Баланс питательных веществ в питании: белков, жиров, углеводов. Баланс питательных веществ - плодородие почвы

Баланс питательных элементов в почве

Баланс элементов питания – это математическое выражение круговорота элементов питания в земледелии. Определение баланса питательных элементов является научной основой планирования и прогнозирования применения минеральных удобрений, распределения их между районами и хозяйствами, позволяет целенаправленно регулировать плодородие, предохранять окружающую среду от загрязнения удобрениями. Баланс основных элементов питания отражает степень интенси­фикации сельскохозяйственного производства.

Баланс элементов питания в системе «удобрение – почва – растение» оценивается по разности между суммарным их количеством, поступившим в почву и отчуждаемым из нее. Таким образом, баланс питательных элементов в почве состоит из приходной и расходной частей. В приходную часть баланса входит поступление питательных элементов в почву с удобрениями, семенами , из атмосферы , в том числе азот, продуцируемый клубеньковыми бактериями бобовых культур (симбиотический) и свободноживущими бактериями – азотфиксаторами (несимбиотический азот). Расходная часть баланса включает хозяйственный вынос питательных элементов (с отчуждаемой с поля частью урожая), потери элементов питания из почвы и удобрений с поверхностными водами от вымывания, эрозии, испарения и газообразные потери (азота).

В результате сельскохозяйственного использования почвы претерпевают существенные изменения, при этом изменяется интенсивность процессов превращения и миграции элементов питания, потребления и вынос их растениями. Величина потребления и потерь элементов питания зависит от гранулометрического состава и степени окультуренности почвы, характера ее сельскохозяйственного использования, вида, доз и сроков использования удобрений, агротехнических приемов и других условий. Это делает необходимым периодическое уточнение приходных и расходных статей баланса элементов питания. Для объективной характеристики степени обеспеченности планиру емых урожаев элементами питания целесообразно иметь балансовые расчеты не менее чем за 5 лет.

Различают несколько видов баланса питательных элементов: полный (илибиологический, или экологический), внешнехозяйственный , хозяйственный и эффективный.

Полный баланс дает полное представление о кругообороте элементов, так как учитывает все источники поступления питательных элементов в почву (с удобрениями, семенами, из атмосферы, биологический азот) и все статьи расхода элементов питания (вынос с основной и побочной продукцией, отчуждаемой с поля, содержание в корневых и послеуборочных остатках, поверхностный сток, вымывание и газообразные потери).

При внешнехозяйственном балансе сопоставляются количество питательных элементов, отчуждаемое с территории хозяйства с товарной продукцией растениеводства и животноводства, и поступление их с минеральными удоб­рениями, комбикормами, органическими удобрениями, при­обретаемыми хозяйством (торф, сапропели, лигнин, торфо-навозные компосты и др.). На внешнехозяйственный баланс влияет специализация хозяйства. Так, в хозяйствах, специализирующихся на производстве продукции животноводства и использующих собственные корма, с органическими удобрениями в почву возвращается 80–90 % калия, 60–70 – фосфора и 40–50 % азота, вынесенных с кормами. В хозяйствах зернового направления с территории хозяйства отчуждается 60–80 % азота, 70–85 – фосфора и 15–35 % калия от вынесенных урожаем.

Для характеристики баланса используется показатель интенсивности баланса отношение поступления элементов питания к их расходу . Интенсивность баланса выражается в процентах или коэффициентами. Величина интенсивности баланса менее 100 % характеризует дефицитный, 100 % – бездефицитный и более 100 % – положительный баланс. Интенсивность баланса по азоту, фосфору и калию на пашне в Беларуси за 2001–2005 гг. была по азоту – 116, фосфору – 123, калию – 127 %.

Дефицитный баланс питательных элементов (превышение расхода над поступлением) предупреждает о том, что происходит истощение почв, снижение их плодородия.

Отчуждение из сферы сельскохозяйственного производства азота, фосфора и калия с товарной продукцией растениеводства и животноводства необходимо в полной мере компенсировать внесением минеральных удобрений.

Хозяйственный баланс питательных элементов составляется для оценки системы применения удобрений. Приведем методику его расчета, разработанную Институтом почвоведения и агрохимии. Приходные статьи баланса: поступление питательных элементов с минеральными удобрениями; с органическими удобрениями; симбиотический азот; с семенами; с атмосферными осадками; несимбиотический азот. Расходные статьи баланса элементов питания: вынос планируемыми урожаями; потери от вымывания (выщелачивания); потери от эрозии почв; газообразные потери азота.

Количество питательных элементов, поступающих с минеральными удобрениями, определяют по дозам для культур и находят среднее значение на 1 га севооборотной площади. Поступление с органическими удобрениями находят по насыщенности севооборота органическими удобрениями.

Пример. Насыщенность органическими удобрениями в севообороте – 12 т/га. С 1 т навоза крупного рогатого скота на соломенной подстилке поступает в почву 5,0 кг азота (табл. 14.11), а с 12 т – 60,0 кг, фосфора – 30,0 кг (2,5 ∙ 12), калия – 72,0 кг (6,0 ∙ 12).

Для определения количества биологического азота используют данные о величинах фиксированного из атмосферы азота, остающегося в почве после бобовых растений. Так, в расчете на 1 ц зеленой массы в почве остается симбиотического азота, сверх усвоенного растениями: после многолетних бобовых трав (кроме люцерны) – 0,35 кг, люцерны – 0,40, после многолетних бобово-злаковых смесей – 0,20 кг, после однолетних бобовых трав – 0,25 кг, однолетние бобово-злаковые травосмеси – 0,20 кг. Бобово-злаковые травы сенокосов и пастбищ на 1 ц зеленой массы оставляют в почве 0,15 кг азота. На 1 ц зерна люпин в чистом виде фиксирует 5,0 кг, кормовые бобы – 3,0, горох, пелюшка, вика, соя в чистом виде – 2,5, люпин в смеси с зерновыми культурами – 4,5, горох, пелюшка и вика в смеси с зерновыми культурами – 2,0 кг азота.

14.11. Поступление питательных элементов с органическими удобрениями, кг/т

Вид органических удобрений N Р 2 О 5 К 2 О СаО MgO SО 4 *
Навоз КРС на соломенной подстилке 5,0 2,5 6,0 4,0 1,1 0,2
Навоз КРС на торфяной подстилке 6,0 2,0 5,0 4,5 1,0 0,5
Компост торфонавозный:
1:1 5,0 1,6 4,0 3,5 0,6 0,3
1:2 5,5 1,8 4,5 4,0 0,8 0,4
Солома (зерновые) 4,0 1,5 10,0 2,0 1,0 1,5
Навоз КРС жидкий 2,0 1,0 2,5 0,5 0,4 0,1
Навоз свиной жидкий 2,5 0,9 1,8 0,6 0,2 0,1
Навоз КРС полужидкий 3,5 1,5 4,0 1,3 0,9 0,3
Помет птичий (подстилочный) 20,0 16,5 8,5 18,0 6,0 3,5
Компост торфопометный:
1:1 10,0 8,0 3,0 9,0 3,0 1,5
1:2 12,5 10,0 4,0 10,0 4,0 2,0


* Значения определены расчетно.

Пример. В севообороте площадью 900 га люпин занимает 100 га, клевер – 100 га. Урожайность зеленой массы люпина – 200 ц/га, клевера (зеленой массы) – 200 ц/га. После люпина в почве остается на 1 га 50 кг азота (200∙0,25), а на 100 га – 5000 кг. После клевера на 1 га остается 70 кг азота, на 100 кг – 7000 кг. Сумму остающегося после люпина и клевера азота делят на площадь пашни в севообороте и находят среднее количество симбиотического азота на 1 га: (5000 кг + 7000 кг) : 900 = 13,3 кг.

