Решение целых и дробно рациональных неравенств. Рациональные неравенства и их системы

>>Математика:Рациональные неравенства

Рациональное неравенство с одной переменной х - это неравенство вида - рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в натуральную степень . Разумеется, переменная может быть обозначена любой другой буквой, но в математике чаще всего предпочтение отдается букве х.

При решении рациональных неравенств используются те три правила, которые были сформулированы выше в § 1. С помощью этих правил обычно преобразуют заданное рациональное неравенство к виду / (ж) > 0, где / (х) - алгебраическая дробь (или многочлен). Далее разлагают числитель и знаменатель дроби f (х) на множители вида х - а (если, конечно, это возможно) и применяют метод интервалов, который мы уже упоминали выше (см. в предыдущем параграфе пример 3).

Пример 1. Решить неравенство (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).

Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке выполняется неравенство f (x) > 0.


Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.


Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, на промежутке (-1,1) выполняется неравенство f (x)> 0.


Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.


Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели , представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче
О т в е т: -1 < х < 1; х > 2.


Пример 2. Решить неравенство
Решение. Как и в предыдущем примере, почерпнем необходимую информацию из рис. 11, но с двумя изменениями по сравнению с примером 1. Во-первых, поскольку нас интересует, при каких значениях х выполняется неравенство f (x) < 0, нам придется выбрать промежутки Во-вторых, нас устраивают и те точки, в которых выполняется равенство f (x) = 0. Это точки -1, 1, 2, отметим их на рисунке темными кружочками и включим в ответ. На рис. 12 представлена геометрическая модель ответа, от которой нетрудно перейти к аналитической записи.
Ответ:
П р и м е р 3. Решить неравенство
Решение . Разложим на множители числитель и знаменатель алгебраической дроби fх, содержащейся в левой части неравенства. В числителе имеем х 2 - х = х(х - 1).

Чтобы разложить на множители квадратный трехчлен х 2 - bх ~ 6, содержащийся в знаменателе дроби, найдем его корни. Из уравнения х 2 - 5х - 6 = 0 находим х 1 = -1, х 2 = 6. Значит, (мы воспользовались формулой разложения на множители квадратного трехчлена: ах 2 + bх + с = а(х - х 1 - х 2)).
Тем самым мы преобразовали заданное неравенство к виду


Рассмотрим выражение:


Числитель этой дроби обращается в 0 в точках 0 и 1, а обращается в 0 в точках -1 и 6. Отметим эти точки на числовой прямой (рис. 13). Числовая прямая разбивается указанными точками на пять промежутков, причем на каждом промежутке выражение fх) сохраняет постоянный знак. Рассуждая так же, как в примере 1, приходим к выводу, что знаки выражения fх) в выделенных промежутках таковы, как показано на рис. 13. Нас интересует, где выполняется неравенство f (x) < 0. С помощью геометрической модели, представленной на рис. 13, устанавливаем, что f (х) < 0 на интервале (-1, 0) или на интервале (1, 6).

0твет: -1


Пример 4. Решить неравенство


Решение. При решении рациональных неравенств, как правило, предпочитают оставлять в правой части неравенства только число 0. Поэтому преобразуем неравенство к виду


Далее:


Как показывает опыт, если в правой части не(ра-венства содержится лишь число 0, удобнее проводить рассуждения, когда в левой его части и числитель и знаменатель имеют положительный старший коэффициент . А что у нас? У нас в знаменателе дроби в этом смысле все в порядке (старший коэффициент, т.е. коэффициент при х 2 , равен 6 - положительное число), но в числителе не все в порядке - старший коэффициент (коэффициент при х) равен -4 (отрицательное число). Умножив обе части неравенства на -1 и изменив при этом знак неравенства на противоположный, получим равносильное ему неравенство


Разложим числитель и знаменатель алгебраической дроби на множители. В числителе все просто:
Чтобы разложить на множители содержащийся в знаменателе дроби квадратный трехчлен

(мы снова воспользовались формулой разложения на множители квадратного трехчлена).
Тем самым заданное неравенство мы привели к виду


Рассмотрим выражение


Числитель этой дроби обращается в 0 в точке а знаменатель - в точках Отметим эти точки на числовой прямой (рис. 14), которая разбивается указанными точками на четыре промежутка, причем на каждом промежутке выражение f (х) сохраняет постоянный знак (эти знаки указаны на рис. 14). Нас интересуют те промежутки, на которых выполняется неравенство fх < 0; эти промежутки выделены штриховкой на рис. 15. По условию, нас интересуют и те точки х, в которых выполняется равенство f (х) = 0. Такая точка только одна - это точка поскольку лишь при этом значении числитель дроби f (х) обращается в нуль. Точка отмечена на рис. 15 темным кружочком. Таким образом, на рис. 15 представлена геометрическая модель решения заданного неравенства, от которой нетрудно перейти к аналитической записи.


Во всех рассмотренных примерах мы преобразовывали заданное неравенство в равносильное ему неравенство вида f {х) > 0 или f (x) <0,где
При этом количество множителей в числителе и знаменателе дроби может быть любым. Затем отмечали на числовой прямой точки а,Ь,с,д. и определяли знаки выражения f (х) на выделенных промежутках. Заметили, что на самом правом из выделенных промежутков выполняется неравенство f (х) > 0, а далее по промежуткам знаки выражения f (х) чередуются (см. рис. 16а). Это чередование удобно иллюстрировать с помощью волнообразной кривой, которая чертится справа налево и сверху вниз (рис. 166). На тех промежутках, где эта кривая (ее иногда называют кривой знаков) расположена выше оси х, выполняется неравенство f (х) > 0; где эта кривая расположена ниже оси х, выполняется неравенство f (х) < 0.


Пример 5. Решить неравенство


Решение. Имеем


(обе части предыдущего неравенства умножили на 6).
Чтобы воспользоваться методом интервалов, отметим на числовой прямой точки (в этих точках числитель дроби, содержащейся в левой части неравенства, обращается в нуль) и точки (в этих точках знаменатель указанной дроби обращается в нуль). Обычно точки отмечают схематически, учитывая порядок их следования (какое - правее, какое - левее) и не особенно обращая внимания на соблюдение масштаба. Ясно, что Сложнее обстоит дело с числами Первая прикидка показывает, что и то и другое число чуть больше, чем 2,6, откуда нельзя сделать вывод о том, какое из указанных чисел больше, а какое - меньше. Предположим (наугад), что Тогда
Получилось верное неравенство, значит, наша догадка подтвердилась: на самом деле
Итак,

Отметим указанные 5 точек в указанном порядке на числовой прямой (рис. 17а). Расставим знаки выражения
на полученных промежутках: на самом правом - знак +, а далее знаки чередуются (рис. 176). Начертим кривую знаков и выделим (штриховкой) те промежутки, на которых выполняется интересующее нас неравенство f (x) > 0 (рис. 17в). Учтем, наконец, что речь идет о нестрогом неравенстве f (x) > 0, значит, нас интересуют и те точки, в которых выражение f (x) обращается в нуль. Это - корни числителя дроби f (x), т.е. точки отметим их на рис. 17в темными кружочками (и, естественно, включим в ответ). Вот теперь рис. 17в дает полную геометрическую модель решений заданного неравенства.

