Штанговые глубинные насосы (ШГН). Насосы вставные

АБР — аэрированный буровой раствор.

АВПД — аномально высокое пластовое давление.

АНПД — аномально низкое пластовое давление.

АКЦ — акустический цементомер.

АТЦ — автотранспортный цех.

БГС — быстрогустеющая смесь.

БКЗ — боковое каротажное зондирование.

БКПС — блочные кустовые насосные станции.

БСВ — буровые сточные воды.

БПО — база производственного обслуживания. Вспомогательные обслуживающие цеха (ремонт и т.д.)

БУ — буровая установка.

ВГК — водогазовый контакт.

ВЗБТ — Волгоградский завод буровой техники.

ВЗД — винтовой забойный двигатель.

ВКР — высококальциевый раствор.

ВКГ — внутренний контур газоносности.

ВНКГ — внешний контур газоносности.

ВКН — внутренний контур нефтеносности.

ВНКН — внешний контур нефтеносности.

ВМЦ — вышкомонтажный цех.

ВНК — водонефтяной контакт.

ВПВ — влияние пневмовзрыва.

ВПЖ — вязкопластичная (бингамовская) жидкость.

ВРП — водораспределительный пункт.

ГГК — гамма-гамма-каротаж.

ГГРП — глубиннопроникающий гидравлический разрыв пласта.

ГДИ — гидродинамические исследования. Исследование состояния скважины.

ГЖС — газожидкостная смесь.

ГИВ — гидравлический индикатор веса.

ГИС — геофизическое исследование скважин.

ГЗНУ — групповая замерная насосная установка. Тоже, что и ГЗУ+ДНС. Сейчас от этого отходят, сохранились только старые.

ГЗУ — групповая замерная установка. Замер дебита жидкости, поступающей с усов.

ГК — гамма-каротаж.

ГКО — глинокислотная обработка.

ГНО — глубинное насосное оборудование. Оборудование, погруженное в скважину (насос, штанги, НКТ).

ГНС — головная нефтепрекачивающая станция.

ГПП — гидропескоструйная перфорация.

ГПЖ — газопромывочная жидкость.

ГПЗ — газоперерабатывающий завод.

ГПС — головная перекачивающая станция.

ГРП — гидравлический разрыв пласта.

ГСМ — горюче-смазочные материалы.

ГСП — групповой сборный пункт.

ГТМ — геолого-технические мероприятия. Мероприятия по увеличению производительности скважин.

ГТН — геолого-технологический наряд.

ГТУ — геолого-технологические условия.

ГЭР — гидрофобно-эмульсионный раствор.

ДНС — дожимная насосная станция. Поступление нефти со скважин через ГЗУ по усам на ДНС для дожимки в товарный парк. Может быть только дожим насосами жидкости или с частичной обработкой (сепарация воды и нефти).

ДУ — допустимый уровень.

ЕСГ — единая система газоснабжения.

ЖБР — железобетонный резервуар.

ЗСО — зона санитарной охраны.

ЗЦН — забойный центробежный насос.

КВД — кривая восстановления давления. Характеристика при выводе скважины на режим. Изменение давления в затрубном пространстве во времени.

КВУ — кривая восстановления уровня. Характеристика при выводе скважины на режим. Изменение уровня в затрубном пространстве во времени.

КИН — коэффициент извлечения нефти.

КИП — контрольно-измерительные приборы.

КМЦ — карбоксиметилцеллюлоза.

КНС — кустовая насосная станция.

К — капитальный ремонт.

КО — кислотная обработка.

КРБК — кабель резиновый бронированный круглый.

КРС — . Ремонт после «полетов оборудования», нарушениях обсадной колонны, стоит на порядок дороже ПРС.

КССБ — конденсированная сульфит-спиртовая барда.

КССК — комплекс снарядов со съемным керноприемником.

ЛБТ — легкосплавные бурильные трубы.

ЛБТМ — легкосплавные бурильные трубы муфтового соединения.

ЛБТН — легкосплавные бурильные трубы ниппельного соединения.

МГР — малоглинистые растворы.

ММЦ — модифицированная метилцеллюлоза.

МНП — магистральный нефтепровод.

МНПП — магистральный нефтепродуктопровод.

МРП — межремонтный период.

МРС — механизм расстановки свечей.

МУН — метод увеличения нефтеизвлечения.

НБ — насос буровой.

НБТ — насос буровой трехпоршневой.

НГДУ — нефтегазодобывающее управление.

НГК — нейтронный гамма-каротаж.

НКТ — насосно-компрессорные трубы. Трубы, по которым на добывающих скважинах выкачивается нефть, на нагнетательных — закачивается вода.

НПП — нефтепродуктопровод.

НПС — нефтеперекачивающая станция.

ОА — очистительные агенты.

ОБР — обработанный буровой раствор.

ОГМ — отдел главного механика.

ОГЭ — отдел главного энергетика.

ООС — охрана окружающей среды.

ОЗЦ — ожидание затвердения цемента.

ОТ — обработка призабойной зоны.

ОТБ — отдел техники безопасности.

ОПРС — ожидание подземного ремонта скважины. Состояние скважины, в которое она переводится с момента обнаружения неисправности и остановки до начала ремонт. Скважины из ОПРС в ПРС выбираются по приоритетам (обычно — дебит скважины).

ОПС — отстойник предварительного сброса.

ОРЗ(Э) — оборудование для раздельной закачки (эксплуатации).

ОТРС — ожидание текущего ремонта скважины.