С семенами, по данным Института почвоведения и агрохимии, в среднем поступает 3 кг/га N, 1,3 – Р 2 О 5 , 1,5 – К 2 О, 0,3 – СаО, 0,1 – MgO, 0,2 кг/га S. С атмосферными осадками поступает 9,4 кг/га N, 0,5 – Р 2 О 5 , 10,3 – К 2 О, 25,3 – СаО, 5,0 – MgO и 36 кг/га S (SO 4). Поступление азота, фиксированного свободноживущими бактериями, при расчете баланса на пахотных и лугопастбищных угодьях принимается на уровне 15 кг/га в год.

При расчете расходных статей баланса вначале определяют вынос питательных элементов планируемыми урожаями, используя данные табл. 2.5, затем определяются значения выноса основных питательных элементов в среднем на 1 га севооборотной площади. Потери элементов питания от вымывания (выщелачивания) и от эрозии почв приведены в табл. 14.12.

Газообразные потери азота на пахотных и лугопастбищных угодьях колеблются в пределах от 10 до 50 % от внесенного с удобрениями. В атмосферу выделяются молекулярный азот, закись, окись и двуокись азота, аммиак. По данным Института почвоведения и агрохимии, в Беларуси в среднем улетучивается 25 % азота, внесенного с минеральными и органическими удобрениями. По каждому элементу рассчитывается средневзвешенный показатель потерь с учетом количества эродированных почв в хозяйстве.

Пример . Из 2850 га пашни хозяйства 201 га – слабоэродированные почвы, 105 – средне- и 98 га – сильноэродированные почвы. Средневзвешенный показатель потерь азота от эрозии в расчете на 1 га пашни будет равен (5∙201+ +10∙105 + 15∙98) : 2850 = 1,2 (кг/га). На сенокосах и пастбищах потери элементов питания от вымывания и эрозии не учитываются. Сумма по статьям расхода показывает расход элементов питания в среднем на 1 га севооборотной площади.

14.12. Потери элементов питания от вымывания и эрозии на пахотных почвах, кг/га

Почвы N Р 2 О 5 К 2 О СаО MgO SО 4
Потери от вымывания
Дерново-подзолистые:
суглинистые 0,2
супесчаные на морене 0,1
супесчаные на песке 0,1
песчаные 0,1
Торфяные 0,1
Потери от эрозии
Степень эродированности почвы:
слабая 0,05
средняя 0,10
сильная 0,15
очень сильная 0,20

Сопоставив приход с расходом, находят общий баланс и его интенсивность. Например, приход по азоту на 1 га равен 115 кг, а расход – 90 кг, т.е. общий баланс будет + 25 кг/га (115–90), а интенсивность баланса составит 127% [(115:90) ∙ 100].

Общий баланс основных питательных элементов (азот, фосфор, калий) принято считать удовлетворительным, когда его интенсивность приблизительно равна: по азоту – 110–120 % , по фосфору – 130–150, по калию – 120–150 %. По данным Института почвоведения и агрохимии, такие значения интенсивности баланса в производственных условиях обеспечивают про­дуктивность пашни на уровне 50–60 ц/га к.ед.

Оптимальные значения интенсивности баланса азота в зависимости от продуктивности пашни приведены в табл. 14.13.

14.13.Оптимальная интенсивность баланса азота в зависимости от продуктивности

По результатам длительных стационарных полевых опытов, Институт агрохимии и почвоведения рекомендует оптимальные параметры интенсивности баланса фосфора и калия в зависимости от содержания их в почвах (табл. 14.14). По данным Института почвоведения и агрохимии и других научных учреждений, фосфор из почвы практически не вымывается и не загрязняет грунтовые воды. Поэтому при расчетах баланса потери фосфатов не учитываются.

14.14. Оптимальная интенсивность баланса в зависимости от обеспеченности почв

фосфором и калием

Наряду с общим рассчитывается и эффективный баланс , который характеризует отношение между выносом растениями элементов питания и возможным их усвоением из поступивших в почву. Применив коэффициенты использования питательных элементов из удобрений, находят величины возможного их усвоения. Сопоставив величины возможного усвоения питательных элементов с выносом урожаем, получим характеристику эффективного баланса.

Пример. На 1 га севооборотной площади внесено 56 кг азота с минеральными удобрениями, с атмосферными осадками поступило 9 кг, всего – 65 кг, из них усвоится 60 %, т.е. 39 кг. С органическими удобрениями поступит 70 кг азота и еще 20 кг биологического (5 кг симбиотического и 15 кг несимбиотического), всего 90 кг/га азота. В первый год будет усвоено 25 % органического и биологического азота, или 22,5 кг (90 ∙ 0,25), вместе с минеральными формами – 61,5 кг (39+22,5). Растения на создание урожая используют 101 кг азота. Эффективный баланс характеризуется минусовым значением: 61,5–101,0 = –39,5 (кг/га). Интенсивность эффективного баланса по азоту будет равна 60 % (61,5:101 ∙ 100).

Аналогично рассчитываются эффективные балансы по фосфору и калию.

Для оценки системы применения удобрений по эффективному балансу проводится расчет возможного усвоения азота, фосфора и калия из почвенных запасов. Систему применения удобрений можно считать разработанной правильно в том случае, если дефицит элементов питания по эффективному балансу будет компенсироваться за счет возможного усвоения из почвы.

Пример. Для определения возможного усвоения элементов питания из почвенных запасов предварительно рассчитывают средневзвешенные значения содержания в почве гумуса, фосфора и калия по севообороту. Пусть в почве содержится 2 % гумуса и по 100 мг/кг почвы фосфора и калия. По данным Института почвоведения и агрохимии, растения могут усвоить из запасов почвы по 20–25 кг азота на каждый процент гумуса в почве. В нашем примере это составит 40–50 кг/га азота. Фосфор растения усваивают на уровне 6–8 % от запасов подвижных форм в почве, калий – 10–15 %. Запасы их в почве определяют умножением средневзвешенных значений их содержания на коэффициент 3. В нашем примере запасы фосфора и калия будут равны 300 кг/га (100 ∙ 3) каждого элемента. Таким образом, усвоится 18–24 кг/га фосфора (300 ∙ 0,06...0,08) и 30–45 кг/га калия (300 ∙ 0,1...0,15). Если принять эффективный баланс предыдущего примера 39,5 кг азота, то есть из почвы может быть усвоено 40–50 кг азота, то планируемые величины урожаев будут обеспечены питательными элементами и систему удобрений можно считать разработанной правильно.

При оценке системы применения удобрений по балансу питательных элементов прогнозируется изменение содержания в почве за ротацию севооборота подвижных форм фосфора и обменного калия. Поступление фосфора и калия за ротацию севооборота сверх расхода делят на норматив (табл. 14.15, 14.16) и определяют увеличение их содержания в почве. Результат суммируют с исходным содержанием и получают прогноз.

14.15. Нормативы затрат фосфорных удобрений сверх выноса с урожаем для увеличения

Гранулометрический состав рН KCl
Менее 60 61–100 101–150 151–250
Суглинистые 4,5–5,0
5,1–5,5
5,6–6,0
Супесчаные 4,5–5,0
5,1–5,5
5,6–6,0
Песчаные 4,5–5,0
5,1–5,5
Торфяные В среднем

14.16. Нормативы затрат калийных удобрений сверх выноса с урожаем для увеличения

Гранулометрический состав Интенсивность баланса, % Исходное содержание Р 2 О 5 , мг/кг почвы
Менее 80 81–140 141–200
Суглинистые
Супесчаные
Песчаные
Торфяные В среднем

Пример . Допустим, что ежегодно сверх выносимого урожаем в почве остается 65 кг/га Р 2 О 5 , т.е. за ротацию девятипольного севооборота поступит 585 кг/га Р 2 О 5 . В первые 4 года содержание в почве Р 2 О 5 увеличивается до 147 мг/кг при исходном содержании на суглинистой почве 100 мг/кг и нормативе возмещения 51 кг/га на 10 мг/кг почвы (табл. 14.16). В последующие 5 лет норматив возмещения возрастает до 65 кг/га и содержание Р 2 О 5 в почве увеличивается еще на 50 мг/кг, достигнув к концу ротации севооборота 200 мг/кг почвы. Таким образом, через девять лет содержание Р 2 О 5 в почве должно составить 197 мг/кг. Аналогично прогнозируется содержание К 2 О.

