

Расстояние между проводниками фаз, м;

Расчетное смещение проводников, м;

Наименьшее допустимое расстояние между проводниками фаз при наибольшем рабочем напряжении, м;

Радиус расщепления фазы, м.

При проверке гибких проводников на электродинамическую стойкость при КЗ, у которых провес превышает половину расстояния между фазами, определяют значение параметра:

где: - начальное действующее значение периодической составляющей тока двухфазного КЗ, кА;

Расчетная продолжительность КЗ ();

Расстояние между фазами ();

Погонный вес провода (с учетом влияния гирлянд), Н/м;

Безразмерный коэффициент, учитывающий влияние апериодической составляющей электродинамической силы.

График приведен в .

Постоянная времени затухания апериодической составляющей тока КЗ, с.

Если выполняется условие то расчет смещения проводников можно не проводить, так как опасности их чрезмерного сближения нет:

Для 110 кВ:

Максимально возможное тяжение в проводнике следует определять, полагая, что вся энергия, накопленная проводником во время КЗ, трансформируется в потенциальную энергию деформации растяжения при падении проводника после отключения тока КЗ, поднятого электродинамическими силами над исходным равновесным положением.

При этом составляет:

где: - модуль упругости ();

Площадь поперечного сечения провода, м2;

Энергия накопленная проводником, Дж;

Тяжение (продольная сила) в проводнике до КЗ, H;

Длина пролета, м.

Энергия накопленная проводником определяется по формуле:

где: - масса провода в пролете, кг;

Расчетная электродинамическая нагрузка на проводник при двухфазном КЗ, Н.

где: - длина пролета, м.

где: - провес провода посередине пролета ();

Длина проводника в пролете, которую допускается принимать равной длине пролета, м.

Для установки выбираем подвесные изоляторы типа ЛК 70/110-III УХЛ1 минимальная разрушающая нагрузка. Допустимая нагрузка на изолятор равна:

Для установки выбираем подвесные изоляторы типа ЛК 70/35-III УХЛ1 минимальная разрушающая нагрузка. Допустимая нагрузка на изолятор равна:

Проверка по условиям короны:

где: - начальная критическая напряженность электрического поля, кВ/см;

Напряженность электрического заряда около поверхности провода, кВ/см;

Начальная критическая напряженность электрического поля определяется по формуле:

где: - коэффициент учитывающий шероховатость отверстия поверхности провода ();

Радиус провода, см;

Напряженность электрического заряда около поверхности провода определяется по формуле:

где: - линейное напряжение, кВ;

Среднее геометрическое расстояние между проводами фаз, см.

Произведем расчет для гибкого проводника 110 кВ:

Проверка:

Аналогично произведем расчет для гибкого проводника 35 кВ:

Проверка:

Исходя из выше приведенных расчетов можно сделать вывод: выбранные провода и подвесные изоляторы для гибкой ошиновки 110 и 35 кВ удовлетворяет всем условиям.

В последние годы значительное количество ОРУ 110-500 кВ выполняется с жесткой ошиновкой, которая позволяет создать компактные и экономичные распределительные устройства, занимающие меньшую площадь, имеющие более низкое расположение шин, высоту порталов, чем в с гибкой ошиновкой. Благодаря этому сокращается длина контрольных и , дорог, облегчается очистка изоляторов, улучшается обзор шин и аппаратов. При использовании жесткой ошиновки снижается трудоемкость монтажных работ. На основе конструкций с жесткими шинами созданы конструкции высокой заводской готовности, в том числе, компактные модули и комплектные ПС. Все это позволяет сократить сроки сооружения РУ. Жесткая ошиновка в нашей стране успешно применялась еще в 30-е годы прошлого века. Сборные шины изготовлялись из медных труб, внутриячейковые связи - из стальных (водопроводных) труб. В середине 50-х годов институт «Теплоэлектропроект» разработал проекты ЗРУ, а также ОРУ 110 и 220 кВ с жесткими сборными шинами из алюминиевых сплавов и однорядной установкой выключателей. В 1957 г. введено в эксплуатацию ЗРУ 150 кВ Каховской ГЭС, выполненное по схеме: одна рабочая секционированная и обходная системы шин, сборные шины которого изготовлены из медных труб. Широкое применение жесткая трубчатая ошиновка из алюминиевых сплавов получила в 60-е годы в ОРУ напряжением 110 кВ транзитных и тупиковых подстанций. В 70-х годах институт «Энергосетьпроект» выполнил проекты ОРУ напряжением 220 кВ по упрощенным схемам (типа КТП 220 кВ), а также типовые проекты ОРУ 110 кВ и выше со сборными шинами. В эти же годы институтом «Укроргэнергострой» (в те годы Одесским филиалом «Оргэнергострой») разработаны проекты КТПБ 110 кВ, производство которых освоено Самарским (Куйбышевским) заводом «Электрощит». Эти же организации позднее разработали и освоили выпуск блочных комплектных распределительных устройств (КРУБ) 110 кВ для схем одна или две системы сборных шин с обходной шиной, а в конце 80-х годов изготовили экспериментальные пролеты ошиновки КРУБ 220 кВ. До 80-х годов жесткая ошиновка ОРУ 110 кВ, разработанная институтом «Энергосетьпроект» и его филиалами, изготовлялась в мастерских электромонтажных организаций; позднее, как правило, на заводах ВПО «Союзлектросетьизоляция» (рис.1, а). Эти решения использовались при сооружении ОРУ 220 и 500 кВ с жесткими шинами (рис. 1, б). Кроме того, элементы жесткой ошиновки нашли применение в ОРУ 330 и 500 кВ с подвесными разъединителями (проекты института «Атомтеплоэлектропроект»). В последние годы ЗАО «Завод электротехнического оборудования» (ЗЭТО), ЗАО «КЭС-ЭнергоСтройИнжиниринг», ЗАО «КТП-Урал» и другие организации выполнили разработку, и внедрение ошиновки ОРУ 110 – 500 кВ (рис. 2).