ПАВ — поверхностно-активное вещество.

ПАА — полиакриламид.

ПАВ — поверхностно-активные вещества.

ПБР — полимер-бентонитовые растворы.

ПДВ — предельно-допустимый выброс.

ПДК — предельно-допустимая концентрация.

ПДС — предельно-допустимый сброс.

ПЖ — промывочная жидкость.

ПЗП — призабойная зона пласта.

ПНП — повышение нефтеотдачи пластов.

ПНС — промежуточная нефтепрекачивающая станция.

ППЖ — псевдопластичная (степенная) жидкость.

ППР — планово-предупредительные работы. Работы по профилактике неисправностей на скважинах.

ППС — промежуточная перекачивающая станция.

ППУ — паропередвижная установка.

ПРИ — породоразрушающий инструмент.

ПРС — подземный ремонт скважины. Ремонт подземного оборудования скважины при обнаружении неисправностей.

ПРЦБО — прокатно-ремонтный цех бурового оборудования.

ПСД — проектно-сметная документация.

РВС — вертикальный стальной цилиндрический резервуар.

РВСП — вертикальный стальной цилиндрический резервуар с понтоном.

РВСПК — вертикальный стальной цилиндрический резервуар с плавающей крышей.

РИР — ремонтно-изоляционные работы.

РИТС — ремонтная инженерно-техническая служба.

РНПП — разветвленный нефтепродуктопровод.

РПДЭ — регулятор подачи долота электрический.

РТБ — реактивно-турбинное бурение.

РЦ — ремонтный цикл.

СБТ — стальные бурильные трубы.

СБТН — стальные бурильные трубы ниппельного соединения.

СГ — смесь гудронов.

СДО — соляро-дистиллятная обработка. Обработка скважин.

Система ТО и ПР — система технического обслуживания и планового ремонта бурового оборудования.

СКЖ — счетчик количества жидкости. Счетчики для замеров жидкости непосредственно на скважинах для контроля замеров на ГЗУ.

СНС — статическое напряжение сдвига.

СПГ — сжиженный природный газ.

СПО — спуско-подъемные операции.

ССБ — сульфит-спиртовая барда.

ССК — снаряд со съемным керноприемником.

Т текущий ремонт.

ТБО — твердые бытовые отходы.

ТГХВ — термогазохимическое воздействие.

ТДШ — торпеда с детонирующим шнуром.

ТК — тампонажная композиция.

ТКО — торпеда кумулятивная осевого действия.

ТО — техническое обслуживание.

ТП — товарный парк. Место сбора и переработки нефти (тоже, что и УКПН) .

ТП — технологический процесс.

ТРС — текущий ремонт скважины.

ТЭП — технико-экономические показатели.

ЕЕДН — группа Техники и Технологии Добычи Нефти.

УБТ — утяжеленные бурильные трубы горячекатаные или фигурного сечения.

УБР — управление буровых работ.

УЗД — ультразвуковая дефектоскопия.

УКБ — установка колонкового бурения.

УКПН — установка комплексной подготовки нефти.

УСП — участковый сборный пункт.

УЦГ — утяжеленный тампонажный цемент.

УШЦ — утяжеленный шлаковый цемент.

УЩР — углещелочной реагент.

УПГ — установка подготовки газа.

УПНП — управление повышения нефтеотдачи пласта.

УПТО и КО — управление производственно-технического обеспечения и комплектации оборудования.

УТТ — управление технологического транспорта.

УШГН — установка штангового глубинного насоса.

УЭЦН — установка электроцентробежного насоса.

ХКР — хлоркальциевый раствор.

ЦА — цементировочный агрегат.

ЦДНГ — цех добычи нефти и газа. Промысел в рамках НГДУ.

ЦИТС — центральная инженерно-техническая служба.

ЦКПРС — цех капитального и подземного ремонта скважин. Цех в рамках НГДУ, выполняющий ПРС и КРС.

ЦКС — цех крепления скважин.

ЦНИПР — цех научно-исследовательских и производственных работ. Цех в рамках НГДУ.

ЦППД — цех поддержания пластового давления.

ЦС — циркуляционная система.

ЦСП — центральный сборный пункт.

ШГН — штанговый глубинный насос. С качалкой, для низкодебитных скважин.

ШПМ — шинно-пневматическая муфта.

ШПЦС — шлакопесчаный цемент совместного помола.

ЭГУ — электрогидравлический удар.

ЭРА — электрогидравлический ремонтный агрегат.

ЭХЗ — электрохимическая защита.

ЭЦН электроцентробежный насос. Для высокодебитных скважин.

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

  • обладают высоким коэффициентом полезного действия;
  • проведение ремонта возможно непосредственно на промыслах;
  • для первичных двигателей могут быть использованы различные приводы;
  • установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

  • ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);
  • малая подача насоса;
  • ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.

Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Штанговые насосы бывают вставные (НСВ) и невставные (НСН) .

Вставные штанговые насосы спускают в скважину в собранном виде. Предварительно в скважину на НКТ спускается специальное замковое приспособление, а насос на штангах спускают в уже спущенные НКТ. Соответственно для смены такого насоса не требуется лишний раз производить спуск-подъем труб.

Невставные насосы спускаются в полуразобранном виде. Сначала на НКТ спускают цилиндр насоса. А затем на штангах спускают плунжер с обратным клапаном. Поэтому при необходимости замены такого насоса приходится поднимать из скважины сначала плунжер на штангах, а потом и НКТ с цилиндром.