Расчет баланса кальция, магния и серы . В приходной части баланса учитывается поступление этих элементов с известковыми, органическими и минеральными удобрениями, а также с осадками и семенами, в расходной части вынос урожаем и потери от фильтрации и эрозии. Поступление кальция и магния с известковыми удобрениями рассчитывают по количеству известковых удобрений на 1 га. Например, в среднем на 1 га севооборотной площади будет ежегодно вноситься 1,1 т доломитовой муки, или 0,935 т СаСО 3 (содержание СаСО 3 – 85 %). Из табл. 14.17 находим количество СаО и MgO на 1 га, вносимое с известковыми удобрениями. С 935 кг СаСО 3 поступает 280,5 кг СаО (30 ∙9,35) и 187 кг MgO (20 ∙ 9,35).

в расчете на 100 кг д.в. (N, Р 2 О 5 , К 2 О, СаСО 3), кг

Удобрения СаО MgO S, %
Простой суперфосфат
Двойной суперфосфат
Сульфат аммония 24,2
Сульфат калия
Молотый известняк
Молотый доломит
Молотый доломитизированный известняк 5,0
Мел
Гашеная известь
Доломитовая мука
Дефекат
Цементная пыль 1,0 1,0
Сланцевая зола
Фосфогипс (40%-ной влажности, на 100 кг физической массы) 17,7–20,6
Сульфат калия 18,0
Сульфат магния 18,6
Сульфат натрия 22,6

По количеству минеральных удобрений на 1 га в д.в. определяют поступление СаО, MgO и S в почву. Например, на 1 га планируется внести 65 кг Р 2 О 5 в виде двойного суперфосфата. С этим количеством Р 2 О 5 поступает 20 кг СаО (65×31/100). В случае применения сульфата аммония и сульфата калия определяют количество действующего вещества, поступающее с этими видами удобрений на 1 га, и рассчитывают поступление серы, используя данные табл. 14.11.

Поступление кальция, магния и серы с органическими удобрениями рассчитывают с учетом насыщенности почвы последними и поступления этих элементов с удобрениями (см. табл. 14.11). Например, при насыщенности органическими удобрениями в севообороте 12 т/га в почву поступит 48 кг/га СаО (4×12), 13,2 кг/га MgO (1,1×12) и около 2,4 кг/га SО 4 (0,2×12). С атмосферными осадками в почву поступает 25,3 кг/га СаО, 3,6 – MgO, 3,6 кг/га S, с семенами – соответственно 0,3; 0,1 и 0,2 кг/га. Суммируя результаты по статьям приходной части баланса, получим поступление кальция, магния и серы на 1 га севооборотной площади.

Вынос урожаем кальция, магния и серы рассчитывают аналогично тому, как это делается для азота, фосфора и кальция. Используя данные, приведенные в табл. 2.5, рассчитывают показатели выноса по каждой культуре и вычисляют средние значения на 1 га. Потери от вымывания и эрозии находят по табл. 14.12.

При известковании потери кальция за счет вымывания возрастают, особенно на легких почвах. По данным Института почвоведения и агрохимии, на почвах с рН (КС1) более 6 потери кальция возрастают в среднем на 40 % по сравнению со средними данными на почвах без известкования. На кислых почвах (рН менее 5) вымывание кальция примерно на 20 % ниже. Поэтому при расчете баланса кальция средний нормативный показатель потерь (табл. 14.12) на почвах с рН более 6 следует умножить на 1,4, а на почвах с рН менее 5 – на 0,8.

Влияние известкования на вымывание магния неоднозначно, так как в одних случаях катионы кальция ускоря­ют его вымывание из почвы, что обусловлено вытеснением магния из поглощающего комплекса, а в других – могут уменьшить вымывание магния, нейтрализуя кислотность почвы, которая способствует потерям магния за счет вымывания. В связи с этим при расчетах баланса магния используют нормативы потерь от вымывания, приведенные в табл. 14.12. Определяют расход на 1 га.

Сопоставив показатели по приходу и расходу, находят значения баланса и его интенсивность.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Что понимается под балансом питательных элементов в почве?

2. Какое значение имеет баланс питательных элементов в почве для регулирования плодородия почв и урожайности сель­скохозяйственных культур?

3. Как оценить систему применения удобрений в севообороте по балансу питательных элементов?

4. Какие различают виды баланса элементов питания?

5. Как можно прогнозировать изменение плодородия почвы по балансу питательных элементов в ней?

Показатели баланса отражают пути превращения и расхода питательных веществ минеральных и органических удобрений, долю элементов питания, продуктивно используемую и отчуждаемую растениями из почвы и воспроизводимую за счет органических и минеральных удобрений. Баланс питательных веществ в системе почва-растения-удобрения составляет часть общего процесса взаимодействия элементов питания и относится к малому биологическому круговороту. Рассчитывается баланс путем сопоставления количества элементов питания, поступивших в почву, с их расходом на создание урожая и непроизводительными потерями.
Учет результатов баланса позволяет планировать производство продуктов сельского хозяйства с наименьшими затратами и более высокой окупаемостью органических и минеральных удобрений, прогнозировать потребность в удобрениях и изменение обеспеченности почв питательными веществами, регулировать плодородие почв, охрану окружающей среды. Расчеты баланса питательных веществ по отдельным хозяйствам и севооборотам позволяют установить более обоснованные системы удобрений сельскохозяйственных культур, уменьшить потери питательных веществ.
Для оценки эффективности сельскохозяйственного производства крупных регионов, областей, районов, хозяйств используются различные виды баланса питательных веществ в земледелии: биологический, хозяйственный, дифференцированный и эффективный.
Биологический баланс дает наиболее полное представление о круговороте веществ. В приходные статьи биологического баланса включаются поступления питательных веществ с органическими и минеральными удобрениями, осадками, семенами, симбиотическая и несимбиотическая азотфиксация, в расходные – содержание питательных веществ в основной и побочной продукции, отчуждаемой с поля, в корневых и послеуборочных остатках.
Хозяйственный баланс определяется по валовому поступлению и отчуждению элементов питания. При расчете хозяйственного баланса учитываются все приходные и расходные статьи, в том числе и непроизводительные потери. Хозяйственный баланс характеризует не только долю участия удобрений в малом биологическом круговороте, обеспеченность сельскохозяйственных культур элементами питания, но и характер изменения их содержания в почве, позволяет количественно прогнозировать тенденции изменения плодородия почв. В то же время хозяйственный баланс не дает полного представления об условиях питания отдельных культур или севооборота в целом, так как растения используют только часть элементов питания из внесенных удобрений.
Дифференцированный баланс. При расчетах этого вида баланса количество минеральных удобрений относится не на всю площадь земель, а только на площадь их первоочередного применения, т.е. на почвах недостаточно обеспеченных элементами питания.
Эффективный баланс определяется с учетом возможных коэффициентов использования питательных веществ из удобрений в год их внесения или за ротацию севооборота.
Баланс питательных веществ оценивается показателями дефицита элементов питания или их избытком, интенсивностью, структурой, емкостью, реутилизацией питательных веществ.
Дефицит или избыток элементов питания представляет разницу между всеми источниками их поступления и расхода и выражается в абсолютных (кг, тонны) или относительных (%) величинах на всю площадь или единицу площади.
Интенсивность баланса – отношение поступления элементов питания к выносу их урожаем. Выражается в виде процентов или коэффициентов. Величина интенсивности баланса менее 100% характеризует дефицитный баланс, более 100% - положительный.
Емкость баланса – сумма выноса из почвы и всех статей возмещения питательных элементов. Она характеризует мощность круговорота веществ. Чем больше емкость баланса, тем интенсивнее земледелие в исследуемом регионе, области, хозяйстве.
Структура баланса – характеризует долевое участие отдельных статей прихода и расхода элементов питания. Анализ структуры баланса позволяет оценить источники поступления, затраты на производство единицы продукции.
Реутилизация питательных веществ – определяется как отношение поступления в почву элементов питания с навозом к выносу их урожаем, т.е. реутилизация характеризует повторное использование элементов питания, поступивших с минеральными удобрениями через растениеводческую продукцию (солома, корм животных), прошедшую через животноводческие фермы и возвращаемую на поле в виде навоза.
Степень реутилизации элементов питания определяется в основном специализацией хозяйства, концентрацией животноводства. Высокий повторный возврат элементов питания имеет место в хозяйствах животноводческого направления, где меньше товарность растениеводческой продукции. Если в качестве органических удобрений используется не навоз, а торфонавозные компосты, то при определении степени реутилизации из общего количества элементов питания, поступивших в почву с органическими удобрениями, необходимо вычесть их наличие в торфе, используемом для приготовления компостов.
Баланс азота, фосфора и калия в земледелии Республики Беларусь, рассчитанный за период с 1966 по 1998 г., достаточно объективно отражает характер использования минеральных и органических удобрений (табл. 8.36 - 8.38).
В 1986-1990 гг. внесение азотных удобрений на пашне республики составляло 88 кг/га д.в., что вместе с азотом в органических удобрениях обеспечивало положительный баланс азота 23,8 кг/га, а интенсивность – 118%. Минимальное применение азотных удобрений, равно как фосфорных и калийных, отмечено в 1995 г. Баланс азота в этом году составил 9,2 кг/га, что свидетельствует о его недостатке для формирования урожайности возделываемых культур. В дальнейшем интенсивность баланса азота поддерживалась на уровне 100%, однако поступление его с минеральными удобрениями 51-55 кг/га д.в. было ниже необходимой потребности.
Баланс фосфора на пашне за период после 1986 г. снизился от 58-59 кг/га д.в. до 12-17 кг/га д.в. в 1997-1998 гг. Практически начиная с 1994 г. поступление фосфора с минеральными удобрениями не компенсирует вынос его с урожаем. Применение фосфорных удобрений на уровне 20-23 кг/га д.в. недостаточно для получения высоких и стабильных урожаев сельскохозяйственных культур и поддержания достигнутого содержания Р2О5 в почвах.
Применение калийных удобрений за последние 15 лет было более стабильным, однако в 1993-1996 гг. оно обеспечивало только слабоположительный баланс (6,0-24,5 кг/га) и было недостаточным для поддержания почвенного плодородия.
Для обеспечения эффективного использования удобрений рекомендуется поддерживать интенсивность баланса азота на уровне 100 - 110, фосфора – 130-150, калия – 140-160% при содержании Р2О5 и К2О в почвах в пределах 140-200 мг/га.