Следует отметить, что ряд шинных конструкций во многом копируют разработки 60-80 гг. прошлого столетия. Другие с аккумулировали наилучшие отечественные и зарубежные решения, а также используют новые оригинальные подходы. В этих условиях своевременным оказалось подготовка и утверждение четырех новых нормативных документов , которые определяют требования к проектированию, выбору, расчетам и испытаниям жесткой ошиновки ОРУ и ЗРУ 110-500 кВ. В документах нашли отражение результаты расчетов и испытаний шинных конструкций в рабочих и аварийных режимах, многолетней научно-исследовательской и опытно-конструкторской работы российских ученых и специалистов , а также отечественный и зарубежный опыт эксплуатации жесткой ошиновки. В частности, в качестве шин рекомендуется использовать трубы из алюминиевых сплавов прежде всего 1915, 1915Т, а также АВТ1. Ответвления от шин выполняются жесткими шинами (трубами) или гибкими (сталеалюминиевыми проводами). При монтаже шинных конструкций сварочные работы, как правило, не используются. Жесткие ответвления от шин, повороты и другие элементы, требующие сварочных работ, обычно поставляются специализированными предприятиями. Шинодержатели и другие крепежные элементы являются важнейшим звеном современных шинных конструкций. В соответствии с рекомендуется (и впервые в отечественной практике допускается для сборных шин) использование шинодержателей и крепежных узлов - обжимного типа (рис. 3), которые не требуют выполнения сварочных работ или опрессовки для соединения жестких шин, а также жестких шин и гибких связей при монтаже ошиновки. Крепежные элементы позволяют проводить присоединение трубчатых шин к плоским аппаратным зажимам, выполнение различных типов ответвлений и соединений проводников. Шинодержатели и другие крепежные элементы обжимного типа обеспечивают: быстрый и качественный монтаж ошиновки, необходимую компенсацию температурных деформаций шин, компенсацию погрешностей при установке шинных опор, а также возможные просадки и наклоны опор. Кроме того, они выполняют роль экранов, устраняя возможность развития коронных разрядов и радиопомех. Вместе с тем, они должны обеспечивать высокое качество электрического соединения, а также необходимый уровень рассеяния энергии при колебаниях шин, в том числе, при ветровых возбуждениях (ветровых резонансах). Крепление жесткой ошиновкой, как правило, выполняется на одноколонковые фарфоровые изоляторы (изоляционные опоры) типа С6, С8, С10 или С12. Допускается использование полимерных опорных изоляторов. В РУ с жесткой ошиновкой применяются разъединители всех современных конструктивных решений, в том числе, горизонтально-поворотные, полупантографические и пантографические. Следует отметить, что использование пантографических разъединителей в РУ с жесткими шинами позволяет создать наиболее компактные конструктивные решения, а в некоторых случаях упростить компоновку оборудования. Жесткая ошиновка ОРУ и ЗРУ 110 кВ и выше отвечает нормативным требованиям и удовлетворяет требованиям эксплуатационной надежности, если выполнены проверки (испытания или расчеты), в том числе:
Современные крепежные узлы шин по допустимым прогибам от собственного веса (включая ответвления), а в ОРУ, кроме того, веса гололеда; изоляционных расстояний с учетом отклонений шин и опорных изоляторов при ветровых нагрузках (в ОРУ) и после воздействия ; ошиновки по условиям короны и радиопомех; шин, шинодержателей и компенсаторов по допустимым температурным удлинениям; жесткой ошиновки по нагреву в рабочих режимах, при этом в ОРУ с учетом солнечной радиации, а также вынужденной (при ветре) и свободно-вынужденной (при штиле) конвективного теплообмена; термической стойкости шин; электродинамической стойкости изоляторов и шин, включая оценки при неуспешных АПВ; ветровой стойкости ошиновки ОРУ с учетом пульсирующей (переменной) составляющей ветровой нагрузки; эффективности отстройки шин ОРУ от ветровых резонансов; стойкости (прочности) изоляторов и шин при различных сочетаниях внешних нагрузок (ветровых, гололедных и электродинамических) с учетом собственного веса и веса ответвлений. Рассмотрим некоторые условия выбора и расчетов жесткой ошиновки. 1. Наибольший прогиб шин от собственного веса и силы тяжести ответвлений у ст.max по эстетико-психологическим требованиям не должен превышать допустимого статического прогиба у ст.доп = l 0 /100, а с учетом гололеда у ст.доп = l 0 /80, где l 0 - длина шины между опорами (шинодержателями) . В качестве примера на рис. 4 приводятся кривые зависимости внешних (D) и внутренних (d) диаметров шин кольцевого сечения, отвечающие условию построенные на основе решения статической задачи для шин длиной 17,5 м (без ответвлений) из алюминиевого сплава 1915Т без учета гололеда. Допустимые размеры шин лежат в области, отмеченной серым цветом.
