Солнечный ветер определение. Что из себя представляет Солнечный ветер? Где стихает солнечный ветер


Солнечный ветер

- непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрич. расстояний ~100 а.е. С.в. образуется при газодинамич. расширении в межпланетное пространство. При высоких темп-рах, к-рые существуют в солнечной короне ( К), давление вышележащих слоев не может уравновесить газовое давление вещества короны, и корона расширяется.

Первые свидетельства существования постоянного потока плазмы от Солнца получены Л. Бирманом (ФРГ) в 1950-х гг. по анализу сил, действующих на плазменные хвосты комет. В 1957 г. Ю. Паркер (США), анализируя условия равновесия вещества короны, показал, что корона не может находится в условиях гидростатич. равновесия, как это раньше предполагалось, а должна расширятся, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей.

Средние характеристики С.в. приведены в табл. 1. Впервые поток плазмы солнечного происхождения был зарегистрирован на второй советской космич. ракете "Луна-2" в 1959 г. Существование постоянного истечения плазмы из Солнца было доказано в реузльтате многомесячных измерений на амер. АМС "Маринер-2" в 1962 г.

Таблица 1. Средние характеристики солнечного ветра на орбите Земли

Скорость 400 км/с
Плотность протонов 6 см -3
Температура протонов К
Температура электронов К
Напряженность магнитного поля Э
Плотность потока протонов см -2 с -1
Плотность потока кинетической энергии 0,3 эргсм -2 с -1

Потоки С.в. можно разделить на два класса: медленные - со скоростью км/с и быстрые - со скоростью 600-700 км/с. Быстрые потоки исходят из тех областей короны, где магнитное поле близко к радиальному. Часть этих областей явл. . Медленные потоки С.в. связаны, по-видимому, с областями короны, где имеется значит. тангенсальный компонент магн. поля.

Помимо основных составляющих С.в. - протонов и электронов, в его составе также обнаружена -частицы, высокоионизованные ионы кислорода, кремния, серы, железа (рис. 1). При анализе газов, захваченных в экспонированных на Луне фольгах, найдены атомы Ne и Ar. Средний хим. состав С.в. приведен в табл. 2.

Таблица 2. Относительный химический состав солнечного ветра

Элемент Относительное
содержание
H 0,96
3 He
4 He 0,04
O
Ne
Si
Ar
Fe

Ионизац. состояние вещества С.в. соответствует тому уровню в короне, где время рекомбинации становится малым по сравнению со временем расширения, т.е. на расстоянии . Измерения ионизац. темп-ры ионов С.в. позволяют определять электронную темп-ру солнечной короны.

С.в. уносит с собой в межпланетную среду корональное магн. поле. Вмороженные в плазму силовые линии этого поля образуют межпланетное магн. поле (ММП). Хотя напряженность ММП невелика и плотность его энергии составляет ок. 1% от кинетич. энергии С.в., оно играет большую роль в термодинамике С.в. и в динамике взаимодействий С.в. с телами Солнечной системы и потоков С.в. между собой. Комбинация расширения С.в. с вращением Солнца приводит к тому, что магн. силовые лионии, вмороженные в С.в., имеют форму, близкую к спиралям Архимеда (рис. 2). Радиальный и азимутальный компонент магн. поля вблизи плоскости эклиптики изменяются с расстоянием:
,
где R - гелиоцентрич. расстояние, - угловая скорость вращения Солнца, u R - радиальный компонент скорости С.в., индекс "0" соответствует исходному уровню. На расстоянии орбиты Земли угол между направлениями магн. поля и направлением на Солнце , на больших гелиоцентрич. расстояниях ММП почти перпендикулярно направлению на Солнце.

С.в., возникающий над областями Солнца с различной ориентацией магн. поля, образует потоки в различно ориентированными ММП - т.н. межпланетного магнитного поля.