При решении линейных неравенств есть только одна большая фишка: необходимо менять знак неравенства при делении (или умножении) неравенства на отрицательное число. Менять знак неравенства значит изменять знак "меньше" на знак "больше" или наоборот. При этом знаки плюс на минус в обход ранее изученных математических правил нигде менять не надо. Если мы делим или умножаем неравенство на положительное число знак неравенства менять не нужно. В остальном решение линейных неравенств полностью идентично решению линейных уравнений.

В линейных и в любых других рациональных неравенствах ни в коем случае нельзя домножать или делить левую или правую части неравенства на выражения, содержащие переменную (кроме случаев, когда данное выражение положительно либо отрицательно на всей числовой оси, в этом случае при делении на всегда отрицательное выражение знак неравенства нужно поменять, а при делении на всегда положительное выражение знак неравенства нужно сохранить).

Решение неравенств вида:

Проводится с помощью метода интервалов , который состоит в следующем:

  1. Изображаем координатную прямую, на которую наносим все числа a i . Эти числа, расположенные в порядке возрастания, разобьют координатную прямую на (n +1) промежутков знакопостоянства функции f (x ).
  2. Таким образом, определив знак f (x ) в любой точке каждого промежутка (обычно эта точка выбирается из удобства арифметических действий), определяем знак функции на каждом промежутке. Главное при этом не подставлять в функцию сами границы промежутков.
  3. Выписываем в ответ все те промежутки, знак функции на которых соответствуют основному условию неравенства.

Нужно также отметить, что не обязательно исследовать знак функции на каждом промежутке подстановкой некоторого значения из этого промежутка. Достаточно определить таким образом знак функции только на одном промежутке (обычно на крайнем правом), а затем двигаясь от этого промежутка влево вдоль числовой оси можно чередовать знаки промежутков по принципу:

  • Если скобка из которой взялось число через которое мы переходим стоит в нечетной меняется .
  • А если соответствующая скобка стоит в четной степени, то при переходе через соответствующую точку знак неравенства не меняется .

При этом нужно учитывать еще и следующие замечания:

  • В строгих неравенствах (знаки "меньше" или "больше") границы промежутков никогда не входят в ответ, а на числовой оси они изображаются выколотыми точками.
  • В нестрогих неравенствах (знаки "меньше либо равно" или "больше либо равно") те границы промежутков, которые взяты из числителя всегда входят в ответ и изображаются закрашенными точками (так как в этих точках функция действительно обращается в ноль, что удовлетворяет условию).
  • А вот границы взятые из знаменателя в нестрогих неравенствах всегда изображаются выколотыми точками и в ответ никогда не входят (так как в этих точках в ноль обращается знаменатель, что недопустимо).
  • Во всех неравенствах если одна и та же скобка есть и в числителе и в знаменателе, то сокращать на эту скобку нельзя. Нужно изобразить соответствующую ей точку выколотой на оси, и не забыть исключить из ответа. При этом при чередовании знаков промежутков, проходя через эту точку знак менять не нужно.

Итак еще раз самое важное: при записи окончательного ответа в неравенствах не потеряйте отдельные точки, удовлетворяющие неравенству (это корни числителя в нестрогих неравенствах), и не забудьте исключить из ответа все корни знаменателя во всех неравенствах.

При решении рациональных неравенств более сложного вида чем указан выше, необходимо сначала алгебраическими преобразованиями свести их именно к такому виду, а затем применить метод интервалов с учетом всех уже описанных тонкостей. Таким образом, можно предложить следующий алгоритм для решения рациональных неравенств :

  1. Все слагаемые, дроби и другие выражения необходимо перенести в левую часть неравенства.
  2. При необходимости привести дроби к общему знаменателю.
  3. Разложить числитель и знаменатель полученной дроби на множители.
  4. Решить полученное неравенство методом интервалов.

При этом при решении рациональных неравенств не допускается :

  1. Перемножать дроби «крест-накрест».
  2. Как и в уравнениях, нельзя сокращать множители с переменной с обеих сторон неравенства. Если такие множители есть, то после переноса всех выражений в левую часть неравенства их нужно вынести за скобки, а затем учесть те точки которые они дадут после окончательного разложения полученного выражения на множители.
  3. Отдельно рассматривать числитель и знаменатель дроби.

Как и в остальных темах по математике, при решении рациональных неравенств можно применять метод замены переменной . Главное не забывать, что после введения замены, новое выражение должно стать проще и не содержать старой переменной. Кроме того, нужно не забывать выполнять обратную замену.

При решении систем рациональных неравенств нужно по очереди решить все неравенства входящие в систему. Система требует выполнения двух и более условий, причем мы ищем те значения неизвестной величины, которые удовлетворяют сразу всем условиям. Поэтому, в ответе системы неравенств нужно указать общие части всех решений отдельных неравенств (или общие части всех заштрихованных промежутков, изображающих ответы каждого отдельного неравенства).

При решении совокупностей рациональных неравенств также по очереди решают каждое из неравенств. Совокупность требует нахождения всех значений переменной, удовлетворяющих хотя бы одному из условий. То есть любому из условий, нескольким условиям или всем условиям вместе. В ответе совокупности неравенств указывают все части всех решений отдельных неравенств (или все части всех заштрихованных промежутков, изображающих ответы каждого отдельного неравенства).

Решение некоторых типов неравенств с модулями

Неравенства с модулями можно и нужно решать последовательно раскрывая модули на промежутках их знакопостоянства. Таким образом, нужно поступать примерно также как при решении уравнений с модулями (об этом ниже). Но есть несколько относительно простых случаев в которых решение неравенства с модулем сводится к более простому алгоритму. Так например, решение неравенства вида:

Сводится к решению системы :

В частности неравенство:

системой :

Ну а если в аналогичном неравенстве заменить знак "меньше" на "больше":

То его решение сводится уже к решению совокупности :

В частности неравенство:

Может быть заменено равносильной совокупностью :

Таким образом, необходимо запомнить, что для неравенства "модуль меньше" мы получаем систему, где должны одновременно выполняться оба условия, а для неравенства "модуль больше" мы получаем совокупность, в которой должно выполняться любое из условий.

При решении рациональных неравенств с модулем вида:

Целесообразно переходить к следующему равносильному рациональному неравенству без модуля:

Такое неравенство нельзя решать извлечением корня (если по-честному извлекать корень, то снова нужно поставить модули, и Вы вернетесь к началу, если про модули забыть, это равносильно тому, чтобы в самом начале про них просто забыть, а это, конечно, ошибка). Все скобки нужно перенести налево и, ни в коем случае не раскрывая скобки, применить формулу разности квадратов.

Еще раз повторимся, что для решения всех других типов неравенств с модулями кроме указанных выше нужно раскрывать все модули входящие в неравенство на промежутках их знакопостоянства и решать полученные неравенства. Напомним подробнее общий смысл этого алгоритма:

  • Сначала находим точки на числовой оси, в которых обращается в ноль каждое из выражений, стоящих под модулем.
  • Далее делим всю числовую ось на интервалы между полученными точками и исследуем знак каждого из подмодульных выражений на каждом интервале. Заметьте, что для определения знака выражения надо подставить в него любое значение переменной из интервала, кроме граничных точек. Выбирайте те значения переменной, которые легко подставлять.
  • Далее на каждом полученном интервале раскрываем все модули в исходном неравенстве в соответствии с их знаками на данном интервале и решаем полученное обычное рациональное неравенство с учетом всех правил и тонкостей решения обычных неравенств без модулей.
  • Решение каждого из неравенств полученных на конкретном промежутке объединяем в систему с самим промежутком, а все такие системы объединяем в совокупность. Таким образом из решений всех неравенств выбираем только те части которые вошли в промежуток, на котором было получено данное неравенство, и записываем все эти части в итоговый ответ.