ВВЕДЕНИЕ

Расширенное воспроизводство потенциального и эффективного плодородия почвы – это исходное условие для обеспечения непрерывного роста урожайности сельскохозяйственных культур, которое возможно при положительном балансе питательных элементов и органического вещества почвы в мелиоративном земледелии. В естественных биоценозах достигается замкнутый цикл биогенных элементов, а в искусственных агроценозах происходит разрыв этого цикла в связи с. отчуждением на получение урожая и значительными потерями элементов питания при эрозии, инфильтрации и улетучивании. Создание необходимых условий для рационального круговорота питательных веществ – важнейшая задача орошаемого земледелия. Положительно влиять на эффективное плодородие почвы, под которым понимается обеспеченность почвы доступными азотом и фосфором, а также обменным калием, получать планируемые урожаи орошаемых культур возможно при проведении балансовых расчетов, создавая при этом с помощью внесения расчетных доз удобрений оптимальный уровень содержания гумуса и подвижных форм питательных элементов в почве.

РАСЧЕТ БАЛАНСА ПИТАТЕЛЬНЫХ ВЕЩЕСТВ

Баланс питательных веществ - это количественное выражение содержания питательных веществ в почве на конкретной площади с учетом всех статей их поступления (внесение удобрений, природные источники, азотфиксация, другие) и расхода (вынос с урожаем, естественные потери на вымывание, смыв, улетучивание и так далее) в течение определенного промежутка времени. Нарушение баланса питательных веществ в земледелии может ухудшить химический состав почвы, природных вод, а, следовательно, и растений. Это в свою очередь может изменить качество, питательную ценность сельскохозяйственной продукции и кормов для животных и привести к функциональным заболеваниям человека и животных.

Поэтому важно правильно управлять круговоротом питательных веществ в земледелии, создавать их активный баланс применением органических и минеральных удобрений, предотвращать их потери в окружающую природную среду. Это одна из важнейших задач создания и применения ландшафтно-адаптивных систем мелиоративного земледелия.

Баланс азота

Особый интерес представляет баланс азота – основного носителя жизни, элемента, определяющего количество и качество урожая. Проблема азота в земледелии очень актуальна. Это объясняется тем, что азот – элемент весьма мобильный и в почве не накапливается. Поэтому с повышением содержания других биогенных элементов, плодородия почвы и ее окультуренности в целом, азот будет определять величину и качество урожая. При расчете баланса азота учитываются только основные приходные и расходные статьи, включающие поступление азота с минеральными, органическими удобрениями и биологической фиксацией клубеньковыми бактериями, вынос азота с урожаем основной и побочной продукции. Уравнение баланса азота:

где Б а – баланс доступного азота, кг/га; У Д мин – дозы внесения минеральных азотосодержащих удобрений в туках, кг/га; Д орг CА мин – содержание азота в минеральном удобрении (приложение 4), %; CА орг – содержание азота в органическом удобрении (приложение 5), %; В а – вынос азота с урожаем основной и побочной продукции (приложение 1), кг/т; АФ – биологическая фиксация азота клубеньковыми бактериями бобовых культур, кг/т, (принимается равной 10 кг/т сена бобовых трав, 0,5 кг/т зеленого корма злакобобовых травосмесей, 26 кг/т зерна сои).

Пример расчета баланса азота.

Решение: Содержание азота в навозе 0,45%, сульфоаммофосе 12%; вынос с урожаем 3,5 кг/т. Азотфиксация у кукурузы отсутствует (АФ =0 ).

Кг/га. Баланс дефицитный.

Баланс фосфора

Хотя живым организмам требуется примерно в 10 раз меньше фосфора, чем азота, тем не менее, это важнейший биогенный элемент. Фосфор не только источник питания для растений, но и носитель энергии, входящий в состав различных нуклеиновых кислот. Дефицит фосфора резко снижает продуктивность растений. Фосфор не имеет естественных источников пополнения запаса в почве. Восполнить его потребление на создание урожаев можно только внесением фосфорных и органических удобрений. В перспективе проблема фосфора как биогенного элемента в земледелии возникает в первую очередь. В атмосфере фосфор находится в основном в виде пыли в малом количестве. Его круговорот более прост, чем круговорот азота. В него в экосистемах вовлечены лишь почва, вода и растения. На доступность этого элемента растениям влияют многие факторы среды, поэтому проблема фосфора как биогенного элемента в земледелии возникает в первую очередь. Рассчитывается баланс фосфора по формуле:

где Б ф – баланс доступного фосфора, кг/га; У – урожайность возделываемой культуры, т/га; Д мин – дозы внесения минеральных фосфоросодержащих удобрений в туках, кг/га; Д орг – дозы внесения органических удобрений, т/га; CФ мин – содержание фосфора в минеральном удобрении (приложение 4), %; CФ орг – содержание фосфора в органическом удобрении (приложение 5), %; В ф

Пример расчета баланса фосфора. При возделывании силосной кукурузы быливнесены 30 тонн навоза КРС на соломенной подстилке и 150 килограмм сульфоаммофоса на гектар. В результате было получено 60 т/га силоса.

Решение: Содержание фосфора в навозе 0,23%, сульфоаммофосе 39%; вынос с урожаем 1,4 кг/т. кг/га. Баланс – положительный.

