Не рациональные числа примеры. Определение рациональных чисел

Рациональные числа

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b - отрицательно, то a > b . src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435">Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i - номер строки таблицы, в которой располагается ячейка, а j - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Ссылки

Wikimedia Foundation . 2010 .

Рациональные числа – это числа вида , где
– целое число, а– натуральное. Множество рациональных чисел обозначают буквой. При этом выполняется соотношение
, так как любое целое число
можно представить в виде. Таким образом, можно сказать, что рациональные числа – это все целые числа, а также положительные и отрицательные обыкновенные дроби.

Десятичные дроби – это такие обыкновенные дроби, у которых знаменатель – единица с нулями, то есть 10; 100; 1000 и т.д. Десятичные дроби записывают без знаменателей. Сначала пишется целая часть числа, справа от нее ставится запятая; первая цифра после запятой означает число десятых, вторая – сотых, третья – тысячных и т.д. Цифры, стоящие после запятой, называются десятичными знаками.

Бесконечной называется десятичная дробь, у которой после запятой бесконечно много цифр.

Каждое рациональное число может быть представлено в виде конечной или бесконечной десятичной дроби. Это достигается делением числителя на знаменатель.

Бесконечную десятичную дробь называют периодической , если у нее, начиная с некоторого места, одна цифра или группа цифр повторяется, непосредственно следуя одна за другой. Повторяющуюся цифру или группу цифр называют периодом и записывают в скобках. Например, .

Верно и обратное утверждение: любую бесконечную десятичную периодическую дробь можно представить в виде обыкновенной дроби.

Перечислим некоторые сведения о периодических дробях.

1. Если период дроби начинается сразу после запятой, то дробь называется чисто-периодической , если не сразу после запятой – смешанно-периодической .

Например, 1,(58) – чисто-периодическая дробь, а 2,4(67) – смешанно-периодическая.

2. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители содержатся лишь числа 2 и 5, то запись числав виде десятичной дроби представляет собой конечную десятичную дробь; если в указанном разложении есть другие простые множители, то получится бесконечная десятичная периодическая дробь.

3. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители не содержатся числа 2 и 5, то запись числав виде десятичной дроби представляет собой чисто-периодическую десятичную дробь; если в указанном разложении, наряду с другими простыми множителями, есть 2 или 5, то получится смешанно-периодическая десятичная дробь.

4. У периодической дроби период может быть любой длины, то есть содержать любое количество цифр.

1.3. Иррациональные числа

Иррациональным числом называется бесконечная десятичная непериодическая дробь.

Примерами иррациональных чисел служат корни из натуральных чисел, не являющихся квадратами натуральных чисел. Например,
,
. Иррациональными являются числа
;
. Множество иррациональных чисел обозначают буквой.

Пример 1.10. Доказать, что
– иррационально число.

Решение. Предположим, что
– рациональное число. Очевидно, оно не является целым, а поэтому
, где
и– несократимая дробь; значит, числа
ивзаимно простые. Так как
, то
, то есть
.


В этой статье мы начнем изучать рациональные числа . Здесь мы дадим определения рациональных чисел, дадим необходимые пояснения и приведем примеры рациональных чисел. После этого остановимся на том, как определить, является ли данное число рациональным или нет.

Навигация по странице.

Определение и примеры рациональных чисел

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа , подобно тому, как целые числа объединяют натуральные числа , противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Из озвученного определения следует, что рациональным числом является:

  • Любое натуральное число n . Действительно, можно представить любое натуральное число в виде обыкновенной дроби , например, 3=3/1 .
  • Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .
  • Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.
  • Любое смешанное число . Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и .
  • Любая конечная десятичная дробь или бесконечная периодическая дробь . Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, , а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 , 903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 , −72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа .

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления , тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и . Таким образом, , что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа −5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 , −13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

  • целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;
  • каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;
  • каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

Является ли данное число рациональным?

В предыдущем пункте мы выяснили, что любое натуральное число, любое целое число, любая обыкновенная дробь, любое смешанное число, любая конечная десятичная дробь, а также любая периодическая десятичная дробь является рациональным числом. Это знание нам позволяет «узнавать» рациональные числа из множества написанных чисел.

Но как быть, если число задано в виде некоторого , или как , и т.п., как ответить на вопрос, является ли данное число рациональным? Во многих случаях ответить на него очень сложно. Укажем некоторые направления ходу мысли.