В С.в. наблюдаются различные типы волн: ленгмюровские, вистлеры, ионнозвуковые, магнитозвуковые, и др. (см. ). Часть волн генерируется на Солнце, часть возбуждается в межпланетной среде. Генерация волн сглаживает отклонения функции распределения частиц от максвелловской и приводит к тому, что С.в. ведет себя как сплошная среда. Волны альвеновского типа играют большую роль в ускорении малых составляющих С.в. и в формировании функции распределения протонов. В С.в. наблюдаются также контактные и вращательные разрывы, харатерные для замагниченной плазмы.

Поток С.в. явл. сверхзвуковым по отношению к скорости тех типов волн, к-рые обеспечивают эффективную передачу энергии в С.в. (альвеновские, звуковые и магнитозвуковые волны), альвеновские и звуковые числа Маха С.в. на орбите Земли . При обтрекании С.в. препятствий, способных эффективно отклонять С.в. (магн. поля Меркурия, Земли, Юпитера, Стаурна или проводящие ионосферы Венеры и, по-видимому, Марса), образуется головная отошедшая ударная волна. С.в. тормозится и разогревается на фронте ударной волны, что позволяет ему обтекать препятствие. При этом в С.в. формируется полость - магнитосфера (собственная или индуцированная), форма и размер к-рой определяется балансом давлентия магн. поля планеты и давления обтекающего потока плазмы (см. ). Слой разогретой плазмы между ударной волной и обтекаемым препятствием наз. переходной областью. Темп-ры ионов на фронте ударной волны могут увеличиваться в 10-20 раз, электронов - в 1,5-2 раза. Ударная волна явл. , термализация потока к-ой обеспечивается коллективными плазменными процессами. Толщина фронта ударной волны ~100 км и определяется скоростью нарастания (магнитозвуковой и/или нижнегибридной) при взаимодействии набегающего потока и части потока ионов, отраженного от фронта. В случае взаимодействия С.в. с непроводящим телом (Луна) ударная волна не возникает: поток плазмы поглощается поверхностью, а за телом образуется постепенно заполняемая плазмой С.в. полость.

На стационарный процесс истечения плазмы короны накладываются нестационарные процессы, связанные со . При сильных солнечных вспышках происходит выброс вещества из нижних областей короны в межпланетную среду. При этом также образуется ударная волна (рис. 3), к-рая постепенно замедляется при движении через плазму С.в. Приход ударной волны к Земле проводит к сжатию магнитосферы, после к-рого обычно начинается развитие магн. бури.

Ур-ние, описывающее расширение солнечной короны, можно получить из системы ур-ний сохранения массы и момента количества движения. Решения этого ур-ния, описывающие различный характер изменения скорости с расстоянием, показаны на рис. 4. Решения 1 и 2 соответствуют малым скоростям в основании короны. Выбор между этими двумя решениями определяется условиями на бесконечности. Решение 1 соответствует малым скоростям расширения короны ("солнечный бриз", по Дж. Чемберлену, США) и дает большие значения давления на бесконечности, т.е. встречается с теми же трудностями, что и модель статич. короны. Решение 2 соответствует переходу скорости расширения через значение скорости звука (v K ) на нек-ром критич. расстоянии R K и последующему расширению со сверхзвуковой скоростью. Это решение дает исчезающе малое значение давления на бесконечности, что позволяет согласовать его с малым давлением межзвездной среды. Течение этого типа Паркер назвал солнечным ветром. Критич. точка находится над поверхностью Солнца, если темп-ра короны меньше нек-рого критич. значения , где m - масса протона, - показатель адиабаты. На рис. 5 показано изменение скорости расширения с гелиоцентрич. расстоянием в зависимости от темп-ры изотермич. изотропной короны. Последующие модели С.в. учитывают вариации корональной темп-ры с расстоянием, двухжидкостный хапрактер среды (электронный и протонный газы), теплопроводность, вязкость, несферический характер расширения. Подход к веществу С.в. как к сплошной среде оправдывается наличием ММП и коллективным характером взаимодействия плазмы С.в., обусловленным различного типа неустойчивостями. С.в. обеспечивает осн. отток тепловой энергии короны, т.к. теплопередача в хромосферу, электромагнит. излучение сильно ионизованного вещества короны и электронная теплопроводность С.в. недостаточны для установления термич. баланса короны. Электронная теплопроводность обеспечивает медленное убывание темп-ры С.в. с расстоянием. С.в. не играет сколько-нибудь заметной роли в энергетике Солнца в целом, т.к. поток энергии, уносимый им составляет ~ 10 -8