И тот и другой вид насоса имеет как свои преимущества, так и недостатки. Для каждых конкретных условий применяют наиболее подходящий тип. Например, при условии содержания в нефти большого количества парафина предпочтительно применение невставных насосов. Парафин, откладываясь на стенках НКТ, может заблокировать возможность поднятия плунжера вставного насоса. Для глубоких скважин предпочтительнее использовать вставной насос, чтобы снизить затраты времени на спуск-подъем НКТ при смене насоса.

Штанговые глубинные насосы (ШГН) – это насосы, погружаемые значительно ниже уровня жидкости, которую планируется перекачать. Глубина погружения в скважину позволяет обеспечить не только стабильный подъём нефти с большой глубины, но и отличное охлаждение самого насоса. Также подобные насосы позволяют поднимать нефть с высоким процентным содержанием газа.
Штанговые насосы отличаются тем, что привод в них осуществляется за счёт независимого двигателя, находящегося на поверхности жидкости, при помощи механической связи, собственно, штанги . Если используется гидродвигатель, то источником энергии является та же перекачиваемая жидкость, подаваемая в насос под высоким давлением. Независимый двигатель в этом случае устанавливается на поверхности. Штанговые скважинные насосы объёмного типа применяются для поднятия нефти из скважин.

Типы штанговых насосов

  1. Невставные. Цилиндр насоса опускается в нефтяную скважину по насосным трубам без плунжера. Последний опускается на насосных штангах , и вводится в цилиндр совместно с всасывающим клапаном. При замене подобного насоса необходимо сперва поднять из скважины плунжер на штангах, а потом и НКТ с цилиндром.
  2. Вставные. Цилиндр с плунжером опускается в нефтяную скважину на штангах. У подобных насосов диаметр плунжера должен быть гораздо меньше, чем трубный диаметр. Соответственно, при необходимости замены такого насоса не требуется лишний раз производить спуск-подъём труб.

Глубинные штанговые насосы бывают с нижним или верхним манжетным креплением и могут быть с механическим креплением в верхней или нижней части. Штанговые глубинные насосы обладают рядом достоинств, в который входят: простота конструкции, возможность откачки жидкости из нефтяных скважин, в случае если иные способы эксплуатации неприемлемы. Подобные насосы способны работать на очень большой глубине, и обладают простотой процесса регулировки. Также к достоинствам стоит отнести механизацию процесса откачки и простоту в обслуживании установки.

Преимущества штанговых глубинных насосов

  • Обладают высоким коэффициентом полезного действия;
  • Для первичных двигателей могут быть использованы самые разнообразные приводы;
  • Проведение ремонта непосредственно на месте выкачки нефти;
  • Установки штанговых глубинных насосов могут производиться в усложненных условиях добычи нефти – в скважинах с наличием мелкодисперсного песка, при наличии парафина в добываемом продукте, при высоком газовом факторе, при откачке различных коррозийных жидкостей.

Характеристики штанговых глубинных насосов

  • Обводнённость – до 99%;
  • Температура - до 130 С;
  • Работа при содержании механических примесей до 1,3 г/литр;
  • Работа при содержании сероводорода – до 50 мг/литр;
  • Минерализация воды – до 10 г/литр;
  • Показатели pH – от 4 до 8.

Добыча нефти с применением скважинных штанговых насосов – один самых распространённых способов добычи нефти. Это не удивительно, простота и эффективность работы сочетаются в ШГН с высочайшей надёжностью. Более 2/3 действующих скважин используют установки с ШГН.
Для заказа штангового глубинного насоса необходимо заполнить опросный лист либо обратиться к нашим специалистам, заполнив форму в правой части страницы или позвонив по указанным контактным телефонам.

Значительную часть фонда нефтедобывающих скважин в мире составляют скважины, эксплуатируемые установками ШГН. Это вызвано тем, что многие скважины сразу после окончания бурения вводятся в эксплуатацию насосным способом, а также переводом в эксплуатацию ШГН фонтанирующих и оборудованных бесштанговыми погружными электроцентробежными насосами скважин при уменьшении дебита до 100 т/сут. Таким образом, до 80% скважин в мире оборудованы именно установками ШГН.

Наземное и глубинное оборудование установки ШГН показано на рисунке 2.1. Установка состоит из приводного ЭД 1, соединенного ременной передачей 2 с редуктором 3. На выходном валу редуктора находится кривошип 4, а также противовес 5, на котором установлены грузы 6. Шатун 7 передает движение балансиру 8, к головке которого 9 прикреплена канатная подвеска 10. Полированный шток 11 проходит через сальниковый узел 12.

Подземное оборудование скважины состоит из обсадной колонны 13, насосно-компрессорных труб 14 и колонны насосных штанг 15.

Штанговый глубинный насос 19 состоит из цилиндра 16, приемного клапана 20 и нагнетательного клапана 17.

Штанговый глубинный насос (рисунок 2.2) состоит из цилиндра, приемного клапана и нагнетательного клапана.

Работает ШГН следующим образом. Цикл качания начинается в момент, когда шток (а соответственно и плунжер) движется вниз. Когда плунжер с открытым нагнетательным клапаном приближается к своему крайнему нижнему положению, всасывающий клапан закрыт. На полированный шток действует только нагрузка от веса штанг, погруженных в жидкость. В крайнем нижнем положении нагнетательный клапан закрывается.

Давление жидкости в цилиндре насоса практически равно давлению в насосных трубах над плунжером.

Рис.2.1.