Как показывает опыт внедрения новых шинных конструкций 110 кВ и выше, при нарушении условия (1) по требованиям эксплуатационного персонала приходится устанавливать дополнительные промежуточные изоляционные опоры или заменять шины. 2. Монтажные расстояния от токоведущих частей до различных элементов РУ в свету должны быть больше наименьших значений, указанных в ПУЭ . Кроме того, наименьшие изоляционные расстояния между токоведущими элементами а ф-ф, а также проводниками и заземленными частями а ф-з при колебаниях ошиновки под действием ветровых нагрузок (в ОРУ) и после отключения (в ОРУ и ЗРУ) должны оставаться больше наименьших допустимых расстояний А ф-ф и А ф-з, установленных в . 3. Шины должны проверяться по условиям короны и радиопомех. Общая корона на шинах не возникает, если выполняется неравенство где Е max - максимальная напряженность электрического поля на поверхности шин при среднем эксплутационном напряжении; Е 0 - начальная напряженность электрического поля возникновения коронного разряда. Условие (5) выполняется, если внешний диаметр шин D больше или равен минимальному допустимому диаметру по условию короны D доп. В табл. 1 приводятся расчетные допустимые диаметры трубчатых одиночных шин по условию короны при нормальных атмосферных условиях (давлении воздуха p в =1,013 10 5 Па = 760 мм рт. ст. и температуре воздуха V в =20 o С) и минимально допустимых расстояниях между фазами и землей.
Следует отметить, что диаметры шин, выбранные по другим условиям, как правило, значительно превосходят указанные в табл. 1 значения. 4. Температурные деформации шин не должны приводить к дополнительным усилиям, что обеспечивается свободным перемещением шин и установкой температурных компенсаторов. При этом длина неразрезного (цельного или сварного) участка шины должна отвечать неравенствам где L доп. min и L доп. max - минимальные и максимальные допустимые длины неразрезного отрезка шины, определяемые конструкцией ошиновки, м; L - длина этого отрезка при минимальной температуре V min (которую оправданно принять равной абсолютной минимальной температуре воздуха региона) и максимальной температуре V max (равной температуре нагрева шины при КЗ, то есть не более 200 о С) . Невыполнение условий (3) может приводить к технологическим нарушениям и авариям. На рис. 5 приведена фотография поврежденного пролета сборных шин ОРУ 220 кВ при температурных деформациях. 5. В рабочих режимах наибольшие температуры нагрева шин V и болтовых контактов V к не должна превышать допустимых значений Вместо условия (4) при практических расчетах удобно использовать неравенство где I раб. нб - наибольший рабочий ток (называемый также током утяжеленного режима), А; I доп - длительно допустимый (номинальный) шины или контакта ошиновки I ном, равный рабочему току при температуре нагрева соответственно V или V к. В качестве примера на рис. 6 приведены расчетные зависимости длительно допустимых токов трубчатых шин из сплава 1915Т в ОРУ при температуре воздуха V в, равной 40 o С, и длительно допустимой температуре шины V доп, равной допустимой температуре контактных соединений V доп к (например, шинодержателя обжимного типа) 90 o С. При расчете I доп шин ОРУ тепловой поток определялся при свободно-вынужденной конвекции, исходя из скорости ветра при штиле, равной 0,6 м/с. Кроме того, учитывался тепловой поток от солнечной радиации для средней полосы России.
6. Шины считаются термически стойкими, если их температура при V КЗ остается ниже допустимой температуры V КЗ.доп Для алюминия и его сплавов допустимая температура V КЗ.доп установлена равной 200 o С . Кривые для определения температуры шины при КЗ приводятся на рис. 7. Необходимый для определения V КЗ параметр А (А 2 с/мм 4) при конечной температуре определяется по известной формуле 7: где S - поперечное сечение шины, мм 2 ; В к - интеграл Джоуля, А 2 с. Оценку термической стойкости (с некоторым запасом) удобно проводить, исходя из площади сечения проводника. Шина удовлетворяет условию термической стойкости (6), если площадь ее поперечного сечения отвечает неравенству где S т - минимальное сечение шины по условию термической стойкости, мм 2 ; В - интеграл Джоуля, А 2 с; С Т - параметр термической стойкости, А с 1/2 /мм 2 , значения которого для некоторых алюминиевых сплавов приведены в табл. 2. 7. Шинные конструкции отвечают условиям стойкости (прочности), если выполняются следующие неравенства где R max и R доп - максимальная расчетная и допустимая силы (нагрузки) на изоляторы; V max и V доп - максимальное расчетное и допустимое в материале шин.
Допустимые нагрузки на изоляторы (одностоечных изоляционных опор) принимаются равными 60 % разрушающей нагрузки, допустимые в шине - 70 % временного сопротивления разрыву (предела прочности) материала σ в. Для шин, имеющих сварные соединения, помимо условия (9), должно выполняться неравенство где