Понятие солнечный ветер было введено в астрономию в конце 40-х годов 20–го ст., когда американский астроном С. Форбуш, измеряя интенсивность космических лучей, заметил, что она значительно снижается при возрастании солнечной активности и совсем резко падает во время .

Это представлялось довольно странным. Скорее, можно было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше, активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на таким образом, что оно начинает отклонять частицы космических лучей – отбрасывать их.

Тогда-то и возникло предположение, что виновниками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и пронизывающие пространство солнечной системы. Этот своеобразный солнечный ветер и очищает межпланетную среду, "выметая" из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в . Как известно, кометные хвосты всегда направлены от Солнца. Вначале это обстоятельство связывали со световым давлением солнечных лучей. Однако было установлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты показали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц – корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Но кометные хвосты направлены в противоположную от Солнца сторону всегда, а не только в периоды усиления . Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возрастанием солнечной активности, но существует всегда.

Таким образом, солнечный ветер непрерывно обдувает околосолнечное пространство. Из чего же состоит этот солнечный ветер, и при каких условиях он возникает?

Самый внешний слой солнечной атмосферы – "корона". Эта часть, атмосферы нашего дневного светила необычайно разрежена. Но так называемая "кинетическая температура" короны, определяемая по скорости движения частиц, весьма велика. Она достигает миллиона градусов. Поэтому корональвый газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных электронов.

Недавно появилось сообщение о том, что солнечный ветер имеет в своем составе ионы гелия. Это обстоятельство проливает свет на тот механизм, с помощью которого происходит выброс заряженных частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее протонов и поэтому маловероятно, чтобы они могли выбрасываться вследствие испарения. Скорее всего, образование солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным "цементом", который "скрепляет" воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астрономами, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. Другими словами, наша планета находится внутри солнечной атмосферы.

Если вблизи Солнца корона более или менее стабильна, то по мере увеличения расстояния она стремится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже на расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость .

Таким образом, напрашивается вывод о том, что солнечная корона – это и есть солнечный ветер, обдувающий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтверждены измерениями на космических ракетах и искусственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли – "дует" со скоростью около 400 км/сек.

Как далеко дует солнечный ветер? При теоретических соображениях в одном случае получается, что солнечный ветер затихает уже в районе орбиты , в другом, – что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Можно использовать не только как движитель космических парусников, но и как источник энергии. Наиболее известное применение солнечного ветра в этом качестве было впервые предложено Фрименом Дайсоном (Freeman Dyson), предположившим, что высокоразвитой цивилизации по силам создание сферы вокруг звезды, которая бы собирала всю испускаемую ею энергию. Исходя из этого так же был предложен очередной метод поиска внеземных цивилизаций.

Между тем, коллективом исследователей Вашингтонского университета (Washington State University) под руководством Брукса Харропа (Brooks Harrop) была предложена более практичная концепция использования энергии солнечного ветра - спутники Дайсона-Харропа. Они представляют собой довольно простые электростанции, собирающие электроны из солнечного ветра. На длинный металлический стержень, направленный на Солнце, подается напряжение для генерации магнитного поля, которое будет притягивать электроны. На другом конце располагается приемник-ловушка электронов, состоящая из паруса и приемника.