Если число задано в виде числового выражения, которое содержит лишь рациональные числа и знаки арифметических действий (+, −, · и:), то значение этого выражения представляет собой рациональное число. Это следует из того, как определены действия с рациональными числами . Например, выполнив все действия в выражении , мы получаем рациональное число 18 .

Иногда, после упрощения выражений и более сложного вида, появляется возможность определить, рационально ли заданное число.

Пойдем дальше. Число 2 является рациональным числом, так как любое натуральное число является рациональным. А как насчет числа ? Является ли оно рациональным? Оказывается, что нет, - не является рациональным числом, это иррациональное число (доказательство этого факта методом от противного приведено в учебнике по алгебре за 8 класс, указанном ниже в списке литературы). Также доказано, что квадратный корень из натурального числа является рациональным числом только в тех случаях, когда под корнем находится число, являющееся полным квадратом некоторого натурального числа. Например, и - рациональные числа, так как 81=9 2 и 1 024=32 2 , а числа и не являются рациональными, так как числа 7 и 199 не являются полными квадратами натуральных чисел.

А число рационально или нет? В данном случае несложно заметить, что , следовательно, данное число – рациональное. А является ли число рациональным? Доказано, что корень k-ой степени из целого числа является рациональным числом только тогда, когда число под знаком корня является k-ой степенью некоторого целого числа. Поэтому не является рациональным числом, так как не существует целого числа, пятая степень которого равна 121 .

Метод от противного позволяет доказывать, что логарифмы некоторых чисел по некоторым основаниям не являются рациональными числами. Для примера докажем, что - не рациональное число.

Предположим противное, то есть, допустим, что - рациональное число и его можно записать в виде обыкновенной дроби m/n . Тогда и дают следующие равенства: . Последнее равенство невозможно, так как в левой его части находится нечетное число 5 n , а в правой части – четное число 2 m . Следовательно, наше предположение неверно, таким образом, не является рациональным числом.

В заключение стоит особо отметить, что при выяснении рациональности или иррациональности чисел следует воздержаться от скоропостижных выводов.

Например, не стоит сразу утверждать, что произведение иррациональных чисел π и e является иррациональным числом, это «как бы очевидно», но не доказано. При этом возникает вопрос: «А с чего бы произведению быть рациональным числом»? А почему бы и нет, ведь можно привести пример иррациональных чисел, произведение которых дает рациональное число: .

Также неизвестно, являются ли числа и многие другие числа рациональными или не являются таковыми. Например, существуют иррациональные числа, иррациональная степень которых является рациональным числом. Для иллюстрации приведем степень вида , основание данной степени и показатель степени не являются рациональными числами, но , а 3 – рациональное число.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

На этом уроке мы познакомимся с множеством рациональных чисел. Разберем основные свойства рациональных чисел, научимся переводить десятичные дроби в обыкновенные и наоборот.

Мы уже говорили про множества натуральных и целых чисел. Множество натуральных чисел является подмножеством целых чисел .

Теперь мы узнали, что такое дроби, научились с ними работать. Дробь , например, не является целым числом. Значит, нужно описать новое множество чисел, куда будут входить все дроби, и этому множеству нужно название, четкое определение и обозначение.

Начнем с названия. Латинское слово ratio переводится на русский язык как отношение, дробь. Название нового множества «рациональные числа» и происходит от этого слова. То есть «рациональные числа» можно перевести как «дробные числа».

Разберемся, из каких чисел состоит это множество. Можно предположить, что оно состоит из всех дробей. Например, таких - . Но такое определение было бы не совсем корректным. Дробь - это не само число, а форма записи числа. В примере, представленном ниже, две разные дроби обозначают одно и то же число:

Тогда точнее будет сказать, что рациональные числа - это те числа, которые можно представить в виде дроби. И это в самом деле уже почти то самое определение, которое и используют в математике.

Обозначили это множество буквой . А как связаны множества натуральных и целых чисел с новым множеством рациональных чисел? Натуральное число можно записать в виде дроби, причем бесконечным числом способов . А раз его можно представить в виде дроби, то оно тоже является рациональным.

С отрицательными целыми числами аналогичная ситуация. Любое целое отрицательное число можно представить в виде дроби . А можно ли число ноль представить в виде дроби? Конечно, можно, тоже бесконечным числом способов .

Таким образом, все натуральные и все целые числа тоже являются рациональными числами. Множества натуральных и целых чисел являются подмножествами множества рациональных чисел ().