Баланс калия

Калий содержится в основном в минеральной тонкодисперстной части почвы. Недостаток его в почве резко угнетает рост и развитие растений. Находясь в них в форме катиона К + , он регулирует важные физиологические процессы, обеспечивая влагообмен в растительных клетках и поддерживая высокую активность цитоплазмы. Уравнение баланса калия имеет вид:

где Б к – баланс доступного калия, кг/га; У – урожайность возделываемой культуры, т/га; Д мин – дозы внесения минеральных калийсодержащих удобрений в туках, кг/га; Д орг – дозы внесения органических удобрений, т/га; CК мин – содержание калия в минеральном удобрении (приложение 4), %; CК орг – содержание калия в органическом удобрении (приложение 5), %; В к – вынос фосфора с урожаем основной и побочной продукции (приложение 1), кг/т.

Пример расчета баланса калия. При возделывании озимой пшеницы быливнесены 20 тонн навоза КРС на соломенной подстилке, 60 килограмм хлористого калия и 120 килограмм каpбоаммофоски на гектар. В результате было получено 4,0 т/га зерна.

Решение: Содержание калия в навозе 0,5%, хлористом калии 53%, карбоаммофоске 17%; вынос с урожаем 36 кг/т.

Кг/га. Баланс – бездефицитный.

РАСЧЕТ БАЛАНСА ГУМУСА

В почве одновременно происходит несколько разнонаправленных процессов, связанных с разложением (минерализацией), образованием (гумификацией) гумуса. Для направленного регулирования запасов гумуса в исследуемых почвах на основе полученной информации о содержании и запасах его в почвах изучаемого участка и данных об урожайности рассчитывается баланс гумуса. Уравнение баланса гумуса имеет вид:

где Б г – баланс гумуса, т/га; У – урожайность, т/га; В а – вынос азота на 1 т урожая, кг/т (приложение 1); П П и П К – поступление пожнивных и корневых остатков, соответственно, т/га; K ГР и K ГУ – коэффициенты гумификации растительных остатков и органических удобрений соответственно (приложение 3); Д орг – доза внесения органического удобрения, т/га; %ВЛ – влажность органического удобрения, % (приложение 5).

Поступление пожнивных и корневых остатков определяется с помощью регрессионных зависимостей их от урожайности сельскохозяйственной культуры (приложение 2).

Пример расчета баланса гумуса. При возделывании картофеля быловнесено 150 тонн навозной жижи КРС на гектар. В результате было получено 24 т/га клубней картофеля.

Решение: Поступление пожнивных остатков: П П = 0,04∙24+0,1=1,06 т/га. Поступление корневых остатков: П к = 0,08∙24+0,8 = 1,536 т/га. Коэффициент гумификации остатков 0,35, навоза КРС 0,35.

т/га.Баланс дефицитный.

Изменение содержания гумуса

Расчет исходных запасов гумуса в верхнем 30-сантиметровом слое ведется с учетом плотности сложения почвы по формуле:

, (5)

где ЗГ 0 – начальные запасы гумуса в верхнем 30-ти сантиметровом слое, т/га; ρ сл – плотность сложения почвы (приложение 6), г/см 3 ; СГ 0 – исходное содержание гумуса (приложение 6), %.

Прогнозное содержание гумуса (%) определяется по формуле:

, (6)

Полученное значение сравнивается с диапазоном фонового содержания гумуса (приложение 7). Кроме этого, определяется абсолютное и относительное изменение содержания гумуса:

, (7)

, (8)

В результате делается вывод о значимости изменений.

Пример оценки изменения содержания гумуса. В результате расчета баланса гумуса было определено, что запасы сократятся на 36 т/га. Почва орошаемого участка каштановая среднесуглинистая с исходным содержанием гумуса 2,2%. Определить изменение содержания и его значимость.

Плотность сложения верхнего слоя почвы 1,22 г/см 3 . т/га. %.

Это значение выходит за пределы диапазона колебаний 1,8-3,0 (приложение 8). Абсолютное и относительное изменения содержания также очень высокие: ; , что говорит о недопустимо дефицитном балансе органического вещества почвы.

Описание выполнения.

1. Запустите Microsoft Excel .

А » и «В А » в 2-3 раза.

3. В ячейку «А2 » введите слово «Культура», а в ячейки «А3 »- «А12 » названия культур севооборота из вашего варианта.

4. В ячейку «В2 » введите слово «Урожайность», а в ячейки «В3 »- «В12 » урожайности культур севооборота из вашего варианта.

5. В ячейку «D1 » введите слово «Вынос», в ячейки «C2 » – «азота»; «D2 » – «фосфора»; «E2 » – «калия».

6. В ячейку «F1 » введите слово «Потери», в ячейку «F2 » – «гумуса».

7. В ячейки «С3 »–«С12 » введите формулы для расчета выноса азота. Для этого, указав курсором на ячейку «С3 » введите в строке формул «=В3*(хх-yy)», где хх – значение выноса азота для данной культуры (приложение 1); yy – биологическая фиксация азота клубеньковыми бактериями бобовых культур, кг/т, (принимается равной 10 кг/т сена бобовых трав, 0,5 кг/т зеленого корма злакобобовых травосмесей, 26 кг/т зерна сои). Повторите операции для ячеек «С4 »–«С12 ».

8. Введите в ячейки «D3 »–«D12 » формулы для расчета выноса фосфора «=В3*хх», где хх – значение выноса фосфора для данной культуры (приложение 1), а в ячейки «Е3 »–«Е12 » аналогичные формулы для расчета выноса калия.

9. В ячейках «F3 »–«F12 » рассчитайте потери гумуса. Для этого, согласно приведенной ранее формуле, разделите вынос азота без учета биологическая фиксация азота клубеньковыми бактериями на 50. Формула в ячейке «F3 » будет иметь вид: «=В3*хх/50», где хх – значение выноса азота для данной культуры (приложение 1).

10. В ячейку «H1 » введите слово «Остатки», в ячейки «G2 » – «пожнивные»; «H2 » – «корневые»; «I2 » – «сумма».

11. В ячейках «G3 »–«G12 » рассчитайте поступление пожнивных остатков. Для этого введите в них формулы регрессионных зависимостей массы пожнивных остатков от урожайности культуры (приложение 2), заменяя «х» на ссылку на соответствующую ячейку из столбца урожайностей (ячейки «B3 »–«B12 »).

12. Аналогично рассчитайте в ячейках «H3 »–«H12 » поступление корневых остатков.

13. Просуммируйте в ячейках «I3»–«I12 » пожнивные и корневые остатки (=G3+H3 ).

14. В ячейку «J2 » введите «Кг», а ячейки «J3»–«J12 » значения коэффициентов гумификации растительных остатков из приложения 3.

15. В ячейку «K1 » введите слово «Поступление», в ячейку «K2 » – «гумуса».

16. В ячейках «К3 »–«К12 » рассчитайте поступление гумуса, умножая коэффициент гумификации на сумму растительных остатков (столбцы G и К ).

17. В ячейку «L2 » введите «Бг», а в ячейки «L3»–«L12 » балансы гумуса (=K3-F3 ).

18. В ячейке «С13 » подсчитайте суммарный вынос азота за всю ротацию. Для этого, укажите курсором на эту ячейку, нажмите кнопку «Вставка функции» (), и выберите из списка функций «СУММ». В открывшемся окне «Аргументы функции» укажите значок ввода диапазона ячеек для суммирования () и обведите курсором ячейки «С3 »–«С12 ». Нажмите для подтверждения «Enter», а затем «ОК».

19. Распространив полученную формулу на ячейки «D13 » и «E13 » Вы получите суммарный вынос фосфора и калия.

20. Для расчета баланса гумуса без участия удобрений, повторите операции из пункта 18 для ячейки «L13 » и диапазона «L2-L12 ».

21. Введите в ячейку «А16 » «Удобрение», в ячейку «В16 » «Доза», в ячейку «D15 » «Содержание»; в ячейки «С16 », «D16 », «Е16 », «F16 » - «Азота», «Фосфора», «Калия», «воды».