Когда полированный шток начинает двигаться вверх, плунжер остается неподвижным по отношению к цилиндру насоса, так как упругие штанги не могут передать ему движение до тех пор, пока они не получат полного растяжения от веса столба жидкости в насосных трубах, приходящегося на площадь плунжера. Величина растяжения штанг прямо пропорциональна величине воспринятой части веса жидкости. Поэтому по мере увеличения растяжения штанг нагрузка на полированном штоке растет. Та часть жидкости, которую приняли на себя штанги, снимается с труб. Вследствие этого трубы сокращают свою

длину и их нижний конец, с закрытый всасывающим клапаном, движется вверх.

Так как между всасывающим и нагнетательным клапанами в цилиндре насоса находится практически несжимаемая жидкость, то движение нижнего конца труб вверх вызывает движение вверх и плунжера вместе с насосом.

Рис. 2.2.

  • 1 - насос; 2 - уровень жидкости; 3 - нефтеносный пласт;
  • 4 - колонна штанг; 5 - НКТ

В любой момент времени текущая величина растяжения штанг равна разности перемещений полированного штока и плунжера. Поэтому, чтобы штанги получили полное растяжение, необходимое для передачи движения плунжеру, полированный шток должен пройти путь, равный сумме растяжения штанг и сокращения труб.

Нагрузка на полированном штоке возрастает при одновременном перемещении его вверх. Во время последующего движения плунжера вверх на полированный шток действует неизменная нагрузка.

Из крайнего верхнего положения полированный шток начинает движение вниз. Однако плунжер не может двигаться вниз, так как под ним в цилиндре насоса находится практически несжимаемая жидкость. Нагнетательный клапан не может открыться, потому что давление в цилиндре насоса равно нулю, а над плунжером оно равно давлению всего столба жидкости в насосных трубах. Поэтому плунжер остается неподвижным по отношению к цилиндру насоса. Вследствие того, что плунжер стоит на месте, а полированный шток движется вниз, длина штанг сокращается, и нагрузка от веса жидкости постепенно передается на трубы. Давление в цилиндре насоса увеличивается пропорционально сокращению штанг.

Воспринимая нагрузку от веса жидкости, трубы соответственно удлиняются, и их нижний конец движется вниз. Так как плунжер опирается на несжимаемый столб жидкости в цилиндре насоса, то он движется вниз, оставаясь неподвижным по отношению к цилиндру насоса. Это вынужденное продвижение плунжера замедляет сокращение штанг и снятие нагрузки от веса жидкости. Поэтому штанги получают полное сокращение и полностью снимают с себя нагрузку от веса жидкости только тогда, когда полированный шток проходит расстояние, равное сумме сокращения штанг и растяжения труб от веса жидкости.

Вследствие уменьшения нагрузки при одновременном перемещении полированного штока вниз, происходит снятие со штанг нагрузки от веса жидкости.

Типы приводов штанговых глубинных насосов.

В настоящее время получили распространение два типа наземных приводов ШГН - станки-качалки и цепные приводы. Помимо этого существуют всевозможные экспериментальные приводы, среди которых можно выделить «линейный привод», «мобильные СК» (перевозимые на автомобиле) и «складные СК» (складывающиеся для прохождения через них систем полива сельскохозяйственных полей). В последнее время начинают использоваться гидравлические приводы ШГН. Поскольку управление каждым из этих приводов имеет свои особенности, необходимо рассмотреть их конструктивные особенности.

Конструкции некоторых типов СК изображены на рисунках 2.3, 2.4 и 2.5 (приводятся СК производства фирмы Lufkin, США). На рисунке 2.3 показана конструкция традиционного СК с двуплечим балансиром. На рисунке 2.4 приводится конструкция СК с одноплечим балансиром типа MARK И. Геометрия СК типа MARK II позволяет снизить момент на редукторе на 35% и уменьшить мощность приводного двигателя по сравнению с традиционным СК с двуплечим балансиром . И СК с пневматическим уравновешиванием показан на рисунке 2.5. При движении штока вниз газ в поршне сжимается, накапливая потенциальную энергию, и при движении штока вверх помогает электродвигателю поднять жидкость на поверхность.


Рис.2.3.

  • 1 - головка балансира; 2 - балансир; 3 - центральный подшипник; 4 - подшипник траверсы; 5 - лестница с ограждением; 6 - траверса; 7 - шатун; 8 - канатная подвеска;
  • 9 - траверсы канатной подвески; 10 - кривошип; 11 - подшипник пальца кривошипа;
  • 12-тормоз; 13 - противовес; 14 - ЭД; 15-стойка балансира; 16 - рычаг тормоза;
  • 17 - основание

Рис. 2.4.

  • 1 - головка балансира; 2 - траверса; 3 - балансир; 4 - центральный подшипник;
  • 5 - шатун; 6 - угловая опора; 7 - противовес; 8 - стойка балансира;
  • 9 - канатная подвеска; 10 - кривошип; 11 - траверсы канатной подвески; 12 - тормоз; 13 - редуктор; 14 - ЭД; 15 - подшипник пальца кривошипа; 16 - рычаг тормоза;
  • 17 - лестница платформы; 18 - основание

Рис.2.5.

  • 1 - головка балансира; 2 - подшипник воздушной емкости; 3 - подшипник траверсы;
  • 4 - траверса; 5 - балансир; 6 - центральный подшипник; 7 - воздушная емкость;
  • 8 - канатная подвеска; 9 - траверсы канатной подвески; 10 - лестница; 11 - шатун; 12 - угловая опора; 13 - шток поршня; 14 - стойка балансира;
  • 15 - подшипник пальца кривошипа; 16 - тормоз; 17 - кривошип; 18 - основание

Второй тип приводов - это цепные приводы. ЦП начали серийно выпускаться в начале 90-х годов XX века в Канаде и Китае, а в последующем - и в нашей стране .