По расчетам Харропа, спутник с 300-метровым стержнем, толщиной 1 см и 10-метровой ловушкой, на орбите Земли сможет «собирать» до 1,7 МВт. Этого достаточно для обеспечения энергией примерно 1000 частных домов. Тот же спутник, но уже с километровым стержнем и парусом в 8400 километров сможет «собирать» уже 1 миллиард миллиардов гигаватт энергии (10 27 Вт). Остается только передать эту энергию на Землю, чтобы отказаться от всех остальных ее видов.

Команда Харропа предлагает передавать энергию с помощью лазерного луча. Однако, если конструкция самого спутника довольно проста и вполне реализуема на современном уровне технологий, то создание лазерного «кабеля» пока технически невозможно. Дело в том, что для эффективного сбора солнечного ветра спутник Дайсона-Харропа должен лежать вне плоскости эклиптики, а значит находится в миллионах километров от Земли. На таком расстоянии луч лазера будет давать пятно, диаметром в тысячи километров. Адекватная же фокусирующая система потребует объектив от 10 до 100 метров в диаметре. Кроме этого, нельзя исключать многие опасности от возможных сбоев системы. С другой стороны, энергия требуется и в самом космосе, и небольшие спутники Дайсона-Харропа вполне могут стать ее основным источником, заменив солнечные батареи и ядерные реакторы.

Постоянный радиальный поток плазмы солн. короны в межпланетное пр-во. Поток энергии, идущий из недр Солнца, нагревает плазму короны до 1,5- 2 млн. К. Пост. нагрев не уравновешивается потерей энергии за счёт излучения, т. к. короны мала. Избыточную энергию в значит. степени уносят ч-цы С. в. (=1027-1029 эрг/с). Корона, т. о., не находится в гидростатич. равновесии, она непрерывно расширяется. По составу С. в. не отличается от плазмы короны (С. в. содержит гл. обр. протоны, эл-ны, немного ядер гелия, ионов кислорода, кремния, серы, железа). У основания короны (в 10 тыс. км от фотосферы Солнца) ч-цы имеют радиальную порядка сотен м/с, на расстоянии неск. солн. радиусов она достигает скорости звука в плазме (100 -150 км/с), у орбиты Земли скорость протонов составляет 300-750 км/с, а их пространств. - от неск. ч-ц до неск. десятков ч-ц в 1 см3. При помощи межпланетных косм. станций установлено, что вплоть до орбиты Сатурна плотность потока ч-ц С. в. убывает по закону (r0/r)2, где r - расстояние от Солнца, r0 - исходный уровень. С. в. уносит с собой петли силовых линий солн. магн. поля, к-рые образуют межпланетное магн. . Сочетание радиального движения ч-ц С. в. с вращением Солнца придаёт этим линиям форму спиралей. Крупномасштабная структура магн. поля в окрестностях Солнца имеет вид секторов, в к-рых поле направлено от Солнца или к нему. Размер полости, занятой С. в., точно не известен (радиус её, по-видимому, не меньше 100 а. е.). У границ этой полости динамич. С. в. должно уравновешиваться давлением межзвёздного газа, галактич. магн. поля и галактич. косм. лучей. В окрестностях Земли столкновение потока ч-ц С. в. с геомагн. полем порождает стационарную ударную волну перед земной магнитосферой (со стороны Солнца, рис.).

С. в. как бы обтекает магнитосферу, ограничивая её протяжённость в пр-ве. Изменения интенсивности С. в., связанные со вспышками на Солнце, явл. осн. причиной возмущений геомагн. поля и магнитосферы (магн. бурь).