22. В ячейки «А17-А22 » введите названия внесенных удобрений (сначала органических, затем минеральных).

23. В ячейки «В17-В22 » введите дозы внесенных удобрений, для органических в тоннах на гектар, минеральных – килограммах на гектар.

24. В ячейки «С17-С22 » введите содержание азота в удобрениях, «D17-D22 » - фосфора, «Е17-Е22 » - калия, «F17-F22 » - воды (приложения 4, 5).

25. Введите в ячейку «H15 » «Поступление», а в ячейки «G16 », «H16 », «I16 » скопируйте содержимое ячеек «С16 », «D16 », «Е16 ».

26. Рассчитайте поступление питательных веществ с органическими удобрениями. Для этого в ячейку «G17 » введите формулу «=$B17*C17*10». Знак «$» означает, что при распространении формулы столбец «В» в ней не изменится, а коэффициент 10 получился при делении 1000 (килограммов в тонне) на 100 (процентов).

27. Распространите формулу на строки с органическими удобрениями и столбцы «D » и «Е ».

28. Рассчитайте поступление питательных веществ с минеральными удобрениями. Для этого в ячейку на пересечении первой строки с минеральными удобрениями и столбца «G» введите формулу «=$B19*C19/100».

29. Распространите формулу на строки с минеральными удобрениями и столбцы «D » и «Е ».

30. Просуммируйте поступление азота, фосфора и калия в ячейках «G23 », «H23 », «I23 » (аналогично п. 18).

31. Введите в ячейку «J16 » «органики», в ячейку «К16 » «гумуса».

32. Введите в ячейку «J17 » формулу для расчета поступления в почву свежего органического вещества: «=B17*(1-F17/100)». Распространите ее на все строки с органическими удобрениями.

33. Введите в ячейку «К17 » формулу для расчета поступления в почву гумуса: «=J17*0,35» (0,35 – коэффициент гумификации растительных остатков из приложения 3). Распространите формулу на все строки с органическими удобрениями.

34. Просуммируйте в ячейке «К23 » поступление в почву гумуса аналогично пунктам 18 и 30.

35. Введите в ячейки «А24-А28 » слова «Баланс», «гумуса», «азота», «фосфора», «калия».

36. В ячейке «А25 » подсчитайте баланс гумуса («=L13+K23»); в ячейках «А26-А28 » балансы азота, фосфора и калия с помощью формул «=G23-C13», «=H23-D13» и «=I23-E13» соответственно.

37. Сохраните книгу (файл) Microsoft Excel с именем, которое вам укажет преподаватель. Выключите Microsoft Excel.

Описание выполнения.

1. Запустите Microsoft Excel .

2. Откройте файл (книгу Microsoft Excel ), созданный при выполнении Упражнения 1.

3. Скопируйте результаты расчета баланса на другой лист книги.

4. Для этого обведите ячейки «А24-В28 »; скопируйте их содержимое в буфер обмена (например, нажав «Ctrl+C »); перейдите на нужный лист (список листов внизу таблицы); выберите в главном меню «Правка » – «Специальная вставка », и, в открывшемся окне специальной вставки отметьте указатель значения.

5. Введите в ячейку «С1 » «Исходные запасы», в ячейку «D1 » «Конечные запасы».

6. Введите в ячейку «С2 » формулу для расчета исходных запасов гумуса «=30*хх*yy», где хх – плотность сложения почвы (приложение 6), г/см 3 ; yy – исходное содержание гумуса (приложение 6), %.

7. В ячейку «D2 » введите формулу для расчета конечных (прогнозируемых) запасов гумуса «=В2+С2».

8. Введите в ячейку «Е1 » «Прогноз содержания», а в ячейку «Е2 » формулу для расчета содержания гумуса в %: «=D2/30/хх», где хх – плотность сложения почвы (приложение 6), г/см 3 .

9. Введите в ячейки «F1 » и «G1 » «Абсолютное изменение» и «Относительное изменение»

10. В ячейку «F2 » введите формулу для расчета абсолютного изменения содержания гумуса «=C2-D2».

11. В ячейку «G2 » введите формулу для расчета относительного изменения содержания гумуса «=F2/C2*100».

12. Введите в ячейки «С4 » и «С5 » формулы для расчета исходных запасов доступного фосфора и обменного калия в верхнем 30-сантиметровом слое «30*хх*yy1» и «30*хх*yy2», где хх – плотность сложения почвы (приложение 6), г/см 3 ; yy1 и yy2 – исходное содержание доступного фосфора и обменного калия, мг на 100 г почвы (приложение 6).

13. Введите в ячейки «D4 » и «D5 » формулы для расчета прогнозируемых запасов доступного фосфора и обменного калия «=С4+В4» и «=С5+В5».

14. В ячейки «Е4 » и «Е5 » введите формулы для расчета прогнозируемого содержания фосфора и калия «=D4/30/хх» и «=D5/30/хх», где хх – плотность сложения почвы (приложение 6), г/см 3 .

15. В ячейках «G4 » и «G5 » рассчитайте относительное изменение содержания доступного фосфора и калия (формулы «(yy1-Е4)/yy1*100» и «(yy2-Е5)/yy2*100», где исходное содержание доступного фосфора и обменного калия, мг на 100 г почвы).

Описание выполнения.

1. Запустите Microsoft Excel .

2. Указав курсором мыши на границу между столбцами «А » и «В » в строке с названиями столбцов, нажмите левую кнопку мыши и раздвиньте столбец «А » в 2 раза. Повторите операцию для столбца «В ».

3. В ячейку «В2 » введите слово «Содержание», а в ячейки «А3 », «А5 », «А6 », «А7 »–«гумуса», «азота», «фосфора» и «калия».

4. В ячейку «В3 » введите содержание гумуса, в ячейку «В6 » фосфора, а в ячейку «В7 » калия из вашего варианта.

5. В ячейку «С3 » введите «Доля покрытия =», а в ячейку «D3 » значение доли покрытия потребности в азоте с помощью органических удобрений из приложения 11.

6. В ячейку «С4 » введите «Xmin», в ячейку «D4 » – «Xmax», в ячейку «E4 » – «Kmin», в ячейку «F4 » – «Kmax», в ячейку «G4 » – «K».

7. Введите в ячейки «С6 » и «С7 » нижние границы интервалов, в которые попадают значения содержания фосфора и калия (приложение 8).

8. Введите в ячейки «D6 » и «D7 » верхние границы интервалов, в которые попадают значения содержания фосфора и калия (приложение 8).

9. Введите в ячейки «E6 » и «E7 » наименьшие значения ротационных коэффициентов баланса для интервалов, в которые попадают значения содержания фосфора и калия (приложение 9).

10. Введите в ячейки «F6 » и «F7 » наибольшие значения ротационных коэффициентов баланса для интервалов, в которые попадают значения содержания фосфора и калия (приложение 9).

11. Введите в ячейку «G5 » значение ротационного коэффициента баланса для азота (1).

12. В ячейки «G6 » и «G7 » введите формулы для расчета ротационных коэффициента баланса для фосфора и калия (формула 18).

13. В ячейку «G5 » введите ротационный коэффициент баланса для азота – 1.

14. В ячейки «А9 » и «В9 » введите слова «Культура» и «Урожайность».

15. В ячейки «А10 » – «А13 » введите названия культур из вашего варианта задания; в ячейки «В10 » – «В13 » – их урожайности.

16. Введите в ячейки «С9 », «D9 », «E9 » и «F9 » обозначения «АФ», «ВА», «ВФ» и «ВК» (азотфиксация, вынос азота, вынос фосфора, вынос калия).

17. В ячейки «С10 » – «F13 » введите значения азотфиксации (примечание к формуле 1) и выноса элементов питания для всех культур (приложение 1).

18. Введите в ячейку «А15 » слово «Удобрения», а в ячейки «В15 », «С15 » и «D15 » обозначения «Са», «Сф» и «Ск» (содержание азота, фосфора, калия).