Конструктивно ЦП состоит из вертикальной рамы, вдоль которой вращается цепь (рисунок 2.6). К одному из звеньев цепи прикреплен гибкий ремень, который совершает возвратно-поступательные движения. К другому концу ремня прикреплены траверсы канатной подвески полированного штока. Для цепных приводов характерны следующие особенности:

  • - движение полированного штока происходит с постоянной скоростью;
  • - большая длина хода (до 10 м);
  • - низкая скорость качаний (до 2 качаний в минуту).

На рисунке 2.7 показаны разработанные институтом ТатНИПИНефть цепные приводы типа ЦП80-6-1/4.

Рис. 2.6.

  • 1 - платформа с ограждением; 2 - шкив; 3 -траверса ремня; 4 - канатная подвеска;
  • 5 - замок штока; 6 - траверсы канатной подвески; 7 - ремень; 8 - полированный шток; 9 - звено соединения противовеса с ремнем; 10 - противовес; 11 - устье скважины; 12 - редуктор; 13 - кожух ременной передачи от ЭД; 14 - основание; 15 - полозья

Рис. 2.7.

На рисунке 2.8 показана динамика внедрения ЦП на месторождениях ОАО «Татнефть». Видно, что ЦП оснащены уже свыше тысячи скважин. В республике Башкортостан ЦП выпускаются на ООО «Нефтекамский завод нефтепромыслового оборудования».


Рис.2.8.

Так называемый «линейный» привод ШГН (Linear Rod Pump) разработан фирмой UNICO (США) в 2007 г. В «линейном» приводе на полированный шток одевается рейка с зубьями (рисунок 2.9), которая перемещается шестеренкой . Шестеренка соединяется с валом электродвигателя через редуктор. Главным достоинством линейного привода является низкая металлоемкость, и, соответственно, дешевизна. Линейный привод позволяет обеспечить только небольшую длину хода - не более 1,5 м, и нс может использоваться на глубоких скважинах, где необходима передача большой мощности ШГН.

Рис. 2.9.

  • 1 - штангодержатель; 2 - зубчатая рейка; 3 -корпус механизма; 4 - шестерня;
  • 5 - редуктор; 6 - масляная ванна; 7 - полированный шток; 8 - ЭД; 9 -основание

В последнее время наблюдается внедрение на нефтепромыслах еще одного типа приводов ШГН - гидравлического. Гидравлический привод ШГН типа

«Гейзер», разработанный ООО «НПП «ПСМ-Импэкс» (г. Екатеринбург) показан на рисунке 2.10. Гидравлическая установка «Гейзер» используется в качестве верхнего привода ШГН.

Гидравлический привод штангового насоса «Гейзер» состоит из следующих основных частей :

  • - мачта - опора с установленном на ней гидроцилиндром;
  • - укрытие, в котором установлены насосная станция и системы электронного управления;
  • - соединение насосной установки и гидроцилиндра выполнено при использовании рукавов высокого давления.

Рис.2.10.

1 - укрытие; 2 - съемный щит; 3 - рукава; 4 - плиты дорожные; 5 - щебень; 6 - короб кабельный на стойках; 7 - мачта-опора; 8 - устьевая арматура

Основные преимущества гидравлического привода заключаются в следующем:

  • - возможность плавной регулировки скорости спуска/подъема штанговой колонны;
  • - КПД гидравлического привода выше, чем у традиционных СК;
  • - возможность рекуперации энергии;
  • - простота и оперативность установки, наладки и демонтажа.

Основные технические данные гидравлического привода «Гейзер» приводятся в таблице 2.1.

Таблица 2.1

Основные технические данные гидравлического привода «Гейзер»

Система управления гидравлического привода «Гейзер» позволяет снимать динамограммы, при подключении эхолота и датчиков давления контролировать динамический и статический уровни, давление в выкидном коллекторе и затрубном пространстве.

Штанговые глубинные насосы (ШГН). Насосы вставные. Конструкции, области применения, коэффициент подачи насоса

Штанговые глубинные насосы (ШГН) - это насосы, погружаемые значительно ниже уровня жидкости, которую планируется перекачать. Глубина погружения в скважину позволяет обеспечить не только стабильный подъём нефти с большой глубины, но и отличное охлаждение самого насоса. Также подобные насосы позволяют поднимать нефть с высоким процентным содержанием газа.

Штанговые насосы отличаются тем, что привод в них осуществляется за счёт независимого двигателя, находящегося на поверхности жидкости, при помощи механической связи, собственно, штанги. Если используется гидродвигатель, то источником энергии является та же перекачиваемая жидкость, подаваемая в насос под высоким давлением. Независимый двигатель в этом случае устанавливается на поверхности. Штанговые скважинные насосы объёмного типа применяются для поднятия нефти из скважин.

ШГН предназначены для откачивания из скважин жидкостей с температурой не более 130 градусов, обводненностью не более 99% по объему, вязкостью до 0,3 Па*с, содержанием механических примесей до 350мг/л, свободного газа на приеме не более 25%.

Штанговый насос состоит из цельного неподвижного цилиндра, подвижного плунжера, всасывающего и нагнетательных клапанов, замка (для вставных насосов), присоединительных и установочных деталей.