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

А сегодня рациональные неравенства не все могут решать. Точнее, решать могут не только лишь все. Мало кто может это делать.
Кличко

Этот урок будет жёстким. Настолько жёстким, что до конца его дойдут лишь Избранные. Поэтому перед началом чтения рекомендую убрать от экранов женщин, кошек, беременных детей и...

Да ладно, на самом деле всё просто. Допустим, вы освоили метод интервалов (если не освоили — рекомендую вернуться и прочитать) и научились решать неравенства вида $P\left(x \right) \gt 0$, где $P\left(x \right)$ — какой-нибудь многочлен или произведение многочленов.

Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):

\[\begin{align} & \left(2{{x}^{2}}+3x+4 \right)\left(4x+25 \right) \gt 0; \\ & x\left(2{{x}^{2}}-3x-20 \right)\left(x-1 \right)\ge 0; \\ & \left(8x-{{x}^{4}} \right){{\left(x-5 \right)}^{6}}\le 0. \\ \end{align}\]

Теперь немного усложним задачу и рассмотрим не просто многочлены, а так называемые рациональные дроби вида:

где $P\left(x \right)$ и $Q\left(x \right)$ — всё те же многочлены вида ${{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{0}}$, либо произведение таких многочленов.

Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной $x$ в знаменателе. Например, вот это — рациональные неравенства:

\[\begin{align} & \frac{x-3}{x+7} \lt 0; \\ & \frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0; \\ & \frac{3{{x}^{2}}+10x+3}{{{\left(3-x \right)}^{2}}\left(4-{{x}^{2}} \right)}\ge 0. \\ \end{align}\]

А это — не рациональное, а самое обычное неравенство, которое решается методом интервалов:

\[\frac{{{x}^{2}}+6x+9}{5}\ge 0\]

Забегая вперёд, сразу скажу: существует как минимум два способа решения рациональных неравенств, но все они так или иначе сводятся к уже известному нам методу интервалов. Поэтому прежде чем разбирать эти способы, давайте вспомним старые факты, иначе толку от нового материла не будет никакого.

Что уже нужно знать

Важных фактов не бывает много. Действительно потребуются нам всего четыре.

Формулы сокращённого умножения

Да, да: они будут преследовать нас на протяжении всей школьной программы математики. И в университете тоже. Этих формул довольно много, но нам потребуются лишь следующие:

\[\begin{align} & {{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}; \\ & {{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right); \\ & {{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right); \\ & {{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right). \\ \end{align}\]

Обратите внимание на последние две формулы — это сумма и разность кубов (а не куб суммы или разности!). Их легко запомнить, если заметить, что знак в первой скобке совпадает со знаком в исходном выражении, а во второй — противоположен знаку исходного выражения.

Линейные уравнения

Это самые простые уравнения вида $ax+b=0$, где $a$ и $b$ — это обычные числа, причём $a\ne 0$. Такое уравнение решается просто:

\[\begin{align} & ax+b=0; \\ & ax=-b; \\ & x=-\frac{b}{a}. \\ \end{align}\]

Отмечу, что мы имеем право делить на коэффициент $a$, ведь $a\ne 0$. Это требование вполне логично, поскольку при $a=0$ мы получим вот что:

Во-первых, в этом уравнении нет переменной $x$. Это, вообще говоря, не должно нас смущать (такое случается, скажем, в геометрии, причём довольно часто), но всё же перед нами уже не линейное уравнение.

Во-вторых, решение этого уравнения зависит исключительно от коэффициента $b$. Если $b$ — тоже ноль, то наше уравнение имеет вид $0=0$. Данное равенство верно всегда; значит, $x$ — любое число (обычно это записывается так: $x\in \mathbb{R}$). Если же коэффициент $b$ не равен нулю, то равенство $b=0$ никогда не выполняется, т.е. ответов нет (записывается $x\in \varnothing $ и читается «множество решений пусто»).

Чтобы избежать всех этих сложностей, просто полагают $a\ne 0$, что нисколько не ограничивает нас в дальнейших размышлениях.

Квадратные уравнения

Напомню, что квадратным уравнением называется вот это:

Здесь слева многочлен второй степени, причём снова $a\ne 0$ (в противном случае вместо квадратного уравнения мы получим линейное). Решаются такие уравнения через дискриминант:

  1. Если $D \gt 0$, мы получим два различных корня;
  2. Если $D=0$, то корень будет один, но второй кратности (что это за кратность и как её учитывать — об этом чуть позже). Либо можно сказать, что уравнение имеет два одинаковых корня;
  3. При $D \lt 0$ корней вообще нет, а знак многочлена $a{{x}^{2}}+bx+c$ при любом $x$ совпадает со знаком коэффициента $a$. Это, кстати, очень полезный факт, о котором почему-то забывают рассказать на уроках алгебры.

Сами корни считаются по всем известной формуле:

\[{{x}_{1,2}}=\frac{-b\pm \sqrt{D}}{2a}\]

Отсюда, кстати, и ограничения на дискриминант. Ведь квадратный корень из отрицательного числа не существует. По поводу корней у многих учеников жуткая каша в голове, поэтому я специально записал целый урок: что такое корень в алгебре и как его считать — очень рекомендую почитать .:)

Действия с рациональными дробями

Всё, что было написано выше, вы и так знаете, если изучали метод интервалов. А вот то, что мы разберём сейчас, не имеет аналогов в прошлом — это совершенно новый факт.

Определение. Рациональная дробь — это выражение вида

\[\frac{P\left(x \right)}{Q\left(x \right)}\]

где $P\left(x \right)$ и $Q\left(x \right)$ — многочлены.

Очевидно, что из такой дроби легко получить неравенство — достаточно лишь приписать знак «больше» или «меньше» справа. И чуть дальше мы обнаружим, что решать такие задачи — одно удовольствие, там всё очень просто.

Проблемы начинаются тогда, когда в одном выражении находятся несколько таких дробей. Их приходится приводить к общему знаменателю — и именно в этот момент допускается большое количество обидных ошибок.

Поэтому для успешного решения рациональных уравнений необходимо твёрдо усвоить два навыка:

  1. Разложение многочлена $P\left(x \right)$ на множители;
  2. Собственно, приведение дробей к общему знаменателю.

Как разложить многочлен на множители? Очень просто. Пусть у нас есть многочлена вида

Приравниваем его к нулю. Получим уравнение $n$-й степени:

\[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}=0\]

Допустим, мы решили это уравнение и получили корни ${{x}_{1}},\ ...,\ {{x}_{n}}$ (не пугайтесь: в большинстве случаев этих корней будет не более двух). В таком случае наш исходный многочлен можно переписать так:

\[\begin{align} & P\left(x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}= \\ & ={{a}_{n}}\left(x-{{x}_{1}} \right)\cdot \left(x-{{x}_{2}} \right)\cdot ...\cdot \left(x-{{x}_{n}} \right) \end{align}\]

Вот и всё! Обратите внимание: старший коэффициент ${{a}_{n}}$ никуда не исчез — он будет отдельным множителем перед скобками, и при необходимости его можно внести в любую из этих скобок (практика показывает, что при ${{a}_{n}}\ne \pm 1$ среди корней почти всегда есть дроби).