Замкнутость множеств относительно арифметических операций

Необходимость введения новых чисел - целых, затем рациональных - м ожно объяснять не только задачами из реальной жизни. Сами арифметические операции подсказывают нам это. Сложим два натуральных числа: . Получим снова натуральное число.

Говорят, множество натуральных чисел замкнуто относительно операции сложения ( замкнуто относительно сложения). Самостоятельно подумайте, замкнуто ли множество натуральных чисел относительно умножения.

Как только мы пытаемся вычесть из числа равное ему или большее, то натуральных чисел нам не хватает. Введение нуля и отрицательных целых чисел исправляет ситуацию:

Множество целых чисел замкнуто относительно вычитания. Мы можем складывать и вычитать любые целые числа, не опасаясь, что у нас не будет числа, чтобы записать результат ( замкнуто относительно сложения и вычитания).

Замкнуто ли множество целых чисел относительно умножения? Да, произведение любых двух целых чисел дает в результате целое число ( замкнуто относительно сложения, вычитания и умножения).

Осталось еще одно действие - деление. Замкнуто ли множество целых чисел относительно деления? Ответ очевиден: нет. Поделим на . Среди целых чисел нет такого, чтобы записать ответ: .

Но с помощью дробного числа мы почти всегда можем записать результат деления одного целого числа на другое. Почему почти? Вспомним, что, по определению, делить на ноль нельзя.

Таким образом, множество рациональных чисел (которое возникает при введении дробей) претендует на роль множества, замкнутого относительно всех четырех арифметических операций.

Давайте проверим.

То есть множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления, исключая деление на ноль. В этом смысле можно говорить, что множество рациональных чисел устроено «лучше», чем предшествующие множества натуральных и целых чисел. Означает ли это, что рациональные числа - последнее числовое множество, которое мы изучаем? Нет. Впоследствии у нас появятся другие числа, которые нельзя записать в виде дробей, например иррациональных.

Числа как инструмент

Числа - это инструмент, которые человек создавал по мере необходимости.

Рис. 1. Использование натуральных чисел

Дальше, когда понадобилось вести денежные расчеты, перед числом стали ставить знаки плюс или минус, показывая, нужно увеличить или уменьшить исходную величину. Так появились отрицательные и положительные числа. Новое множество назвали множеством целых чисел ().

Рис. 2. Использование дробных чисел

Поэтому появляется новый инструмент, новые числа - дроби. Мы их записываем разными эквивалентными способами: обыкновенными и десятичными дробями ().

Все числа - «старые» (целые) и «новые» (дробные) - объединили в одно множество и назвали его множеством рациональных чисел ( - рациональные числа )

Итак, рациональное число - это число, которое можно представить в виде обыкновенной дроби. Но это определение в математике еще немного уточняют. Любое рациональное число можно представить в виде дроби с положительным знаменателем, то есть отношением целого числа к натуральному: .

Тогда получаем определение: число называется рациональным, если его можно представить в виде дроби с целым числителем и натуральным знаменателем ().

Кроме обыкновенных дробей, мы используем и десятичные. Посмотрим, как они связаны с множеством рациональных чисел.

Десятичные дроби бывают трех видов: конечные, периодические и непериодические.

Бесконечные непериодические дроби: у таких дробей тоже бесконечное количество цифр после запятой, но периода нет. Примером является десятичная запись числа ПИ:

Любая конечная десятичная дробь по определению - это обыкновенная дробь со знаменателем и т.д.

Прочитаем десятичную дробь вслух и запишем в виде обыкновенной: , .

При обратном переходе от записи в виде обыкновенной дроби к десятичной могут получаться конечные десятичные дроби или бесконечные периодические дроби.

Переход от обыкновенной дроби к десятичной

Самый простой случай, когда знаменатель дроби - это степень десятки: и т.д. Тогда мы пользуемся определением десятичной дроби:

Есть дроби, у которых знаменатель легко приводится к такому виду: . Перейти к такой записи возможно, если в разложение знаменателя входят только двойки и пятерки.

Знаменатель состоит из трех двоек и одной пятерки. Каждая и образуют десятку. Значит, нам не хватает двух . Домножим на и числитель, и знаменатель:

Можно было поступить по-другому. Поделить столбиком на (см. рис. 1).

Рис. 2. Деление в столбик

В случае с знаменатель не удастся превратить в или другое разрядное число, так как в его разложение входит тройка. Остается один способ - делить в столбик (см. рис. 2).

Такое деление на каждом шаге будет давать в остатке и в частном. Этот процесс бесконечен. То есть получили бесконечную периодическую дробь с периодом

Давайте потренируемся. Переведем обыкновенные дроби в десятичные.