В скважину на колонне подъемных труб спускают плунжерный насос, состоящий из цилиндрического корпуса 1 (цилиндра), внутри которого имеется пустотелый поршень 2 (плунжер). В верхней части плунжера установлен нагнетательный клапан 3. В нижней части неподвижного цилиндра устанавливается всасывающий клапан 4. Плунжер подвешен на колонне насосных штанг 5, которые передают ему возвратно- поступательное движение от специального механизма (станка-качалки), установленного на поверхности.

Добыча нефти при помощи штанговых насосов - самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

  • · обладают высоким коэффициентом полезного действия;
  • · проведение ремонта возможно непосредственно на промыслах;
  • · для первичных двигателей могут быть использованы различные приводы;
  • · установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Глубинный штанговый насос в простейшем виде состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Рис. 5

Такие насосы опускают в скважину в собранном виде (цилиндр вместе с плунжером) на насосных штангах и извлекают на поверхность также в собранном виде путем подъема этих штанг. Насос устанавливают и закрепляют при помощи специального замкового приспособления, заранее смонтированного в спускаемых в скважину насосных трубах. В результате для смены вставного насоса (при необходимости замены отдельных узлов или насоса в целом) достаточно поднять на поверхность только насосные штанги, насосные же трубы остаются постоянно в скважине. Таким образом, смена вставного насоса требует значительно меньше времени, чем невставного. Эти преимущества вставного насоса имеют особое значение при эксплуатации глубоких скважин, в которых на спускоподъемные операции при подземном ремонте, затрачивается много времени.

Насос скважинный вставной НСВ1 (рис. 5) состоит из трех основных узлов: цилиндра, плунжера 6 и замковой опоры 4. Цилиндр насоса 5 на нижнем конце имеет закрепленный наглухо всасывающий клапан, а на верхнем конце конус 3, который служит опорой насоса.

Плунжер 6 подвешивается к колонне штанг при помощи штока 1, конец которого выступает из насоса и имеет соответствующую резьбу для соединения со штангами. С целью уменьшения объема вредного пространства нагнетательный клапан установлен на нижнем конце плунжера. Насос в скважине устанавливается на замковой опоре 4, предварительно спущенной на насосных трубах 2, на нижнем конце которых смонтирована направляющая труба 7. Спущенный и укрепленный в замковой опоре вставной насос работает, как обычный трубный насос.

Цилиндры трубных насосов собираются из чугунных втулок длиной 300 мм, а вставных насосов -- из стальных втулок такой же длины. В зависимости от длины хода плунжера число втулок в цилиндре составляет от 6 до 17.

Плунжеры штанговых насосов изготовляют длиной 1200--1500 мм из цельнотянутых бесшовных стальных труб. Наружная поверхность плунжера шлифуется, хромируется для повышения износостойкости и затем полируется. На обоих концах плунжера нарезана внутренняя резьба для присоединения клапанов или переводников.

Клапаны насосов. В штанговых насосах применяют шариковые клапаны с одним шариком -- со сферической фаской седла и двумя шариками -- со ступенчато-конусной.

Для передачи движения от станка-качалки к плунжеру насоса предназначены насосные штанги -- стальные стержни круглого сечения длиной 8 м, диаметрами 16, 19, 22 или 25 мм, соединяемые с помощью муфт.

Условия эксплуатации штанг определяют повышенные требования к их прочности, поэтому для изготовления штанг применяют сталь высокого качества.

Подача насосной установки. Общее количество жидкости, которое подает насос при непрерывной работе, называется его подачей.

Фактическая подача насоса почти всегда меньше теоретической и лишь в тех случаях, когда скважина фонтанирует через насос, его подача может оказаться равной или большей, чем теоретическая.

Отношение фактической подачи насоса к теоретической называется коэффициентом подачи насоса . Эта величина характеризует работу насоса в скважине и учитывает все факторы, снижающие его подачу.

Работа штанговой установки считается удовлетворительной, если коэффициент подачи ее не меньше 0,5--0,6.

Эксплуатация скважин в осложненных условиях.

Многие скважины эксплуатируются в осложненных условиях, например: из пласта в скважину вместе с нефтью поступает большое количество свободного газа; из пласта выносится песок; в. насосе и трубах откладывается парафин.

Наибольшее число осложнений и неполадок возникает при эксплуатации скважин, в продукции которых содержится газ или песок.

Разработаны различные технологические приемы предотвращения вредного влияния газа на работу насосной установки, которые включают: использование насосов с уменьшенным вредным пространством; удлинение длины хода плунжера; увеличение глубины погружения насоса под уровень жидкости в скважине; отсасывание газа из затрубного пространства.

Песок, поступающий из пласта вместе с нефтью, может образовать на забое песчаную пробку, в результате чего уменьшается или полностью прекращается приток нефти в скважину. При работе насоса песок, попадая вместе с жидкостью в насос, преждевременно истирает его детали, часто заклинивает плунжер в цилиндре.

Для предохранения насоса от вредного влияния песка: ограничивают отбор жидкости из скважины; применяют насосы с плунжерами специальных типов (с канавками, типа «пескобрей»); применяют трубчатые штанги и др.

Рис. 6

Защитные приспособления на приеме насоса. Все мероприятия режимного и технологического характера по снижению вредного влияния газа и песка на работу штангового насоса обычно дополняются применением защитных приспособлений у приема насоса -- газовых, песочных якорей или комбинированных газопесочных якорей.