Задача. Упростите выражение:

\[\frac{{{x}^{2}}+x-20}{x-4}-\frac{2{{x}^{2}}-5x+3}{2x-3}-\frac{4-8x-5{{x}^{2}}}{x+2}\]

Решение. Для начала посмотрим на знаменатели: все они — линейные двучлены, и раскладывать на множители тут нечего. Поэтому давайте разложим на множители числители:

\[\begin{align} & {{x}^{2}}+x-20=\left(x+5 \right)\left(x-4 \right); \\ & 2{{x}^{2}}-5x+3=2\left(x-\frac{3}{2} \right)\left(x-1 \right)=\left(2x-3 \right)\left(x-1 \right); \\ & 4-8x-5{{x}^{2}}=-5\left(x+2 \right)\left(x-\frac{2}{5} \right)=\left(x+2 \right)\left(2-5x \right). \\\end{align}\]

Обратите внимание: во втором многочлене старший коэффициент «2» в полном соответствии с нашей схемой сначала оказался перед скобкой, а затем был внесён в первую скобку, поскольку там вылезла дробь.

То же самое произошло и в третьем многочлене, только там ещё и порядок слагаемых перепутан. Однако коэффициент «−5» в итоге оказался внесён во вторую скобку (помните: вносить множитель можно в одну и только в одну скобку!), что избавило нас от неудобств, связанных с дробными корнями.

Что касается первого многочлена, там всё просто: его корни ищутся либо стандартно через дискриминант, либо по теореме Виета.

Вернёмся к исходному выражению и перепишем его с разложенными на множители числителями:

\[\begin{matrix} \frac{\left(x+5 \right)\left(x-4 \right)}{x-4}-\frac{\left(2x-3 \right)\left(x-1 \right)}{2x-3}-\frac{\left(x+2 \right)\left(2-5x \right)}{x+2}= \\ =\left(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end{matrix}\]

Ответ: $5x+4$.

Как видите, ничего сложного. Немного математики 7—8 класса — и всё. Смысл всех преобразований в том и состоит, чтобы получить из сложного и страшного выражения что-нибудь простое, с чем легко работать.

Однако так будет не всегда. Поэтому сейчас мы рассмотрим более серьёзную задачу.

Но сначала разберёмся с тем, как привести две дроби к общему знаменателю. Алгоритм предельно прост:

  1. Разложить на множители оба знаменателя;
  2. Рассмотреть первый знаменатель и добавить к нему множители, имеющиеся во втором знаменателе, однако отсутствующие в первом. Полученное произведение и будет общим знаменателем;
  3. Выяснить, каких множителей не хватает каждой из исходных дробей, чтобы знаменатели стали равны общему.

Возможно, этот алгоритм вам покажется просто текстом, в котором «много букв». Поэтому разберём всё на конкретном примере.

Задача. Упростите выражение:

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Решение. Такие объёмные задачи лучше решать по частям. Выпишем то, что стоит в первой скобке:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2}\]

В отличие от предыдущей задачи, тут со знаменателями всё не так просто. Разложим на множители каждый из них.

Квадратный трёхчлен ${{x}^{2}}+2x+4$ на множители не раскладывается, поскольку уравнение ${{x}^{2}}+2x+4=0$ не имеет корней (дискриминант отрицательный). Оставляем его без изменений.

Второй знаменатель — кубический многочлен ${{x}^{3}}-8$ — при внимательном рассмотрении является разностью кубов и легко раскладывается по формулам сокращённого умножения:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

Больше ничего разложить на множители нельзя, поскольку в первой скобке стоит линейный двучлен, а во второй — уже знакомая нам конструкция, которая не имеет действительных корней.

Наконец, третий знаменатель представляет собой линейный двучлен, который нельзя разложить. Таким образом, наше уравнение примет вид:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}\]

Совершенно очевидно, что общим знаменателем будет именно $\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)$, и для приведения к нему всех дробей необходимо первую дробь домножить на $\left(x-2 \right)$, а последнюю — на $\left({{x}^{2}}+2x+4 \right)$. Затем останется лишь привести подобные:

\[\begin{matrix} \frac{x\cdot \left(x-2 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1\cdot \left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{x\cdot \left(x-2 \right)+\left({{x}^{2}}+8 \right)-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}. \\ \end{matrix}\]

Обратите внимание на вторую строчку: когда знаменатель уже общий, т.е. вместо трёх отдельных дробей мы написали одну большую, не стоит сразу избавляться от скобок. Лучше напишите лишнюю строчку и отметьте, что, скажем, перед третьей дробью стоял минус — и он никуда не денется, а будет «висеть» в числителе перед скобкой. Это избавит вас от множества ошибок.

Ну и в последней строчке полезно разложить на множители числитель. Тем более что это точный квадрат, и нам на помощь вновь приходят формулы сокращённого умножения. Имеем:

\[\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь точно так же разберёмся со второй скобкой. Тут я просто напишу цепочку равенств:

\[\begin{matrix} \frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2\cdot \left(x+2 \right)}{\left(x-2 \right)\cdot \left(x+2 \right)}= \\ =\frac{{{x}^{2}}+2\cdot \left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}. \\ \end{matrix}\]

Возвращаемся к исходной задачи и смотрим на произведение:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: \[\frac{1}{x+2}\].

Смысл этой задачи такой же, как и у предыдущей: показать, насколько могут упрощаться рациональные выражения, если подойти к их преобразованию с умом.

И вот теперь, когда вы всё это знаете, давайте перейдём к основной теме сегодняшнего урока — решению дробно-рациональных неравенств. Тем более что после такой подготовки сами неравенства вы будете щёлкать как орешки.:)

Основной способ решения рациональных неравенств

Существует как минимум два подхода к решению рациональных неравенств. Сейчас мы рассмотрим один из них — тот, который является общепринятым в школьном курсе математики.

Но для начала отметим важную деталь. Все неравенства делятся на два типа:

  1. Строгие: $f\left(x \right) \gt 0$ или $f\left(x \right) \lt 0$;
  2. Нестрогие: $f\left(x \right)\ge 0$ или $f\left(x \right)\le 0$.

Неравенства второго типа легко сводятся к первому, а также уравнению:

Это небольшое «дополнение» $f\left(x \right)=0$ приводит к такой неприятной штуке как закрашенные точки — мы познакомились с ними ещё в методе интервалов. В остальном никаких отличий между строгими и нестрогими неравенствами нет, поэтому давайте разберём универсальный алгоритм:

  1. Собрать все ненулевые элементы с одной стороны от знака неравенства. Например, слева;
  2. Привести все дроби к общему знаменателю (если таких дробей окажется несколько), привести подобные. Затем по возможности разложить на числитель и знаменатель на множители. Так или иначе мы получим неравенство вида $\frac{P\left(x \right)}{Q\left(x \right)}\vee 0$, где «галочка» — знак неравенства.
  3. Приравниваем числитель к нулю: $P\left(x \right)=0$. Решаем это уравнение и получаем корни ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$, ... Затем требуем, чтобы знаменатель был не равен нулю: $Q\left(x \right)\ne 0$. Разумеется, по сути приходится решить уравнение $Q\left(x \right)=0$, и мы получим корни $x_{1}^{*}$, $x_{2}^{*}$, $x_{3}^{*}$, ... (в настоящих задачах таких корней вряд ли будет больше трёх).
  4. Отмечаем все эти корни (и со звёздочками, и без) на единой числовой прямой, причём корни без звёзд закрашены, а со звёздами — выколоты.
  5. Расставляем знаки «плюс» и «минус», выбираем те интервалы, которые нам нужны. Если неравенство имеет вид $f\left(x \right) \gt 0$, то в ответ пойдут интервалы, отмеченные «плюсом». Если $f\left(x \right) \lt 0$, то смотрим на интервалы с «минусами».