За Солнце теряет с С. в. =2X10-14 часть своей массы Mсолн. Естественно считать, что истечение в-ва, подобное С. в., существует и у др. звёзд (« »). Он должен быть особенно интенсивным у массивных звёзд (с массой = неск. дес. Mсолн) и с высокой темп-рой поверхности (= 30-50 тыс. К) и у звёзд с протяжённой атмосферой (красных гигантов), т. к. в первом случае ч-цы сильно развитой звёздной короны обладают достаточно высокой энергией, чтобы преодолеть притяжение звезды, а во втором - низка параболич. скорость (скорость ускользания; (см. КОСМИЧЕСКИЕ СКОРОСТИ)). Значит. потери массы со звёздным ветром (= 10-6 Мсолн/год и больше) могут существенно влиять на эволюцию звёзд. В свою очередь звёздный ветер создаёт в межзвёздной среде «пузыри» горячего газа - источники рентг. излучения.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СОЛНЕЧНЫЙ ВЕТЕР - непрерывный поток плазмы солнечного происхождения, Солнце)в межпланетноепространство. При высоких темп-pax, к-рые существуют в солнечной короне(1,5*10 9 К), давление вышележащих слоев не может уравновесить газовое давление веществакороны, и корона расширяется.

Первые свидетельства существования пост. потока плазмы от Солнца полученыЛ. Бирманом (L. Biermann) в 1950-х гг. по анализу сил, действующих на плазменныехвосты комет. В 1957 Ю. Паркер (Е. Parker), анализируя условия равновесиявещества короны, показал, что корона не может находиться в условиях гидростатич. Ср. характеристики С. в. приведены в табл. 1. Потоки С. в. можно разделитьна два класса: медленные - со скоростью 300 км/с и быстрые - со скоростью 600-700 км/с. Быстрые потоки исходятиз областей солнечной короны, где структура магн. поля близка к радиальной. корональными дырами. Медленные потокиС. в. связаны, по-видимому, с областями короны, в к-рых имеется значит, Табл. 1.- Средние характеристики солнечного ветра на орбите Земли

Скорость

Концентрация протонов

Температура протонов

Температура электронов

Напряжённость магнитного поля

Плотность потока питонов....

2,4*10 8 см -2 *c -1

Плотность потока кинетической энергии

0,3 эрг*см -2 *с -1

Табл. 2.- Относительный химический состав солнечного ветра

Относительное содержание

Относительное содержание

Помимо осн. составляющих С. в.- протонов и электронов, в его составетакже обнаружены -частицы, Измерения ионизац. темп-ры ионов С. в. позволяют определять электроннуютемп-ру солнечной короны.

В С. в. наблюдаются разл. типы волн: ленгмюровские, вистлеры, ионно-звуковые, Волны в плазме). Частьволн альвеновского типа генерируется на Солнце, часть - возбуждается вмежпланетной среде. Генерация волн сглаживает отклонения ф-ции распределениячастиц от максвелловской и в совокупности с воздействием магн. поля наплазму приводит к тому, что С. в. ведёт себя как сплошная среда. Волныальвеновского типа играют большую роль в ускорении малых составляющих С.

Рис. 1. Массовый солнечного ветра. По горизонтальной оси -отношение массы частицы к её заряду, по вертикальной - число частиц, зарегистрированныхв энергетическом окне прибора за 10 с. Цифры со значком «+» обозначаютзаряд иона.

Поток С. в. является сверхзвуковым по отношению к скоростям тех типовволн, к-рые обеспечивают эфф. передачу энергии в С. в. (альвеновские, звуковыеи ). Альвеновское и звуковое Маха число С. в. 7. При обтекании С. в. препятствий, способных эффективно отклонять его(магн. поля Меркурия, Земли, Юпитера, Сатурна или проводящие ионосферыВенеры и, по-видимому, Марса), образуется отошедшая головная ударная волна. волны, что позволяетему обтекать препятствие. При этом в С. в. формируется полость - магнитосфера(собственная или индуцированная), форма и размеры к-рой определяются балансомдавления магн. поля планеты и давления обтекающего потока плазмы (см. МагнитосфераЗемли, Магнитосферы планет). В случае взаимодействия С. в. с непроводящимтелом (напр., Луна) ударная волна не возникает. Поток плазмы поглощаетсяповерхностью, а за телом образуется полость, постепенно заполняемая плазмойС. в.