Одна из конструкций газопесочного якоря показана на рис. 6. Этот якорь состоит из двух камер -- газовой (верхней) 4 и песочной (нижней) 7, соединенных с помощью специальной муфты 5, в которой просверлены отверстия Б. В верхней камере якоря укреплена всасывающая трубка 3, ав нижней -- рабочая труба 6, снабженная конической насадкой 8. Якорь присоединяется к приему насоса 1 через переводник 2, одновременно связывающий корпус якоря со всасывающей трубкой. На нижнем конце песочной камеры навинчена глухая муфта 9.

При работе насоса жидкость из скважины поступает через отверстия А в газовую камеру 4 , где газ отделяется от нефти. Затем отсепарированная нефть через отверстия Б и рабочую трубу 6 направляется в песочную камеру 7, отделившаяся от песка жидкость поднимается по кольцевому пространству в песочной камере и поступает через отверстия в специальной муфте во всасывающую трубку 3 на прием насоса 2 .

В зависимости от количества песка, поступающего с нефтью при добыче, выбирают длину корпуса песочной камеры.

Для лучшего выноса песка иногда успешно применяют насосные установки с полыми (трубчатыми) штангами. В качестве таких штанг используют насосно-компрессорные трубы диаметрами 33, 42, 48 мм.

Трубчатые штанги являются одновременно и звеном, передающим плунжеру насоса движение от станка-качалки, и трубопроводом для откачиваемой из скважины жидкости. Эти штанги присоединяют к плунжеру с помощью специальных переводников.

Предотвращение отложений парафина. При добыче парафинистой нефти в скважинах возникают осложнения, вызванные отложением парафина на стенках подъемных труб и в узлах насоса.

Отложения парафина на стенках подъемных труб уменьшают площадь кольцевого пространства, в результате чего возрастает сопротивление перемещению колонны штанг и движению жидкости.

По мере роста парафиновых отложений увеличивается нагрузка на головку балансира станка-качалки и нарушается его уравновешенность, а в случае сильного запарафинивания труб снижается и коэффициент подачи насоса. Отдельные комки парафина, попадая под клапаны, могут нарушить их герметичность.

При добыче нефти с большим содержанием парафина обычно применяют методы устранения отложений парафина, при которых не требуются остановка скважины и подъем труб на поверхность:

  • 1) очистка труб механическими скребками различной конструкции, установленными на колонне штанг;
  • 2) нагрев подъемных труб паром или горячей нефтью, закачиваемой в затрубное пространство;
  • 3) нагрев подъемных труб электрическим током -- электродепарафинизация.

В настоящее время при насосной эксплуатации широко применяют насосно-компрессорные трубы, футерованные стеклом или лаками. В таких трубах парафин не откладывается, и эксплуатация скважин происходит в нормальных условиях.

Глубинные штанговые насосы бывают с нижним или верхним манжетным креплением и могут быть с механическим креплением в верхней или нижней части. Штанговые глубинные насосы обладают рядом достоинств, в который входят: простота конструкции, возможность откачки жидкости из нефтяных скважин, в случае если иные способы эксплуатации неприемлемы. Подобные насосы способны работать на очень большой глубине, и обладают простотой процесса регулировки. Также к достоинствам стоит отнести механизацию процесса откачки и простоту в обслуживании установки.

Преимущества штанговых глубинных насосов

  • · Обладают высоким коэффициентом полезного действия;
  • · Для первичных двигателей могут быть использованы самые разнообразные приводы;
  • · Проведение ремонта непосредственно на месте выкачки нефти;
  • · Установки штанговых глубинных насосов могут производиться в усложненных условиях добычи нефти - в скважинах с наличием мелкодисперсного песка, при наличии парафина в добываемом продукте, при высоком газовом факторе, при откачке различных коррозийных жидкостей.

Характеристики штанговых глубинных насосов

  • · Обводнённость - до 99%;
  • · Температура - до 130 С;
  • · Работа при содержании механических примесей до 1,3 г/литр;
  • · Работа при содержании сероводорода - до 50 мг/литр;
  • · Минерализация воды - до 10 г/литр;
  • · Показатели pH - от 4 до 8.

Добыча нефти с применением скважинных штанговых насосов - один самых распространённых способов добычи нефти. Это не удивительно, простота и эффективность работы сочетаются в ШГН с высочайшей надёжностью. Более 2/3 действующих скважин используют установки с ШГН.

Для заказа штангового глубинного насоса необходимо заполнить опросный лист либо обратиться к нашим специалистам, заполнив форму в правой части страницы или позвонив по указанным контактным телефонам.

ШГУ включает:

  • а) наземное оборудование -- станок-качалка (СК), оборудование устья, блок управления;
  • б) подземное оборудование -- насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Рис. 1

Штанговая глубинная насосная установка (рисунок 1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 , насосно-компрессорных труб 3 , подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6 , сальникового штока 7 , станка качалки 9 , фундамента 10 и тройника 5 . На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1 .

СТАНКИ-КАЧАЛКИ

Станок-качалка (рисунок 2), является индивидуальным приводом скважинного насоса.

Рисунок 2 Станок-качалка типа СКД 1 -- подвеска устьевого штока; 2 -- балансир с опорой; 3 -- стойка; 4 -- шатун; 5 -- кривошип; 6 -- редуктор; 7 -- ведомый шкив; 8 -- ремень; 9 -- электродвигатель; 10 -- ведущий шкив; 11 -- ограждение; 12 -- поворотная плита; 13 -- рама; 14 -- противовес; 15 -- траверса; 16 -- тормоз; 17 -- канатная подвеска

Основные узлы станка-качалки -- рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 (рисунок 13). Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока -- 7 на рисунке 12) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Долгое время нашей промышленностью выпускались станки-качалки типоразмеров СК. В настоящее время по ОСТ 26-16-08-87 выпускаются шесть типоразмеров станков-качалок типа СКД, основные характеристики приведены в таблице 1.