Практика показывает, что наибольшие трудности вызывают пункты 2 и 4 — грамотные преобразования и правильная расстановка чисел в порядке возрастания. Ну, и на последнем шаге будьте предельно внимательны: мы всегда расставляем знаки, опираясь на самое последнее неравенство, записанное перед переходом к уравнениям . Это универсальное правило, унаследованное ещё от метода интервалов.

Итак, схема есть. Давайте потренируемся.

Задача. Решите неравенство:

\[\frac{x-3}{x+7} \lt 0\]

Решение. Перед нами строгое неравенство вида $f\left(x \right) \lt 0$. Очевидно, пункты 1 и 2 из нашей схемы уже выполнены: все элементы неравенства собраны слева, к общему знаменателю ничего приводить не надо. Поэтому переходим сразу к третьему пункту.

Приравниваем к нулю числитель:

\[\begin{align} & x-3=0; \\ & x=3. \end{align}\]

И знаменатель:

\[\begin{align} & x+7=0; \\ & {{x}^{*}}=-7. \\ \end{align}\]

В этом месте многие залипают, ведь по идее нужно записать $x+7\ne 0$, как того требует ОДЗ (на ноль делить нельзя, вот это вот всё). Но ведь в дальнейшем мы будем выкалывать точки, пришедшие из знаменателя, поэтому лишний раз усложнять свои выкладки не стоит — пишите везде знак равенства и не парьтесь. Никто за это баллы не снизит.:)

Четвёртый пункт. Отмечаем полученные корни на числовой прямой:

Все точки выколоты, поскольку неравенство — строгое

Обратите внимание: все точки выколоты, поскольку исходное неравенство строгое . И тут уже неважно: из числителя эти точки пришли или из знаменателя.

Ну и смотрим знаки. Возьмём любое число ${{x}_{0}} \gt 3$. Например, ${{x}_{0}}=100$ (но с тем же успехом можно было взять ${{x}_{0}}=3,1$ или ${{x}_{0}}=1\ 000\ 000$). Получим:

Итак, справа от всех корней у нас положительная область. А при переходе через каждый корень знак меняется (так будет не всегда, но об это позже). Поэтому переходим к пятому пункту: расставляем знаки и выбираем нужное:

Возвращаемся к последнему неравенству, которое было перед решением уравнений. Собственно, оно совпадает с исходным, ведь никаких преобразований в этой задаче мы не выполняли.

Поскольку требуется решить неравенство вида $f\left(x \right) \lt 0$, я заштриховал интервал $x\in \left(-7;3 \right)$ — он единственный отмечен знаком «минус». Это и есть ответ.

Ответ: $x\in \left(-7;3 \right)$

Вот и всё! Разве сложно? Нет, не сложно. Правда, и задачка была лёгкая. Сейчас чуть усложним миссию и рассмотрим более «навороченное» неравенство. При его решении я уже не буду давать столь подробных выкладок — просто обозначу ключевые моменты. В общим, оформим его так, как оформляли бы на самостоятельной работе или экзамене.:)

Задача. Решите неравенство:

\[\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\ge 0$. Все ненулевые элементы собраны слева, разных знаменателей нет. Переходим к уравнениям.

Числитель:

\[\begin{align} & \left(7x+1 \right)\left(11x+2 \right)=0 \\ & 7x+1=0\Rightarrow {{x}_{1}}=-\frac{1}{7}; \\ & 11x+2=0\Rightarrow {{x}_{2}}=-\frac{2}{11}. \\ \end{align}\]

Знаменатель:

\[\begin{align} & 13x-4=0; \\ & 13x=4; \\ & {{x}^{*}}=\frac{4}{13}. \\ \end{align}\]

Не знаю, что за извращенец составлял эту задачу, но корни получились не очень: их будет трудно расставить на числовой прямой. И если с корнем ${{x}^{*}}={4}/{13}\;$ всё более-менее ясно (это единственное положительное число — оно будет справа), то ${{x}_{1}}=-{1}/{7}\;$ и ${{x}_{2}}=-{2}/{11}\;$ требуют дополнительного исследования: какое из них больше?

Выяснить это можно, например, так:

\[{{x}_{1}}=-\frac{1}{7}=-\frac{2}{14} \gt -\frac{2}{11}={{x}_{2}}\]

Надеюсь, не нужно объяснять, почему числовая дробь $-{2}/{14}\; \gt -{2}/{11}\;$? Если нужно, рекомендую вспомнить, как выполнять действия с дробями .

А мы отмечаем все три корня на числовой прямой:

Точки из числителя закрашены, из знаменателя — выколоты

Расставляем знаки. Например, можно взять ${{x}_{0}}=1$ и выяснить знак в этой точке:

\[\begin{align} & f\left(x \right)=\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}; \\ & f\left(1 \right)=\frac{\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right)}{13\cdot 1-4}=\frac{8\cdot 13}{9} \gt 0. \\\end{align}\]

Последним неравенством перед уравнениями было $f\left(x \right)\ge 0$, поэтому нас интересует знак «плюс».

Получили два множества: один — обычный отрезок, а другой — открытый луч на числовой прямой.

Ответ: $x\in \left[ -\frac{2}{11};-\frac{1}{7} \right]\bigcup \left(\frac{4}{13};+\infty \right)$

Важное замечание по поводу чисел, которые мы подставляем для выяснения знака на самом правом интервале. Совершенно необязательно подставлять число, близкое к самому правому корню. Можно брать миллиарды или даже «плюс-бесконечность» — в этом случае знак многочлена стоящего в скобке, числителе или знаменателе, определяется исключительно знаком старшего коэффициента.

Давайте ещё раз посмотрим на функцию $f\left(x \right)$ из последнего неравенства:

В её записи присутствуют три многочлена:

\[\begin{align} & {{P}_{1}}\left(x \right)=7x+1; \\ & {{P}_{2}}\left(x \right)=11x+2; \\ & Q\left(x \right)=13x-4. \end{align}\]

Все они являются линейными двучленами, и у всех старшие коэффициенты (числа 7, 11 и 13) положительны. Следовательно, при подстановке очень больших чисел сами многочлены тоже будут положительны.:)

Это правило может показаться чрезмерно сложным, но только поначалу, когда мы разбираем совсем лёгкие задачи. В серьёзных неравенствах подстановка «плюс-бесконечности» позволит нам выяснить знаки намного быстрее, нежели стандартное ${{x}_{0}}=100$.

Мы очень скоро столкнёмся с такими задачами. Но сначала разберём альтернативный способ решения дробно-рациональных неравенств.

Альтернативный способ

Этот приём мне подсказала одна из моих учениц. Сам я никогда им не пользовался, однако практика показала, что многим ученикам действительно удобнее решать неравенства именно таким способом.

Итак, исходные данные те же. Нужно решить дробно-рациональное неравенство:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\]

Давайте подумаем: чем многочлен $Q\left(x \right)$ «хуже» многочлена $P\left(x \right)$? Из-за чего нам приходится рассматривать отдельные группы корней (со звёздочкой и без), думать о выколотых точках и т.д.? Всё просто: у дроби есть область определения, согласной которой дробь имеет смысл только тогда, когда её знаменатель отличен от нуля.