На стационарный процесс истечения плазмы короны накладываются нестационарныепроцессы, связанные со вспышками на Солнце. При сильных вспышкахпроисходит выброс вещества из ниж. областей короны в межпланетную среду. Магнитныевариации).

Рис. 2. Распространение межпланетной ударней волны и выброса от солнечнойвспышки. Стрелками показано направление движения плазмы солнечного ветра,

Рис. 3. Типы решений уравнения расширения короны. Скорость и расстояниенормированы на критическую скорость v к и критическое расстояниеR к. Решение 2 соответствует солнечному ветру.

Расширение солнечной короны описывается системой ур-ний сохранения массы, v к)на нек-ром критич. расстоянии R к и последующемурасширению со сверхзвуковой скоростью. Это решение даёт исчезающе малоезначение давления на бесконечности, что позволяет согласовать его с малымдавлением межзвёздной среды. Течение этого типа Ю. Паркер назвал С. в. , где m - масса протона,- показатель адиабаты,- масса Солнца. На рис. 4 показано изменение скорости расширения с гелиоцентрич. теплопроводность, вязкость,

Рис. 4. Профили скорости солнечного ветра для модели изотер» мическойкороны при различных значениях корональной температуры.

С. в. обеспечивает осн. отток тепловой энергии короны, т. к. теплопередачав хромосферу, эл.-магн. короны и электронная теплопроводностьС. в. недостаточны для установления теплового баланса короны. Электроннаятеплопроводность обеспечивает медленное убывание темп-ры С. в. с расстоянием. светимости Солнца.

С. в. уносит с собой в межпланетную среду корональное магн. поле. Вмороженныев плазму силовые линии этого поля образуют межпланетное магн. поле (ММП).Хотя напряжённость ММП невелика и плотность его энергии составляет ок.1% от плотности кинетич. энергии С. в., оно играет большую роль в термодинамикеС. в. и в динамике взаимодействий С. в. с телами Солнечной системы, а такжепотоков С. в. между собой. Комбинация расширения С. в. с вращением Солнцаприводит к тому, что магн. силовые линии, вмороженные в С. в., имеют форму, B R иазимутальная компоненты магн. поля по-разному изменяются с расстоянием вблизи плоскостиэклиптики:

где - угл. скорость вращения Солнца, и - радиальная компонента скоростиС. в., индекс 0 соответствует исходному уровню. На расстоянии орбиты Землиугол между направлением магн. поля и R порядка 45°. При больших Л магн.

Рис. 5. Форма силовой линии межпланетного магнитного поля.- угловая скорость вращения Солнца, и - радиальная компонента скоростиплазмы, R - гелиоцентрическое расстояние.

С. в., возникающий над областями Солнца с разл. ориентацией магн. поля, скорость, темп-pa, концентрация частиц и др.) также в ср. закономерноизменяются в сечении каждого сектора, что связано с существованием внутрисектора быстрого потока С. в. Границы секторов обычно располагаются внутримедленного потока С. в. Чаще всего наблюдаются 2 или 4 сектора, вращающихсявместе с Солнцем. Эта структура, образующаяся при вытягивании С. в. крупномасштабногомагн. поля короны, может наблюдаться в течение неск. оборотов Солнца. Секторнаяструктура ММП - следствие существования токового слоя (ТС) в межпланетнойсреде, к-рый вращается вместе с Солнцем. ТС создаёт скачок магн. поля -радиальные ММП имеют разные знаки по разные стороны ТС. ЭтотТС, предсказанный X. Альвеном (Н. Alfven), проходит через те участки солнечнойкороны, к-рые связаны с активными областями на Солнце, и разделяет указанныеобласти с разл. знаками радиальной компоненты солнечного магн. поля. ТСрасполагается приблизительно в плоскости солнечного экватора и имеет складчатуюструктуру. Вращение Солнца приводит к закручиванию складок ТС в спирали(рис. 6). Находясь вблизи плоскости эклиптики, наблюдатель оказываетсято выше, то ниже ТС, благодаря чему попадает в секторы с разными знакамирадиальной компоненты ММП.