σ max, св - максимальное расчетное напряжение в области сварного шва шины;

σ доп, св - допустимое с учетом снижения прочности после сварки, которое можно принять равным 0,7 временного сопротивления материала шины в зоне сварного шва

σ в.св. Временное сопротивление

σ в, а 1915Т - 0,9

σ в. Неверная оценка, прежде всего, R max и R доп может привести к повреждениям шинной конструкции. На рис. 8 приводится пример такого повреждения при испытаниях жесткой ошиновки ОРУ 110 кВ на электродинамическую стойкость. Значения максимальных нагрузок на изоляторы и напряжений в материале шин при могут быть приведены к виду где α = √3 10 -7 Н/А 2 для параллельных шин, расположенных в одной плоскости при трехфазном КЗ; α - расстояние между фазами, м; i уд - ударный КЗ, А; η - динамический коэффициент; W - момент сопротивления поперечного сечения шины, м 3 ; λ и

β - коэффициенты, зависящие от условий опирания шин на опоры пролета (расчетной схемы пролета шины). Динамический коэффициент зависит от взаимного расположения шин, вида КЗ, частоты собственных колебаний шинной конструкции, которая равна где r - параметр частоты собственных колебаний; E - модуль упругости, Па; J - момент инерции поперечного сечения шины, м 4 ; m - масса шины на единицу длины, кг/м; l - длина пролета шины, м. В качестве примера, на рис. 9 приводится одна из возможных расчетных схем (характерная для внутриячейковых связей) шины ОРУ 110-500 кВ и зависимость параметра частоты r от C оп l 3 /EJ (здесь C оп - жесткость средней опоры) при различных значениях отношения M оп /(ml) (где M оп - приведенная масса опоры) для данной расчетной схемы. Динамический коэффициент η для параллельных шин, расположенных в одной плоскости, в зависимости от частоты собственных колебаний приводятся, например, в . Следует отметить, что обычно частота собственных колебаний шин менее 10 Гц, поэтому динамический коэффициент меньше 1.
Например, для сборных шин типовых ОРУ 330 и 500 кВ частота собственных колебаний ошиновки составляет примерно 1-2 Гц, а динамический коэффициент - 0,25-0,4 (при постоянной времени затухания апериодической составляющей тока КЗ, равной 0,05-0,2 с). 8. В системах с быстродействующими АПВ следует проводить расчет электродинамической стойкости при повторных включениях на КЗ. При этом необходимо учитывать рассеяние энергии при колебаниях шинных конструкций, частоту собственных колебаний, время бестокой паузы и другие факторы. Инженерные оценки R max и