Таблица 1

Станок_качалка

Число ходов балансира, мин.

Масса, кг

Редуктор

СКД3 -- 1.5-710

СКД4 -- 21-1400

СКД6 -- 25-2800

СКД8 -- 3.0-4000

СКД10 -- 3.5-5600

СКД12 --3.0-5600

В шифре, например, СКД8 -- 3.0-4000, указано Д -- дезаксиальный; 8 -- наибольшая допускаемая нагрузка на головку балансира в точке подвеса штанг, умноженная на 10 кН; 3.0 -- наибольшая длина хода устьевого штока, м; 4000 -- наибольший допускаемый крутящий момент на ведомом валу редуктора, умноженный на 10 -2 кН*м.

АО «Мотовилихинские заводы» выпускает привод штангового насоса гидрофицированный ЛП -- 114.00.000, разработанный совместно со специалистами ПО «Сургутнефтегаз».

Моноблочная конструкция небольшой массы делает возможным его быструю доставку (даже вертолетом) и установку без фундамента (непосредственно на верхнем фланце трубной головки) в самых труднодоступных регионах, позволяет осуществить быстрый демонтаж и проведение ремонта скважинного оборудования.

Фактически бесступенчатое регулирование длины хода и числа двойных ходов в широком интервале позволяет выбрать наиболее удобный режим работы и существенно увеличивает срок службы подземного оборудования.

Станки-качалки для временной добычи могут быть передвижными на пневматическом (или гусеничном) ходу. Пример -- передвижной станок-качалка «РОУДРАНЕР» фирмы «ЛАФКИН».

ШТАНГИ НАСОСНЫЕ (ШН)

ШН предназначены для передачи возвратно-поступательного движения плунжеру насоса (рисунок 16). Изготавливаются основном из легированных сталей круглого сечения диаметром 16, 19, 22, 25 мм, длиной 8000 мм и укороченные -- 1000 - 1200, 1500, 2000 и 3000 мм как для нормальных, так и для коррозионных условий эксплуатации.


Рисунок 5 Насосная штанга

Шифр штанг -- ШН-22 обозначает: штанга насосная диаметром 22 мм. Марка сталей -- сталь 40, 20Н2М, 30ХМА, 15НЗМА и 15Х2НМФ с пределом текучести от 320 до 630 МПа.

Насосные штанги применяются в виде колонн, составленных из отдельных штанг, соединенных посредством муфт.

Муфты штанговые выпускаются: соединительные типа МШ (рисунок 6) -- для соединения штанг одинакового размера и переводные типа МШП -- для соединения штанг разного диаметра.


Рисунок 6 Соединительная муфта а -- исполнение I; б -- исполнение II

Для соединения штанг применяются муфты -- МШ16, МШ19, МШ22, МШ25; цифра означает диаметр соединяемой штанги по телу (мм).

АО «Очерский машиностроительный завод» изготавливает штанги насосные из одноосноориентированного стеклопластика с пределом прочности не менее 80 кгс/мм 2 . Концы (ниппели) штанг изготавливаются из сталей. Диаметры штанг 19, 22, 25 мм, длина 8000 ё 11000 мм.

Преимущества: снижение веса штанг в 3 раза, снижение энергопотребления на 18 ё 20 %, повышение коррозионной стойкости при повышенном содержании сероводорода и др. Применяются непрерывные штанги «Кород».

Скважинные насосы типа НВ1 выпускают шести исполнений:

НВ1С -- вставной с замком наверху, составным втулочным цилиндром исполнения ЦС, нормального исполнения по стойкости к среде;

НВ1Б -- вставной с замком наверху, цельным (безвтулочным) цилиндром исполнения ЦБ, нормального исполнения по стойкости к среде;

НВ1Б И -- то же абразиовостойкого исполнения по стойкости к среде;

НВ1БТ И -- то же, с полым штоком, абразивостойкого исполнения по стойкости к среде;

НВ1БД1 -- вставной с замком наверху, цельным цилиндром исполнения ЦБ, одноступенчатый, двухплунжерный, нормального исполнения по стойкости к среде;

НВ1БД2 -- вставной с замком наверху, цельным цилиндром исполнения ЦБ, двухступенчатый, двухплунжерный, нормального исполнения по стойкости к среде.

Скважинные насосы всех исполнений, кроме исполнения НВ1БД1 и НВ1БД2, одноплунжерные, одноступенчатые.

Скважинные насосы типа НВ2 изготовляют одного исполнения:

НВ2Б -- вставной с замком внизу, цельным цилиндром исполнения ЦБ, одноплунжерный, одноступенчатый, нормального исполнения по стойкости к среде (рисунок 8).


Рисунок 8 Скважинный штанговый насос исполнения НВ2Б 1 -- защитный клапан; 2 -- упор; 3 -- шток; 4 -- контргайка; 5 -- цилиндр; 6 -- клетка плунжера; 7 -- плунжер; 8 -- нагнетательный клапан; 9 -- всасывающий клапан; 10 -- упорный ниппель с конусом

Варианты крепления насосов приведены на рисунке 11.


Похожие публикации