Вблизи Солнца в С. в. существуют долготные и широтные градиенты скорости, бесстолкновителъныхударных волн (рис. 7). Сначала образуется ударная волна, распространяющаясявперёд от границы секторов (прямая ударная волна), а затем образуется обратнаяударная волна, распространяющаяся к Солнцу.

Рис. 6. Форма гелио-сферного токового слоя. Пересечение его с плоскостьюэклиптики (наклонённой к экватору Солнца под углом ~ 7°) даёт наблюдаемуюсекторную структуру межпланетного магнитного поля.

Рис. 7. Структура сектора межпланетного магнитного поля. Короткиестрелки показывают направление солнечного ветра, линии сострелками - силовые линии магнитного поля, штрихпунктир - границы сектора(пересечение плоскости рисунка с токовым слоем).

Т. к. скорость ударной волны меньше скорости С. в., увлекаетобратную ударную волну в направлении от Солнца. Ударные волны вблизи границсекторов образуются на расстояниях ~1 а. е. и прослеживаются до расстоянийв неск. а. е. Эти ударные волны, так же как и межпланетные ударные волныот вспышек на Солнце и околопланетные ударные волны, ускоряют частицы иявляются, т. о., источником энергичных частиц.

С. в. простирается до расстояний ~100 а. е., где давление межзвёзднойсреды уравновешивает динамич. давление С. в. Полость, заметаемая С. в. Межпланетная среда). РасширяющийсяС. в. вместе с вмороженным в него магн. полем препятствует проникновениюв Солнечную систему галактич. космич. лучей малых энергий и приводит квариациям космич. лучей больших энергий. Явление, аналогичное С. в., обнаруженои у нек-рых др. звёзд (см. Звёздный ветер).

Лит.: Паркер Е. Н., Динамические в межпланетной среде, О. Л. Вайсберг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СОЛНЕЧНЫЙ ВЕТЕР" в других словарях:

    СОЛНЕЧНЫЙ ВЕТЕР, поток плазмы солнечной короны, заполняющий Солнечную систему до расстояния 100 астрономических единиц от Солнца, где давление межзвездной среды уравновешивает динамическое давление потока. Основной состав протоны, электроны, ядра … Современная энциклопедия

    СОЛНЕЧНЫЙ ВЕТЕР, устойчивый поток заряженных частиц (главным образом, протонов и электронов), разгоняемый высокой температурой солнечной КОРОНЫ до скоростей, достаточно больших, чтобы частицы преодолели тяготение Солнца. Солнечный ветер отклоняет … Научно-технический энциклопедический словарь

В конце 40-х годов американский астроном С. Форбуш обнаружил непонятное явление. Измеряя интенсив­ность космических лучей, Форбуш заметил, что она значительно снижается при возрастании солнечной ак­тивности и совсем резко падает во время магнитных бурь.

Это представлялось довольно странным. Скорее, мож­но было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на земное магнитное поле таким об­разом, что оно начинает отклонять частицы космических лучей - отбрасывать их. Путь к Земле как бы запи­рается.

Объяснение казалось логичным. Но, увы, как выяс­нилось вскоре, оно было явно недостаточным. Подсчеты, проделанные физиками, неопровержимо свидетельство­вали о том, что изменение физических условий только в непосредственной близости от Земли не может вызвать эффекта такого масштаба, какой наблюдается в дей­ствительности. Очевидно, должны существовать и какие-то другие силы, препятствующие проникновению космических лучей в солнечную систему, и притом такие, которые возрастают с увеличением солнечной активности.