σ max при неуспешных АПВ проводятся при наиболее неблагоприятных по условиям электродинамической стойкости углах включения и отключения тока КЗ. Вместе с тем, наибольшие в шине, нагрузки на изоляторы, а также прогибы конструкций при повторных включениях на не превышают соответствующих значений при первом КЗ, если продолжительность бестоковой паузы, с, составляет где δ х - декремент затухания при горизонтальных колебаниях шин. 9. Расчет шин на ветровую скорость (прочность) учитывает как статическую (неизменную во времени) – V, так и динамическую (пульсирующую) v(t) составляющую скорости ветра Динамические составляющие скорости v(t) и, следовательно, ветровой нагрузки рассматриваются как стационарные случайные процессы .
В результате расчета наибольшие нагрузки на опоры и в шине приводятся к виду где

q ст.в = 0,5 ρ в c x D V 0 2 - статическая составляющая ветровой нагрузки, Н/м; ρ в - плотность воздуха, кг/м 3 ; c x -

коэффициент лобового сопротивления шины; V 0 - нормативная скорость ветра на высоте шины, м/с; ηв- динамический коэффициент в ветровой нагрузки, зависящий от частоты собственных колебаний и декремента затухания ошиновки, скорости ветра, а также стандартов случайных функций R и

σ и определяемый по формуле
где

ξ в - параметр динамичности, (м/с) -1/3 . Параметр

ξ в в определяется по кривым (рис. 10). При первой (основной) частоте собственных колебаний шинной конструкции в горизонтальной плоскости больше 5 Гц параметр динамичности принимается, равным 0,3(м/с) -1/3 . Изоляторы и шины отвечают ветровой стойкости, если выполняются неравенства (9) и (10).
10. Ошиновка ОРУ не должна быть подвержена устойчивым ветровым резонансным колебаниям, которые возбуждаются периодическими срывами вихрей при скорости ветра, лежащей в пределах где Vs=df 1y /Sh - струхалевская скорость ветра, м/с; Sh~0,2 - число Струхаля; f 1y - первая собственных колебаний шины (12) в вертикальной плоскости, Гц; К 1 и K 2 - коэффициенты, определяющие область скоростей ветра при устойчивых резонансных колебаниях, примерно равные, соответственно, 0,7-1,0 и 1,0 -1,3. Устойчивые резонансные колебания не возбуждаются, если наибольший (расчетный) прогиб шины y р.макс при вихревых возбуждениях не достигает критических (допустимых) значений y р.доп, то есть Допустимый прогиб при вихревых возбуждениях лежит в пределах 0,02-0,1 диаметра шины D, а наибольший прогиб зависит от коэффициента подъемной силы, жесткости и декремента затухания шины при колебаниях в вертикальной плоскости. Как показывают исследования и опыт эксплуатации, резонансная скорость ветра невелика и составляет не более 2-3 м/с. в материале шины и нагрузки на изоляторы в этом режиме обычно существенно меньше допустимых значений. Однако продолжительность ветровых резонансных колебаний может быть длительной (несколько часов), что оказывает отрицательное психологическое воздействие на персонал ОРУ, а также может приводить к ослаблению болтовых соединений и усталостным повреждениям элементов конструкций. Наиболее эффективный метод борьбы с ветровыми резонансами - это установка шинодержателей специальной конструкции и прокладка внутри трубчатых шин проводов (тросов) или металлических стержней, которые обеспечивают необходимый уровень рассеяния энергии при колебаниях шин. 11. Расчет на стойкость изоляторов и шин при сочетании ветровых q в, гололедных q г, электродинамических q э нагрузок, а также нагрузок от собственного веса и веса ответвлений q ш проводится при условии, что результирующее воздействие (в векторной форме) равно
где γ 1 ,