В остальном никаких отличий между числителем и знаменателем не прослеживается: мы так же приравниваем его к нулю, ищем корни, затем отмечаем их на числовой прямой. Так почему бы не заменить дробную черту (фактически — знак деления) обычным умножением, а все требования ОДЗ прописать в виде отдельного неравенства? Например, так:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\Rightarrow \left\{ \begin{align} & P\left(x \right)\cdot Q\left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end{align} \right.\]

Обратите внимание: такой подход позволит свести задачу к методу интервалов, но при этом нисколько не усложнит решение. Ведь всё равно мы будем приравнивать многочлен $Q\left(x \right)$ к нулю.

Давайте посмотрим, как это работает на реальных задачах.

Задача. Решите неравенство:

\[\frac{x+8}{x-11} \gt 0\]

Решение. Итак, переходим к методу интервалов:

\[\frac{x+8}{x-11} \gt 0\Rightarrow \left\{ \begin{align} & \left(x+8 \right)\left(x-11 \right) \gt 0, \\ & x-11\ne 0. \\ \end{align} \right.\]

Первое неравенство решается элементарно. Просто приравниваем каждую скобку к нулю:

\[\begin{align} & x+8=0\Rightarrow {{x}_{1}}=-8; \\ & x-11=0\Rightarrow {{x}_{2}}=11. \\ \end{align}\]

Со вторым неравенством тоже всё просто:

Отмечаем точки ${{x}_{1}}$ и ${{x}_{2}}$ на числовой прямой. Все они выколоты, поскольку неравенство строгое:

Правая точка оказалась выколотой дважды. Это нормально.

Обратите внимание на точку $x=11$. Получается, что она «дважды выколота»: с одной стороны, мы выкалываем её из-за строгости неравенства, с другой — из-за дополнительного требования ОДЗ.

В любом случае, это будет просто выколотая точка. Поэтому расставляем знаки для неравенства $\left(x+8 \right)\left(x-11 \right) \gt 0$ — последнего, которое мы видели перед тем, как начали решать уравнения:

Нас интересуют положительные области, поскольку мы решаем неравенство вида $f\left(x \right) \gt 0$ — их и закрасим. Осталось лишь записать ответ.

Ответ. $x\in \left(-\infty ;-8 \right)\bigcup \left(11;+\infty \right)$

На примере этого решения хотел бы предостеречь вас от распространённой ошибки среди начинающих учеников. А именно: никогда не раскрывайте скобки в неравенствах! Наоборот, старайтесь всё разложить на множители — это упростит решение и избавит вас от множества проблем.

Теперь попробуем кое-что посложнее.

Задача. Решите неравенство:

\[\frac{\left(2x-13 \right)\left(12x-9 \right)}{15x+33}\le 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\le 0$, поэтому здесь нужно внимательно следить за закрашенными точками.

Переходим к методу интервалов:

\[\left\{ \begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)\le 0, \\ & 15x+33\ne 0. \\ \end{align} \right.\]

Переходим к уравнению:

\[\begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0 \\ & 2x-13=0\Rightarrow {{x}_{1}}=6,5; \\ & 12x-9=0\Rightarrow {{x}_{2}}=0,75; \\ & 15x+33=0\Rightarrow {{x}_{3}}=-2,2. \\ \end{align}\]

Учитываем дополнительное требование:

Отмечаем все полученные корни на числовой прямой:

Если точка одновременно и выколота, и закрашена, она считается выколотой

Опять две точки «накладываются» друг на друга — это нормально, так будет всегда. Важно лишь понимать, что точка, отмеченная одновременно выколотой и закрашенной, на самом деле является выколотой. Т.е. «выкалывание» — более сильное действие, чем «закрашивание».

Это абсолютно логично, ведь выкалыванием мы отмечаем точки, которые влияют на знак функции, но сами не участвуют в ответе. И если в какой-то момент число перестаёт нас устраивать (например, не попадает в ОДЗ), мы вычёркиваем его из рассмотрения до самого конца задачи.

В общем, хватит философствовать. Расставляем знаки и закрашиваем те интервалы, которые отмечены знаком «минус»:

Ответ. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

И снова хотел обратить ваше внимание вот на это уравнение:

\[\left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0\]

Ещё раз: никогда не раскрывайте скобки в таких уравнениях! Вы только усложните себе задачу. Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Следовательно, данное уравнение просто «разваливается» на несколько более мелких, которые мы и решали в предыдущей задаче.

Учёт кратности корней

Из предыдущих задач легко заметить, что наибольшую сложность представляют именно нестрогие неравенства, потому как в них приходится следить за закрашенными точками.

Но в мире есть ещё большее зло — это кратные корни в неравенствах. Тут уже приходится следить не за какими-то там закрашенными точками — тут знак неравенства может внезапно не поменяться при переходе через эти самые точки.

Ничего подобного мы в этом уроке ещё не рассматривали (хотя аналогичная проблема часто встречалась в методе интервалов). Поэтому введём новое определение:

Определение. Корень уравнения ${{\left(x-a \right)}^{n}}=0$ равен $x=a$ и называется корнем $n$-й кратности.

Собственно, нас не особо интересует точное значение кратности. Важно лишь то, чётным или нечётным является это самое число $n$. Потому что:

  1. Если $x=a$ — корень чётной кратности, то знак функции при переходе через него не меняется;
  2. И наоборот, если $x=a$ — корень нечётной кратности, то знак функции поменяется.

Частным случаем корня нечётной кратности являются все предыдущие задачи, рассмотренные в этом уроке: там везде кратность равна единице.

И ещё. Перед тем, как мы начнём решать задачи, хотел бы обратить ваше внимание на одну тонкость, которая покажется очевидной для опытного ученика, но вгоняет в ступор многих начинающих. А именно:

Корень кратности $n$ возникает только в том случае, когда в эту степень возводится всё выражение: ${{\left(x-a \right)}^{n}}$, а никак не $\left({{x}^{n}}-a \right)$.

Ещё раз: скобка ${{\left(x-a \right)}^{n}}$ даёт нам корень $x=a$ кратности $n$, а вот скобка $\left({{x}^{n}}-a \right)$ или, как часто бывает, $(a-{{x}^{n}})$ даёт нам корень (или два корня, если $n$ — чётное) первой кратности вне зависимости от того, чему равно $n$.

Сравните:

\[{{\left(x-3 \right)}^{5}}=0\Rightarrow x=3\left(5k \right)\]

Здесь всё чётко: вся скобка возводилась в пятую степень, поэтому на выходе мы получили корень пятой степени. А теперь:

\[\left({{x}^{2}}-4 \right)=0\Rightarrow {{x}^{2}}=4\Rightarrow x=\pm 2\]

Мы получили два корня, но оба они имеют первую кратность. Или вот ещё:

\[\left({{x}^{10}}-1024 \right)=0\Rightarrow {{x}^{10}}=1024\Rightarrow x=\pm 2\]

И пусть вас не смущает десятая степень. Главное, что 10 — это чётное число, поэтому на выходе имеем два корня, и оба они вновь имеют первую кратность.

В общем будьте внимательны: кратность возникает только тогда, когда степень относится ко всей скобке, а не только к переменной .