Тогда-то и возникло предположение, что виновни­ками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и про­низывающие пространство солнечной системы. Этот свое­образный «солнечный ветер» и очищает межпланетную среду, «выметая» из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в кометах. Как известно, кометные хво­сты всегда направлены от Солнца. Вначале это обстоя­тельство связывали со световым давлением солнечных лучей. Однако в середине текущего столетия было уста­новлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты пока­зали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества. Кстати, такие частицы могли бы возбуждать происходящее в кометных хвостах свечение ионов.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц - корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Их возникновение астро­номы связывали с появлением вспышек и пятен. Но ко­метные хвосты направлены в противоположную от Солн­ца сторону всегда, а не только в периоды усиления сол­нечной активности. Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возраста­нием солнечной активности, но существует всегда.

Таким образом, околосолнечное пространство непре­рывно обдувается солнечным ветром. Из чего же состоит этот ветер и при каких условиях он возникает?

Познакомимся с самым внешним слоем солнечной ат­мосферы - «короной». Эта часть атмосферы нашего дневного светила необычайно разрежена. Даже в непо­средственной близости от Солнца ее плотность состав­ляет всего около одной стомиллионной доли плотности земной атмосферы. Это значит, что в каждом куби­ческом сантиметре околосолнечного пространства содер­жится всего несколько сотен миллионов частиц короны. Но так называемая «кинетическая температура» короны, определяемая по скорости движения частиц, весьма вели­ка. Она достигает миллиона градусов. Поэтому корональный газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных элект­ронов.

Недавно появилось сообщение о том, что в составе солнечного ветра обнаружено присутствие ионов гелия. Это обстоятельство проливает спет на тот механизм, с помощью которого происходит выброс заряженных

частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее про­тонов и поэтому маловероятно, чтобы они могли выбра­сываться вследствие испарения. Скорее всего образова­ние солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным «цементом», который «скрепляет» воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астронома­ми, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. В этой области солнечной системы на каждый ку­бический сантиметр пространства приходится от ста до тысячи корональных частиц. Другими словами, наша планета находится внутри солнечной атмосферы и, если хотите, мы вправе называть себя не только жителями Земли, но и жителями атмосферы Солнца.

Если вблизи Солнца корона более или менее ста­бильна, то по мере увеличения расстояния она стре­мится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже па расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость звука. И но мере дальнейшего удаления от Солнца и ослабления силы солнечного притяжения эти скорости возрастают еще в несколько раз.

Таким образом, напрашивается вывод о том, что сол­нечная корона - это и есть солнечный ветер, обдуваю­щий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтвер­ждены измерениями па космических ракетах и искус­ственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли «дует» со ско­ростью около 400 км\сек. С увеличением солнечной ак­тивности скорость эта возрастает.

Как далеко дует солнечный ветер? Вопрос этот пред­ставляет значительный интерес, однако для получения соответствующих экспериментальных данных необходимо осуществить зондирование космическими аппаратами внешней части солнечной системы. Пока же это не сде­лано, приходится довольствоваться теоретическими сооб­ражениями.

Однако однозначного ответа получить не удается. В зависимости от исходных предпосылок расчеты при­водят к различным результатам. В одном случае получается, что солнечный ветер затихает уже в районе ор­биты Сатурна, в другом, - что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Наиболее достоверными были бы, как мы уже отме­чали, данные космических зондов. Но в принципе воз­можны и некоторые косвенные наблюдения. В частности, было замечено, что после каждого очередного спада сол­нечной активности соответствующее возрастание интен­сивности космических лучей высоких энергий, т. е. лу­чей, приходящих в солнечную систему извне, происходит с запозданием примерно на шесть месяцев. Видимо, это и есть как раз тот срок, который необходим, чтобы оче­редное изменение мощности солнечного ветра дошло до границы его распространения. Так как средняя скорость распространения солнечного ветра составляет около 2,5 астрономической единицы (1 астрономическая еди­ница = 150 млн. км-среднему расстоянию Земли от Солн­ца) в сутки, то это дает расстояние около 40-45 астро­номических единиц. Другими словами, солнечный ветер иссякает где-то в районе орбиты Плутона.

Похожие публикации