19. В ячейки «А16 » – «А19 » введите названия удобрений из вашего варианта задания; в ячейки «В16 » – «D19 » – содержание в них элементов питания (приложения 4 и 5).

20. Скопируйте «D9 », «E9 » и «F9 » в ячейки «G9 », «H9 », «I9 ».

21. В ячейках «G10 » – «G13 » рассчитайте вынос азота с урожаем сельскохозяйственной культуры (формула для строки 10: «=B10*(D10-C10)»).

22. В ячейках «H10 » – «H13 » и «I10 » – «I13 » рассчитайте выносы фосфора и калия с урожаем (формула для фосфора и строки 10: «=B10*E10»; калия и строки 10: «=B10*F10»).

23. Введите в ячейки «J9 », «K9 », «L9 » обозначения «Доа», «Доф» и «Док» (общие дозы удобрений по каждому основному элементу питания в килограммах действующего вещества).

24. В ячейках «J10 » – «L13 » рассчитайте общие дозы удобрений по каждому основному элементу питания (например, для «J10 » – «=G10*$G$5»).

25. В ячейку «М9 » введите обозначение «Дорга» (доза органического азота), а в ячейках «М10 » – «М13 » рассчитайте эту дозу по формуле 19.

26. В ячейку «N9 » введите обозначение «Дорг» (доза органического удобрения), а в ячейках «N10 » – «N13 » рассчитайте эту дозу по формуле 20.

27. В ячейку «O9 » введите обозначение «Дорго» (доза органического удобрения округленная), а в ячейки «О10 » – «О13 » – дозы внесения органики под каждую культуру, округленную до 5 т/га.

28. Введите в ячейки «P9 », «Q9 », «R9 » обозначения «Дорга», «Доргф» и «Доргк» (килограммы действующего вещества по каждому основному элементу питания, содержащиеся в органическом удобрении).

29. Рассчитайте дозы элементов питания в органическом удобрении. Для этого введите в ячейку «P10 » формулу «=10*$O10*B$16», а затем распространите ее на ячейки «Р10 » – «R13 ».

30. Введите в ячейки «S9 », «T9 », «U9 » обозначения «Дма», «Дмф» и «Дмк» (килограммы действующего вещества по каждому основному элементу питания, которые надо внести с минеральным удобрением).

31. В ячейках «S10 » – «U13 » определите эти дозы как разность между общей потребностью в элементе питания и его содержанием в органическом удобрении. Для этого введите в ячейку «S10 » формулу =J10-P10», а затем распространите ее на ячейки «S10 » – «U13 ».

32. Введите в ячейки «V9 », «W9 », «X9 » обозначения «МА», «МФ» И «МК» (дозы азотного, фосфорного и калийного минеральных удобрений в натуральных туках, кг).

33. В ячейках «V10 » – «X13 » определите эти дозы с помощью формул: для азотного удобрения – «=S10*100/B$17»; фосфорного – «=T10*100/C$18»; калийного – «=U10*100/D$19».

34. Пометьте ячейки «V10 » – «X14 » и округлите их до целых чисел (пункты меню «Формат»–«Ячейки»–«Число»). В открывшемся окне выберите формат «Числовой» и укажите число десятичных знаков – 0.

35. В ячейках «О14 », «V14 », «W14 », «X14 » с помощью функции «СУММ» подсчитайте суммарные дозы внесения удобрений.

ЛИТЕРАТУРА

1. Кравчук А.В., Муравлев А.П., Прокопец Р.В., Донгузов Г.С. Основы рационального природопользования: методические указания и материалы к лабораторно-практическим занятиям. – Саратов: Саратовский государственный аграрный университет имени Н.И. Вавилова, 2004. – 47 с.

2. Кравчук А.В., Шаврин Д.И., Прокопец Р.В. Методические указания по выполнению курсовой работы по дисциплине «Природопользование» – Саратов: ФГОУ ВПО «Саратовский ГАУ имени Н.И. Вавилова», 2013. – 20 с.

3. Леонтьев С.А., Чумакова Л.Н., Прокопец Р.В., Аржанухина Е.В., Никишанов А.Н. Природно-техногенные комплексы природообустройства: методические указания к выполнению курсового проекта – Саратов: ФГОУ ВПО «Саратовский ГАУ имени Н.И. Вавилова», 2012. – 40 с.

4. Прокопец Р.В. Влияние ирригационной эрозии на потери элементов питания в почве // Проблемы научного обеспечения сельскохозяйственного производства и образования: сб. науч. работ – под общей редакцией А.В. Кравчука. – Саратов, 2008. – С. 183-188.

5. Прокопец Р.В. Вынос питательных веществ с поверхностным стоком на темно-каштановых почвах при орошении козлятника восточного // Вавиловские чтения 2006: Материалы конференции, посвященной 119-й годовщине со дня рождения академика Н.И. Вавилова. – Саратов: ФГОУ ВПО «Саратовский ГАУ им. Н.И. Вавилова», 2006. – С. 72-73.

6. Прокопец Р.В. Вынос питательных веществ с твердым стоком на темно-каштановых почвах при орошении козлятника восточного // Системные исследования природно-техногенных комплексов Нижнего Поволжья: сб. науч. работ. – Саратов, 2007.– С. 124-127.

7. Прокопец Р.В., Аржанухина Е.В., Шаврин Д.И., Завадский И.С. Планирование природоохранных мероприятий: методические указания к выполнению расчетно-графических работ – Саратов: ФГОУ ВПО «Саратовский ГАУ имени Н.И. Вавилова», 2012. – 29 с.

8. Прокопец Р.В., Чумакова Л.Н., Аржанухина Е.В., Шаврин Д.И., Завадский И.С. Управление мелиоративными водохозяйственными системами с помощью компьютерных технологий: методические указания к выполнению лабораторных работ. – Саратов: ФГОУ ВПО «Саратовский ГАУ имени Н.И. Вавилова», 2012. – 26 с.

9. Пронько В.В., Корсак В.В., Дружкин А.Ф. Влияние погодных условий и агротехнических приемов на эффективность удобрений в степном Поволжье // Агрохимия, 2004, № 8, С. 20-26.

10. Пронько Н.А., Корсак В.В. Метод расчета доз органических и минеральных удобрений для культур орошаемых севооборотов по прогнозному ротационному балансу элементов питания // Агрохимия, 2001, № 7, С. 66-71.

11. Пронько Н.А., Корсак В.В., Корнева Т.В. Особенности дегумификации орошаемых темно-каштановых почв Саратовского Заволжья // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. – 2009. – № 10. – С. 42-46.

12. Пронько Н.А., Корсак В.В., Прокопец Р.В., Корнева Т.В., Романова Л.Г. Расчет балансов гумуса и элементов питания растений в мелиоративном земледелии с применением информационных технологий / Методические указания к выполнению курсовой и лабораторно-практических работ.– Саратов, ФГОУ ВПО «Саратовский ГАУ», 2010, 39 с.

13. Пронько Н.А., Корсак В.В., Фалькович А.С. Орошение в Поволжье: не повторять ошибок. – Мелиорация и водное хозяйство, 2014, №4, С. 16-19.

14. Пронько Н.А., Фалькович А.С., Романова Л.Г Изменение плодородия орошаемых каштановых почв Поволжья в процессе длительного использования и научные основы его регулирования.– Саратов: СГАУ, 2005, 220 с.