Задача. Решите неравенство:

\[\frac{{{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)}{{{\left(x+7 \right)}^{5}}}\ge 0\]

Решение. Попробуем решить её альтернативным способом — через переход от частного к произведению:

\[\left\{ \begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}\ge 0, \\ & {{\left(x+7 \right)}^{5}}\ne 0. \\ \end{align} \right.\]

Разбираемся с первым неравенством методом интервалов:

\[\begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}=0; \\ & {{x}^{2}}=0\Rightarrow x=0\left(2k \right); \\ & {{\left(6-x \right)}^{3}}=0\Rightarrow x=6\left(3k \right); \\ & x+4=0\Rightarrow x=-4; \\ & {{\left(x+7 \right)}^{5}}=0\Rightarrow x=-7\left(5k \right). \\ \end{align}\]

Дополнительно решаем второе неравенство. На самом деле мы уже решали его, но чтобы проверяющие не придрались к решению, лучше решить его ещё раз:

\[{{\left(x+7 \right)}^{5}}\ne 0\Rightarrow x\ne -7\]

Обратите внимание: никаких кратностей в последнем неравенстве нет. В самом деле: какая разница, сколько раз вычёркивать точку $x=-7$ на числовой прямой? Хоть один раз, хоть пять — результат будет один и тот же: выколотая точка.

Отметим всё, что мы получили, на числовой прямой:

Как я и говорил, точка $x=-7$ в итоге будет выколота. Кратности расставлены исходя из решения неравенства методом интервалов.

Осталось расставить знаки:

Поскольку точка $x=0$ является корнем чётной кратности, знак при переходе через неё не меняется. Остальные точки имеют нечётную кратность, и с ними всё просто.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left[ -4;6 \right]$

Ещё раз обратите внимание на $x=0$. Из-за чётной кратности возникает интересный эффект: слева от неё всё закрашено, справа — тоже, да и сама точка вполне себе закрашена.

Как следствие, её не нужно обособлять при записи ответа. Т.е. не надо писать что-нибудь в духе $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (хотя формально такой ответ тоже будет правильным). Вместо этого сразу пишем $x\in \left[ -4;6 \right]$.

Такие эффекты возможны только при корнях чётной кратности. И в следующей задаче мы столкнёмся с обратным «проявлением» этого эффекта. Готовы?

Задача. Решите неравенство:

\[\frac{{{\left(x-3 \right)}^{4}}\left(x-4 \right)}{{{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)}\ge 0\]

Решение. В этот раз пойдём по стандартной схеме. Приравниваем к нулю числитель:

\[\begin{align} & {{\left(x-3 \right)}^{4}}\left(x-4 \right)=0; \\ & {{\left(x-3 \right)}^{4}}=0\Rightarrow {{x}_{1}}=3\left(4k \right); \\ & x-4=0\Rightarrow {{x}_{2}}=4. \\ \end{align}\]

И знаменатель:

\[\begin{align} & {{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)=0; \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{1}^{*}=1\left(2k \right); \\ & 7x-10-{{x}^{2}}=0\Rightarrow x_{2}^{*}=5;\ x_{3}^{*}=2. \\ \end{align}\]

Поскольку мы решаем нестрогое неравенство вида $f\left(x \right)\ge 0$, корни из знаменателя (которые со звёздочками) будут выколоты, а из числителя — закрашены.

Расставляем знаки и штрихуем области, отмеченные «плюсом»:

Точка $x=3$ — изолированная. Это часть ответа

Перед тем, как записать окончательный ответ, внимательно посмотрим на картинку:

  1. Точка $x=1$ имеет чётную кратность, но сама выколота. Следовательно, её придётся обособить в ответе: нужно записать $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left(-\infty ;2 \right)$.
  2. Точка $x=3$ тоже имеет чётную кратность и при этом закрашена. Расстановка знаков свидетельствует, что сама точка нас устраивает, но шаг влево-вправо — и мы попадаем в область, которая нас точно не устраивает. Такие точки называются изолированными и записываются в виде $x\in \left\{ 3 \right\}$.

Объединяем все полученные кусочки в общее множество и записываем ответ.

Ответ: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;5 \right)$

Определение. Решить неравенство — значит найти множество всех его решений , либо доказать, что это множество пусто.

Казалось бы: что тут может быть непонятны? Да в том-то и дело, что множества можно задавать по-разному. Давайте ещё раз выпишем ответ к последней задаче:

Читаем буквально, что написано. Переменная «икс» принадлежит некому множеству, которое получается объединением (значок «U») четырёх отдельных множеств:

  • Интервал $\left(-\infty ;1 \right)$, который буквально означает «все числа, меньшие единицы, но не сама единица»;
  • Интервал $\left(1;2 \right)$, т.е. «все числа в пределах от 1 до 2, но не сами числа 1 и 2»;
  • Множество $\left\{ 3 \right\}$, состоящее из одного-единственного числа — тройки;
  • Интервал $\left[ 4;5 \right)$, содержащий все числа в пределах от 4 до 5, а также саму четвёрку, но не пятёрку.

Интерес здесь представляет третий пункт. В отличие от интервалов, которые задают бесконечные наборы чисел и лишь обозначают лишь границы этих наборов, множество $\left\{ 3 \right\}$ задаёт строго одно число путём перечисления.

Чтобы понять, что мы именно перечисляем конкретные числа, входящие в множество (а не задаём границы или что-либо ещё), используются фигурные скобки. Например, запись $\left\{ 1;2 \right\}$ означает именно «множество, состоящее из двух чисел: 1 и 2», но никак не отрезок от 1 до 2. Ни в коем случае не путайте эти понятия.

Правило сложения кратностей

Ну и в заключение сегодняшнего урока немного жести от Павла Бердова.:)

Внимательные ученики уже наверняка задались вопросом: а что будет, если в числителе и знаменателе обнаружатся одинаковые корни? Так вот, работает следующее правило:

Кратности одинаковых корней складываются. Всегда. Даже если этот корень встречается и в числителе, и в знаменателе.

Иногда лучше решать, чем говорить. Поэтому решаем следующую задачу:

Задача. Решите неравенство:

\[\frac{{{x}^{2}}+6x+8}{\left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)}\ge 0\]

\[\begin{align} & {{x}^{2}}+6x+8=0 \\ & {{x}_{1}}=-2;\ {{x}_{2}}=-4. \\ \end{align}\]

Пока ничего особенного. Приравниваем к нулю знаменатель:

\[\begin{align} & \left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)=0 \\ & {{x}^{2}}-16=0\Rightarrow x_{1}^{*}=4;\ x_{2}^{*}=-4; \\ & {{x}^{2}}+9x+14=0\Rightarrow x_{3}^{*}=-7;\ x_{4}^{*}=-2. \\ \end{align}\]

Обнаружены два одинаковых корня: ${{x}_{1}}=-2$ и $x_{4}^{*}=-2$. Оба имеют первую кратность. Следовательно заменяем их одним корнем $x_{4}^{*}=-2$, но уже с кратностью 1+1=2.

Кроме того, есть ещё одинаковые корни: ${{x}_{2}}=-4$ и $x_{2}^{*}=-4$. Они тоже первой кратности, поэтому останется лишь $x_{2}^{*}=-4$ кратности 1+1=2.

Обратите внимание: в обоих случаях мы оставили именно «выколотый» корень, а «закрашенный» выкинули из рассмотрения. Потому что ещё в начале урока договорились: если точка одновременно и выколотая, и закрашенная, то мы всё равно считаем её выколотой.