Во всех этих примерах мы получили конечную десятичную дробь, так как в разложении знаменателя были только двойки и пятерки.

(проверим себя делением в столик - см. рис. 3).

Рис. 3. Деление в столбик

Рис. 4. Деление в столбик

(см. рис. 4)

В разложение знаменателя входит тройка, значит, привести знаменатель к виду , и т.д. не получится. Делим на в столбик. Ситуация будет повторяться. В записи результата будет бесконечное число троек. Таким образом, .

(см. рис. 5)

Рис. 5. Деление в столбик

Итак, любое рациональное число можно представить в виде обыкновенной дроби. Это его определение.

А любую обыкновенную дробь можно представить в виде конечной или бесконечной периодической десятичной дроби.

Виды записи дробей:

запись десятичной дроби в виде обыкновенной: ; ;

запись обыкновенной дроби в виде десятичной: (конечная дробь); (бесконечная периодическая).

То есть любое рациональное число можно записать конечной или периодической десятичной дробью. При этом конечную дробь тоже можно считать периодической с периодом ноль.

Иногда рациональному числу дают именно такое определение: рациональное число - это число, которое можно записать периодической десятичной дробью.

Преобразование периодической дроби

Рассмотрим сначала дробь, у которой период состоит из одной цифры и нет предпериода. Обозначим это число буквой . Метод заключается в том, чтобы получить еще одно число с таким же периодом:

Это можно сделать, умножив исходное число на . Итак, число имеет такой же период. Вычтем из само число :

Чтобы убедиться, что мы правильно все сделали, давайте теперь сделаем переход в обратную сторону, уже известным нам способом - делением в столбик на (см. рис. 1).

В самом деле получаем число в исходной форме с периодом .

Рассмотрим число с предпериодом и более длинным периодом: . Метод остается точно таким же, как и в предыдущем примере. Надо получить новое число с таким же периодом и предпериодом такой же длины. Для этого нужно, чтобы запятая сдвинулась вправо на длину периода, т.е. на два знака. Умножим исходное число на :

Вычтем из полученного выражения исходное:

Итак, каков алгоритм перевода. Периодическую дробь нужно умножить на число вида и т.д., в котором столько нулей, сколько цифр в периоде десятичной дроби. Получим новую периодическую. Например:

Вычтем из одной периодической дроби другую, получим конечную десятичную дробь:

Остается выразить исходную периодическую дробь в виде обыкновенной.

Для тренировки самостоятельно запишите несколько периодических дробей. По данному алгоритму приведите их к виду обыкновенной дроби. Для проверки на калькуляторе поделите числитель на знаменатель. Если все верно, то получится исходная периодическая дробь

Итак, любую конечную или бесконечную периодическую дробь мы можем записать как обыкновенную дробь, как отношение натурального и целого чисел. Т.е. все такие дроби являются рациональными числами.

А как обстоит дело с непериодическими дробями? Оказывается, непериодические дроби невозможно представить в виде обыкновенных (этот факт мы примем без доказательства). А значит, они не являются рациональными числами. Их называют иррациональными.

Бесконечные непериодические дроби

Как мы уже сказали, рациональное число в десятичной записи - это или конечная, или периодическая дробь. Значит, если мы сможем построить бесконечную непериодическую дробь, то мы получим нерациональное, то есть иррациональное число.

Вот один из способов такого построения: Дробная часть этого числа состоит только из нулей и единиц. Количество нулей между единицами каждый раз увеличивается на . Здесь невозможно выделить повторяющуюся часть. То есть дробь не является периодической.

Потренируйтесь самостоятельно конструировать непериодические десятичные дроби, то есть иррациональные числа

Известный нам пример иррационального числа - это число пи (). Периода в этой записи нет. Но, кроме числа пи, существует бесконечно много других иррациональных чисел. Подробнее об иррациональными числами мы поговорим позже.

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 31-е изд., стер. - М: Мнемозина, 2013.
  2. Математика 5 класс. Ерина Т.М.. Рабочая тетрадь к учебнику Виленкина Н.Я., М.: Экзамен, 2013.
  3. Математика 5 класс. Мерзляк А.Г., Полонский В.Б., Якир М.С., М.: Вентана - Граф, 2013.
  1. Math-prosto.ru ().
  2. Cleverstudents.ru ().
  3. Mathematics-repetition.com ().

Домашнее задание

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

Похожие публикации