γ 3 - коэффициенты, принимаемые в соответствии с рекомендациями ПУЭ и другими документами. Расчет изоляторов и шин ОРУ на прочность должен проводиться при следующих сочетаниях внешних нагрузок: 1) вес ошиновки, нормативная гололедная нагрузка и ветровая нагрузка при нормативной скорости ветра; 2) вес ошиновки, ветровая нагрузка при нормативной скорости ветра и ЭДН, без учета АПВ, равная 65 % максимального расчетного значения (то есть при токе КЗ, равном 80 % от максимума); 3) вес ошиновки, максимальная электродинамическая нагрузка (без учета АПВ) и ветровая нагрузка, равная 60 % нормативного значения; 4) вес ошиновки и электродинамическая нагрузка при максимальном расчетном токе КЗ, в том числе при неуспешных АПВ (при повторных включениях на КЗ). Жесткая ошиновка и ее элементы должны подвергаться приемо-сдаточным испытаниям и проверкам, указанным в табл. 3. Следует отметить, что испытания на электродинамическую стойкость требуется проводить на трехпролетных шинных конструкциях. Допускается испытывать двухпролетные конструкции. При этом контрольными являются изоляторы, установленные в середине опытной конструкции. Проводить испытания на электродинамическую стойкость однопролетных конструкций не допускается. Испытания проводятся при трехфазных КЗ. Для конструкций с шинами, расположенными в одной плоскости, допускается проводить испытания при двухфазных КЗ между фазами А-В и В-С. В этом случае трехфазный ток электродинамической стойкости пересчитывается по формуле

Где i (2) дин - экспериментально установленное значение тока электродинамической стойкости при двухфазном КЗ; η (2) и

) - динамические коэффициенты при двухи трехфазном КЗ. Длительность устанавливается не менее половины периода собственных колебаний, то есть Т/2 = 1/(2f ). В этом случае будут достигнуты наибольшие значения нагрузок на и напряжений в материале шин. Наибольшая продолжительность определяется требованиями термической стойкости и устанавливается не менее времени термической стойкости выключателя. Проверку ошиновки на ветровую стойкость и отстройку от ветровых резонансов при приемо-сдаточных испытаниях допускается проводить на основе экспериментально-аналитических результатов. Но этот вопрос выходит за рамки настоящей статьи. ВЫВОДЫ 1. В РУ с жесткой ошиновкой целесообразно использовать прогрессивные крепежные элементы, исключающие выполнение сварочных работ при монтаже и обеспечивающие необходимый уровень надежности, а также компенсацию температурных деформаций, эффективное подавление ветровых резонансных колебаний и др. 2. Экономическая эффективность жесткой ошиновки в значительной мере определяется использованием современных компоновок ОРУ, применением быстромонтируемых компактных и комплектных модулей, использованием современных коммутационных аппаратов, в том числе, пантографических разъединителей. 3. Надежность жесткой ошиновки обеспечивается качеством ее изготовления, монтажа, а также строгим выполнением требований нормативных документов . Автор: Долин А.П., канд. техн. наук, ОАО «ФСК ЕЭС», Козинова М.А., ООО НТЦ «ЭДС» СПИСОК ЛИТЕРАТУРЫ 1. ГОСТ Р 50736-2007. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока КЗ (водится с 01.07.2008 взамен ГОСТ Р 50254 – 92). 2. СО 153-34.20.122-2006. «Нормы технологического проектирования подстанций переменного тока с высшим напряжением 35-750 кВ». 3. Руководящий документ по проектированию жесткой ошиновки ОРУ и ЗРУ 110-500 кВ (принят в качестве СтО 25.06.2007, приказ ОАО «ФСК ЕЭС» № 176). 4. Методические указания по расчету и испытаниям жесткой ошиновки ОРУ и ЗРУ 110-500 кВ (принят в качестве СтО 25.06.2007, приказ ОАО «ФСК ЕЭС» № 176). 5. Долин А.П., Шонгин Г.Ф. Открытые распределительные устройства с жесткой ошиновкой. - М.: Энергоатомиздат, 1988. 6. Кудрявцев Е.П., Долин А.П. Расчет жесткой ошиновки распределительных устройств. - М.: Энергия, 1981. 7. Долин А.П., Кудрявцев Е.П., Козинова М.А. Расчет электродинамической стойкости и других параметров жесткой ошиновки ОРУ высоких и сверхвысоких напряжений. - Электрические станции, 2005, № 4. 8. Долин А.П. Исследование стойкости жесткой ошиновки при ветровых нагрузках. - Известия АН ССР. Энергетика и транспорт, 1990, № 4. 9. Правила устройства электроустановок. - 7-е изд.

Жесткая ошиновка предназначена для выполнения многопролетных сборных шин и электрических соединений между высоковольтными аппаратами в распределительных устройствах.

Жесткая ошиновка высокой заводской готовности по сравнению с гибкой ошиновкой позволяет снизить металлоемкость распределительного устройства на 30-50%, расход железобетона на 10-20%, объем строительно-монтажных работ и трудозатрат до 25% в зависимости от схем электрических соединений ОРУ и конкретных условий района строительства.

Распределительные устройства с жесткой ошиновкой не требуют строительства порталов, располагаются невысоко от земли, удобны для сборки и профилактических осмотров.