ПРИЛОЖЕНИЯ

Название Содержание элемента, %
азот фосфор калий
Натриевая селитра 16,3 0,0 0,0
Аммиак жидкий 82,0 0,0 0,0
Аммиак водный 16,0 0,0 0,0
Сульфат аммония 20,8 0,0 0,0
Аммиачная селитра 34,0 0,0 0,0
Мочевина (каpбамид) 46,0 0,0 0,0
Суперфосфат гpанулированный 0,0 20,5 0,0
Суперфосфат двойной гpанулированный 0,0 49,0 0,0
Калий хлористый 0,0 0,0 53,0
Калийная соль смешанная 0,0 0,0 40,0
Сульфат калия-магния (калий-магнезия) 0,0 0,0 28,0
Аммофос, марка А, высший сорт 12,0 52,0 0,0
Аммофос, марка А, первый сорт 12,0 50,0 0,0
Аммофос, марка Б, высший сорт 11,0 44,0 0,0
Аммофос, марка Б, первый сорт 10,0 42,0 0,0
Сульфоаммофос 12,0 39,0 0,0
Нитpофоска, марка А 16,0 16,0 16,0
Нитpофоска, марка Б 12,5 8,0 12,5
Нитpофоска, марка В 11,0 10,0 11,0
Нитpофос, марка А 23,0 17,0 0,0
Нитpофос, марка Б 24,0 14,0 0,0
Нитpоаммофос, маpка А 23,0 23,0 0,0
Нитpоаммофос, маpка Б 16,0 24,0 0,0
Нитpоаммофос, маpка В 25,0 20,0 0,0
Нитpоаммофоска 13,0 19,0 19,0
Каpбоаммофоска 17,0 17,0 17,0
Жидкие комплексные удобpения 10,0 34,0 0,0
Название Содержание, %
азота фосфора калия воды
Навоз КРС на соломенной подстилке 0,45 0,23 0,50 77,30
Навоз свиной на соломенной подстилке 0,45 0,19 0,60 72,40
Навоз конский на соломенной подстилке 0,58 0,28 0,63 64,60
Навоз смешанный на соломенной подстилке 0,50 0,25 0,60 71,30
Навозная жижа (КРС) 0,26 0,12 0,38 98,80
Навозная жижа (свиная) 0,31 0,06 0,36 98,80
Навозная жижа (конская) 0,39 0,08 0,58 98,80
Птичий помет 0,90 1,70 0,90 56,00

6.Плотность почвы, содержание гумуса и доступных элементов питания в верхнем 30-сантиметровом слое

Тип почвы Плотность, т/м 3 Содержание гумуса, % Содержание, мг/100 г почвы
фосфора калия
Южный малогумусный чернозем 1,15 3,6 5,1
1,20 5,4 9,2
Южный среднесуглинистый чернозем 1,22 4,7 5,5
Темно- 1,14 2,8 4,2
Темно-каштановая тяжелосуглинистая 1,28 3,6 7,0
Каштановая среднесуглинистая 1,22 2,9 4,8
Светло-каштановая тяжелосуглинистая 1,30 2,4 3,8
Светло-каштановая легкосуглинистая 1,35 1,8 4,1

Варианты исходных данных для расчета баланса и изменения содержания гумуса и элементов питания

Культуры Урожайность, т/га Внесение удобрений
Органических, т/га Минеральных, кг/га
В 1 Яровая пшеница 2,0 Нитpофос, марка А,120
Каштановая среднесуглинистая Люцерна на сено
Люцерна на сено Калий хлористый, 260
Кукуруза на силос Навоз КРС, 100
Соя 1,9
Картофель
Озимая пшеница 3,8
Кукуруза на силос Аммиак жидкий, 200
Сорго силосное Навоз КРС, 120
Яровая пшеница 2,2
В 2 Яровая пшеница 2,5
Южный малогумусный чернозем Сахарная свекла Навозная жижа КРС, 180
Горохоовсяная травосмесь Аммофос, марка А, высший соpт, 150
Подсолнечник 0,7 Суперфосфат двойной, 90
Просо 1,5 Птичий помет, 25
Кукуруза на зерно Аммиачная селитра, 200
Яровой ячмень 1,9
Соя 2,1
Горохоовсяная травосмесь Каpбоаммофоска, 85
Суданская трава на силос Калий хлористый, 265
В 3 Овес 2,2
Южный тяжелосуглинистый чернозем Люцерна на сено
Люцерна на сено
Картофель Птичий помет, 45
Кукуруза на силос Сульфат аммония, 135
Озимая пшеница 4,5
Просо 2,0 Мочевина (карбамид), 65
Сахарная свекла Навоз свиной, 175
Вика яровая на зеленый корм Сульфат калия-магния, 275
Соpго-суданко-вый гибрид Сульфоаммофос, 80

Баланс питательных веществ в севообороте

Баланс питательных веществ - обязательная составная часть системы удобрения. Его рассчитывают для определения возможного обогащения или истощения почвы теми или иными питательными веществами.

Баланс азота, фосфора и калия имеет свои особенности. Особенность баланса азота - его биологическая фиксация симбиотическими и свободноживущими микроорганизмами. Фосфор не имеет естественных источников пополнения запаса в почве. Потери происходят в основном за счет эрозии почв. Отчуждение фосфатов происходит главным образом с урожаем сельскохозяйственных культур. Баланс калия характеризуется большими почвенными ресурсами. Однако при длительном сельскохозяйственном использовании содержание доступного растениям обменного калия уменьшилось до среднего уровня обеспеченности, поэтому калийные удобрения являются обязательным компонентом системы удобрений. Баланс питательных веществ в севообороте может быть положительный или отрицательный и рассчитывается для установления возможного обогащения или истощения почвы теми или иными питательными элементами. В расходную часть включают расходование элементов на создание основной и побочной продукции культур, растительные остатки, вымывание элементов в грунтовые воды и смыв их с поверхности, газообразные потери элементов и потери в результате ветровой эрозии. Баланс питательных веществ определяют по поступлению питательных веществ и расходованию их из почвы. Приняты следующие примерные статьи поступления и расходования азота.

Поступление питательных веществ:

Поступление азота с органическими и минеральными удобрениями;

Поступление азота с атмосферными осадками (9 кг/га) и высеваемыми семенами (около 3 кг/га);

Фиксация азота свободноживущими микроорганизмами (7- 20кг/га);

Фиксация атмосферного азота клубеньковыми бактериями.

Расходование питательных веществ:

Вынос с урожаем культур;

Газообразные потери азота из вносимых минеральных удобрений (20 - 25%);

Газообразные потери почвенного минерализованного азота (12-30 кг/га);

Газообразные потери азота органических удобрений (5 - 10%);

Расход азота сорняками;

Потери азота при эрозии почвы(15 - 20 кг/га);

Вымывание азота из жидких органических удобрений (40 - 90 кг).

Пример расчета баланса питательных веществ

1. Определим количество питательных элементов (кг/га), которые будут внесены с 63 т навоза.

В 1 т навоза содержится: N - 4 кг; P 2 O 5 - 2 кг; K 2 O 5 кг. Следовательно, на 1 га будет внесено:

азота - 63 4 = 252 кг/га;

фосфора - 63 2 = 126 кг/га;

2. Внесено с минеральными удобрениями: данные берем из таблицы «Расчет норм минеральных удобрений под сельскохозяйственные культуры» (графа «Требуется внести с минеральными удобрениями - всего»). Данные берем за всю ротацию севооборота.

3. Всего поступило в почву: сумма первой, второй и третьей граф

4. : данные берем из таблицы- «Расчет норм минеральных удобрений под сельскохозяйственные культуры» (графа «Вынос планированного урожая - всего»). Данные берем за всю ротацию севооборота.

5. Баланс питательных веществ: четвертую графу разделить на пятую и выразить в %. (1286,7/972,4?100=132%)

6. Баланс (+ -): определяется как разность четвертой и пятой граф (1286,7-972,4=+314)

Таблица № 15- Баланс азота, фосфора и калия за ротацию севооборота для системы удобрения культур

Статья баланса

Внесено с 63 т навоза, кг/га

Вынесено с урожаем с/х культур

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Внесено с 63 т навоза, кг/га

Накопление в почве азота за счет мн. трав, кг/га

Внесено с минеральными удобрениями, кг/га

Всего поступило в почву, кг/га

Вынесено с урожаем с/х культур

Баланс питательных веществ, в % к выносу

Баланс (+ -)

Похожие публикации