В итоге у нас есть четыре корня, причём все оказались выколоты:

\[\begin{align} & x_{1}^{*}=4; \\ & x_{2}^{*}=-4\left(2k \right); \\ & x_{3}^{*}=-7; \\ & x_{4}^{*}=-2\left(2k \right). \\ \end{align}\]

Отмечаем их на числовой прямой с учётом кратности:

Расставляем знаки и закрашиваем интересующие нас области:

Всё. Никаких изолированных точек и прочих извращений. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

Правило умножения кратностей

Иногда встречается ещё более неприятная ситуация: уравнение, имеющее кратные корни, само возводится в некоторую степень. При этом меняются кратности всех исходных корней.

Такое встречается редко, поэтому большинство учеников не имеют опыта решения подобных задач. А правило здесь следующее:

При возведении уравнения в степень $n$ кратности всех его корней тоже увеличиваются в $n$ раз.

Другими словами, возведение в степень приводит к умножению кратностей на эту же степень. Рассмотрим это правило на примере:

Задача. Решите неравенство:

\[\frac{x{{\left({{x}^{2}}-6x+9 \right)}^{2}}{{\left(x-4 \right)}^{5}}}{{{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}}\le 0\]

Решение. Приравниваем к нулю числитель:

Произведение равно нулю, когда хотя бы один из множителей равен нулю. С первым множителем всё понятно: $x=0$. А вот дальше начинаются проблемы:

\[\begin{align} & {{\left({{x}^{2}}-6x+9 \right)}^{2}}=0; \\ & {{x}^{2}}-6x+9=0\left(2k \right); \\ & D={{6}^{3}}-4\cdot 9=0 \\ & {{x}_{2}}=3\left(2k \right)\left(2k \right) \\ & {{x}_{2}}=3\left(4k \right) \\ \end{align}\]

Как видим, уравнение ${{x}^{2}}-6x+9=0$ имеет единственный корень второй кратности: $x=3$. Затем всё это уравнение возводится в квадрат. Следовательно, кратность корня составит $2\cdot 2=4$, что мы в итоге и записали.

\[{{\left(x-4 \right)}^{5}}=0\Rightarrow x=4\left(5k \right)\]

Со знаменателем тоже никаких проблем:

\[\begin{align} & {{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}=0; \\ & {{\left(2-x \right)}^{3}}=0\Rightarrow x_{1}^{*}=2\left(3k \right); \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{2}^{*}=1\left(2k \right). \\ \end{align}\]

В сумме у нас получилось пять точек: две выколотых и три закрашенных. Совпадающих корней в числителе и знаменателе не наблюдается, поэтому просто отмечаем их на числовой прямой:

Расставляем знаки с учётом кратностей и закрашиваем интересующие нас интервалы:

Снова одна изолированная точка и одна выколотая

Из-за корней чётной кратности вновь получили парочку «нестандартных» элементов. Это $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left[ 0;2 \right)$, а также изолированная точка $x\in \left\{ 3 \right\}$.

Ответ. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;+\infty \right)$

Как видите, всё не так сложно. Главное — внимательность. Последний раздел этого урока посвящён преобразованиям — тем самым, которые мы обсуждали в самом начале.

Предварительные преобразования

Неравенства, которые мы разберём в этом разделе, нельзя назвать сложными. Однако в отличие от предыдущих задач здесь придётся применить навыки из теории рациональных дробей — разложение на множители и приведение к общему знаменателю.

Мы детально обсуждали этот вопрос в самом начале сегодняшнего урока. Если вы не уверены, что понимаете, о чём речь — настоятельно рекомендую вернуться и повторить. Потому что нет никакого смысла зубрить методы решения неравенств, если вы «плаваете» в преобразовании дробей.

В домашней работе, кстати, тоже будет много подобных задач. Они вынесены в отдельный подраздел. И там вас ждут весьма нетривиальные примеры. Но это будет в домашке, а сейчас давайте разберём парочку таких неравенств.

Задача. Решите неравенство:

\[\frac{x}{x-1}\le \frac{x-2}{x}\]

Решение. Переносим всё влево:

\[\frac{x}{x-1}-\frac{x-2}{x}\le 0\]

Приводим к общему знаменателю, раскрываем скобки, приводим подобные слагаемые в числителе:

\[\begin{align} & \frac{x\cdot x}{\left(x-1 \right)\cdot x}-\frac{\left(x-2 \right)\left(x-1 \right)}{x\cdot \left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-\left({{x}^{2}}-2x-x+2 \right)}{x\left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-{{x}^{2}}+3x-2}{x\left(x-1 \right)}\le 0; \\ & \frac{3x-2}{x\left(x-1 \right)}\le 0. \\\end{align}\]

Теперь перед нами классическое дробно-рациональное неравенство, решение которого уже не представляет трудности. Предлагаю решить его альтернативным методом — через метод интервалов:

\[\begin{align} & \left(3x-2 \right)\cdot x\cdot \left(x-1 \right)=0; \\ & {{x}_{1}}=\frac{2}{3};\ {{x}_{2}}=0;\ {{x}_{3}}=1. \\ \end{align}\]

Не забываем ограничение, пришедшее из знаменателя:

Отмечаем все числа и ограничения на числовой прямой:

Все корни имеют первую кратность. Никаких проблем. Просто расставляем знаки и закрашиваем нужные нам области:

Это всё. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;0 \right)\bigcup \left[ {2}/{3}\;;1 \right)$.

Разумеется, это был совсем уж просто пример. Поэтому сейчас рассмотрим задачу посерьёзнее. И кстати, уровень этой задачи вполне соответствует самостоятельным и контрольным работам по этой теме в 8 классе.

Задача. Решите неравенство:

\[\frac{1}{{{x}^{2}}+8x-9}\ge \frac{1}{3{{x}^{2}}-5x+2}\]

Решение. Переносим всё влево:

\[\frac{1}{{{x}^{2}}+8x-9}-\frac{1}{3{{x}^{2}}-5x+2}\ge 0\]

Перед тем как приводить обе дроби к общему знаменателю, разложим эти знаменатели на множители. Вдруг вылезут одинаковы скобки? С первым знаменателем легко:

\[{{x}^{2}}+8x-9=\left(x-1 \right)\left(x+9 \right)\]

Со вторым чуть сложнее. Не стесняйтесь вносить множитель-константу в ту скобку, где обнаружилась дробь. Помните: исходный многочлен имел целые коэффициенты, поэтому велика вероятность, что и разложение на множители будет иметь целые коэффициенты (на самом деле так будет всегда, за исключением случаев, когда дискриминант иррационален).

\[\begin{align} & 3{{x}^{2}}-5x+2=3\left(x-1 \right)\left(x-\frac{2}{3} \right)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end{align}\]

Как видим, есть общая скобка: $\left(x-1 \right)$. Возвращаемся к неравенству и приводим обе дроби к общему знаменателю:

\[\begin{align} & \frac{1}{\left(x-1 \right)\left(x+9 \right)}-\frac{1}{\left(x-1 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right)}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{3x-2-x-9}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{2x-11}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ \end{align}\]

Приравниваем к нулю знаменатель:

\[\begin{align} & \left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)=0; \\ & x_{1}^{*}=1;\ x_{2}^{*}=-9;\ x_{3}^{*}=\frac{2}{3} \\ \end{align}\]

Никаких кратностей и совпадающих корней. Отмечаем четыре числа на прямой:

Расставляем знаки:

Записываем ответ.

Ответ: $x\in \left(-\infty ;-9 \right)\bigcup \left({2}/{3}\;;1 \right)\bigcup \left[ 5,5;+\infty \right)$.

Похожие публикации