Конструкция

Комплекты жесткой ошиновки для открытых распределительных устройств 110, 220, 330, 500 и 750 кВ разработаны ЗАО «ЗЭТО» совместно с институтом «Нижегородскэнергосетьпроект», ЗАО НПО «Техносервис-Электро», НТЦ«ЭДС», ОАО «НТЦ Электроэнергетики».

Ошиновка представляет собой систему жестких шин. Конструкция каждой фазы сборных шин выполнена из ряда однопролетных шин, опирающихся своими концами на опорные изоляторы.

Для крепления ошиновки предусмотрены опорные изоляционные конструкции на 110, 220, 330, 500 и 750 кВ, выполненные на фарфоровых изоляторах, а также на полимерных (110 кВ). Однопролетные шины внутриячейковых связей закрепляются на контактных выводах высоковольтных аппаратов ОРУ.

Ошиновка сборных шин ОРУ выполнена из прессованных трубчатых шин алюминиевого сплава 1915Т, обладающего высокой прочностью, коррозионной стойкостью и хорошей свариваемостью. Электрическое соединение сборных шин между собой осуществляются токовыми компенсаторами обжимного типа. Присоединение зажимов для опрессовки гибких спусков, ответвлений к сборным шинам предусматривается болтовыми соединениями на месте монтажа.

Конструкция ошиновки обеспечивает надежную работу при динамических нагрузках, возникающих при коротких замыканиях.

С комплектами жесткой ошиновки в компоновках ОРУ используются разъединители пантографного, полупантографного и горизонтально-поворотного типа серий РПВ, РПГ и РГ. Взаимное расположение оборудования и строительных конструкций ОРУ учитывает возможность расширения ОРУ как в пределах первоначально принятой схемы, так и при переходе к более сложной схеме,

В комплект поставки входят: трубчатые шины, опорные изоляторы, токовые компенсаторы, шинодержатели, держатели для внутриячейковых связей, зажимы для присоединения гибких спусков. Дополнительно по заказу поставляются металлоконструкции под опорную изоляцию.

Технические характеристики

Параметр ОРУ-110 ОРУ-220 ОРУ-330 ОРУ-500 ОРУ-750
Номинальное напряжение (линейное), кВ 110 220 330 500 750
Наибольшее рабочее напряжение, кВ 126 252 363 525 787
Номинальный ток ошиновки и компенсаторов токовых, А 2000 2000 3150 3150 3150

Максимально допустимый ток одного провода, гибкого спуска, А*

для провода АС-120/19

для провода АС-150/24

для провода АС-185/29

для провода АС-240/32

для провода АС-300/39

для провода АС-400/51 (АС-400/64)

для провода АС-500/26 (АС-500/127,АС-500/64)

Номинальный кратковременный выдерживаемый ток (ток термической стойкости), кА

63

Наибольший пик номинального кратковременного выдерживаемого ошиновкой тока (ток электродинамической стойкости), кА

160
Время протекания тока термической стойкости, с: 3 3 3 3 3

В данном проекте рассматриваются строительные, электротехнические решения, ошиновка и оборудование ОРУ 110 кВ

В архиве КМ, КЖ, ЭП ОРУ 110 кВ. Формат pdf

ОРУ 110 кВ расшифровка - открытое распределительное устройство 110000 вольт подстанции

Перечень чертежей комплекта ЭП

Общие данные
План подстанции.
Сборные шины. Ячейка 110 кВ W2G. TV2G
Ячейка 110 кВ C1G, TV1G. Секционный выключатель
Ячейка 110 кВ 2ATG. ввод АТ2
Ячейка 110 кВ 1ATG. ввод АТ1
Сводная спецификация
Установка ячейки PASS МО 110 кВ
Установка разъединителя РН-СЭЩ 110 кВ
Установка трех трансформаторов напряжения VCU-123
Установка ограничителей перенапряжения ОПН-П-11О/70/10/550-III-УХЛ1 0
Установка шинной опоры ШО-110.И-4УХЛ1
Установка комплекта двух шкафов наружной установки
Установка блока дистанционного управления разъединителями 110 кВ
Гирлянда изоляторов 11хПС70-Е натяжная одноцепная для крепления двух проводов АС 300/39
Узел присоединения двух проводов к разъединителю
Узел присоединения проводов к выводу трансформатора напряжения
Соединение проводников
Монтажные тяжения и стрелы провеса провода АС-300/39

КЖ ОРУ 110 кВ (конструкции железобетонные)

Общие данные
Схема расположения фундаментов под опоры оборудования ОРУ-220 кВ
Фундаменты Фм1 Фм2 ФмЗ Фм4, Фм5, Фм5а, Фм6 Фм7, Фм8
Ведомость расхода стали,

КМ ОРУ 110 кВ (конструкции металлические)

Общие данные
Схема расположения опор под оборудование ОРУ-220 кВ Опора ОП1 Опора ОП1. Узел 1
Опоры Оп3, Оп3а. Разрез 1-1. Узел 1
Опоры Оп3, Оп3а. Разрезы 2-2, 3-3, 4-4
Опоры Оп3, Оп3а, Разрез 5~5. Узлы 2-4
Опора 0п4
Опоры Оп5, Оп5а
Опора Оп7
Опора Оп8
Площадка обслуживания П01






Основные конструктивные решения ОРУ-110 кВ

Ошиновка 0РУ-110 кВ выполнена гибкими сталеалюминиевыми проводами 2хАС 300/39 (два провода в фазе). Соединение проводов в ответвлениях предусмотрено при помощи соответствующих прессуемых зажимов. Спуски к аппаратам выполняются на 6-8% длиннее, чем расстояние между точкой соединения проводов и зажимом аппарата. Присоединение проводов к аппаратам осуществляется с использованием соответствующих прессуемых аппаратных зажимов.

Спаренные провода монтируются с расстоянием между ними 120 мм и фиксируются при помощи стандартных распорок, устанавливаемых через 5-6 м.

Согласно главе 19 ПУЭ (7-е издание) принята II степень загрязнения атмосферы. Крепление проводов к порталам предусмотрено при помощи одиночных гирлянд из 11 стеклянных изоляторов типа ПС-70Е.

Указанные монтажные стрелы провеса рассчитаны в программе "ЛЭП-2010" определены с учетом подвески проводов при температуре воздуха во время монтажа в пределах -30°... +30°С.

Межполюсное расстояние всех аппаратов принято в соответствии с рекомендациями заводов-изготовителей и типовых материалов.

Прокладка кабелей в пределах ОРУ принята в наземных железобетонных кабельных лотках. Исключение составляют прокладываемые в траншеях и в коробах ответвления к аппаратам, удаленным от кабельных магистралей.

На компоновочных чертежах ячеек 110 кВ приведены схемы заполнения.

Установочные чертежи выполнены на основании заводской документации.

Основное применяемое оборудование на ОРУ 110 кВ:

Элегазовое комплектное распределительное устройство наружной установки типа PASS МО на напряжение 110 кВ. Элегазовая ячейка серии PASS МО состоит из силового выключателя, встроенных трансформаторов тока шинного и линейного разъединителей, заземляющих ножей и высоковольтных вводов элегаз-воздух, завода АВВ;
- Разъединитель трехполюсный PH СЭЩ-110 с двумя заземляющими ножами, забода ЗАО «ГК «Злектрощит» -ТМ Самара». Россия,-
- Трансформатор напряжения VCU-123, забода K0NCAR, Хорватия;
- Ограничитель перенапряжения ОПН-П-220/156/10/850-III-УХЛ1 0, завода ОАО «Позитрон», Россия;
- Опора шинная Ш0-110.Н-4УХ/11, завода ЗАО «ЗЗТО». Россия.

Всё устанавливаемое оборудование присоединить к контуру заземления подстанции сталью круглой ф18 мм. Заземление Выполнить В соответствии с СНиП 3.05.06-85, типовым проектом А10-93 "Защитное заземление и зануление электрооборудования" ТПЗП, 1993 г и комплектом ЭП.

Крепление элементов:

3.2.1 Размеры сварных швов принимать в зависимости от усилий, указанных на схемах и в ведомостях элементов конструкций, кроме оговоренных в узлах, а также в зависимости от толщины свариваемых элементов.
3.2.2 Минимальное усилие прикрепления центрально-сжатых и центрально-растянутых элементов принимать 5,0 т.
3.2.3 Все монтажные крепления, прихватки и временные приспособления после окончания монтажа должны быть сняты, а места прихваток - зачищены.

Сварка:

3.3.1 Материалы, принимаемые для сварки, принимать по таблице Г.1 СП 16.13330.2011.
3.3.3 Размеры сварных швов принимать в зависимости от усилий, указанных на схемах и в ведомости элементов конструкций, кроме оговоренных в узлах, а также от толщины свариваемых элементов.
3.3.4 Наименьшее усилие для прикрепления ± 5,0 т.
3.3.5 Минимальные катеты угловых швов следует принимать по табл.38 СП 16.13330.2011.
3.3.6 Минимальная длина угловых швов-60 мм.

Похожие публикации