Формула эйнштейна е mc2 описание. Энергоинформ — альтернативная энергетика, энергосбережение, информационно-компьютерные технологии

/ Физический смысл формулы E = mc 2

Физический смысл формулы E = mc 2

Вряд ли найдётся взрослый человек, не знающий эту формулу. Иногда её даже называют самой знаменитой формулой в мире. Она стала известной человечеству после того, как Эйнштейн создал свою теорию относительности. Согласно Эйнштейну, его формула показывает не просто связь между материей и энергией, а равнозначность материи и энергии. Иными словами, по этой формуле энергия может превратиться в материю, а материя может превратиться в энергию.

Но мне известна и другая формула (да и не только мне, а всем специалистам по тепловым процессам): Q = mr, где Q — количество тепла, m — масса, r — теплота фазового перехода. Любые фазовые переходы (испарение и конденсация, плавление и кристаллизация, абляция и сухая возгонка) описываются этой формулой. При подводе тепла в количестве Q (или его отводе) в новое фазовое состояние переходит такое количество вещества m, которое прямо пропорционально количеству тепла Q и обратно пропорционально теплоте фазового перехода r. А тепло — это разновидность энергии. Но никто и никогда не делал из этого факта вывод, будто в вещество превращается само тепло, то есть энергия. Почему же с формулой E = mc 2 произошла такая пертурбация?

Когда мне удалось получить формулу энергии физического вакуума, вот тогда мне и удалось ответить на этот вопрос. Оказалось, что в самом общем виде энергия физического вакуума описывается этой известной формулой E = mc 2 . А её физический смысл в точности совпадает с физическим смыслом формулы Q = mr: когда мы подводим к вакууму (или эфиру, как его называли раньше) энергию в количестве Е, вакуум порождает такое количество вещества m, которое прямо пропорционально подведённой энергии Е и обратно пропорционально энергии фазового перехода с 2 . Иными словами, никакого перехода энергии в вещество или материю не наблюдается.

А причина допущенной Эйнштейном ошибки относительно физического смысла его формулы заключается в отрицании им реального существования эфира-физвакуума. Если мы полагаем, что эфир не существует, тогда у нас получится, что вещество рождается в самом настоящем смысле слова из пустоты. Но каждому понятно, что из ничего получить что-то невозможно. Поэтому приходится искать иной источник появления вещества. Вследствие того, что данный процесс рождения вещества описывается формулой E = mc 2 , физики настолько привыкают иметь дело с энергией, что начинают воспринимать её как нечто реально существующее, а не характеристику, коей она всего лишь и является. И отсюда остаётся всего лишь один шаг, чтобы заявить о преобразовании в вещество самой энергии.

Скептики могут возразить мне тем, что мои рассуждения опровергаются результатами экспериментов. Мол, эксперименты на ускорителях показывают, что масса элементарных частиц увеличивается с ростом скорости, то есть с ростом энергии, подводимой к частице для увеличения её скорости. И из этого факта делается вывод, будто в данных экспериментах энергия преобразуется в массу. Но когда я поднял информацию о том, как именно выполнялись эти и другие похожие эксперименты, то обнаружил интересную вещь: оказывается, за всю историю научных изысканий ни в одном эксперименте не измеряли массу напрямую, но всегда измеряли затраты энергии, а затем перебрасывали энергию на массу по формуле E = mc 2 и говорили об увеличении массы. Однако, можно предложить иное объяснение повышенным затратам энергии в опытах на ускорителе: подводимая к частице энергия преобразуется не в массу частицы, а в преодоление сопротивления окружающего нас эфира-физвакуума. Когда любой объект (и элементарная частица тоже) движется ускоренно, он своим неравномерным движением деформирует эфир-вакуум, а тот отвечает на это созданием сил сопротивления, для преодоления которых требуется затратить энергию. И чем больше будет скорость объекта, тем больше будет деформация эфира-вакуума, тем больше будут силы сопротивления, тем больше понадобится энергии для их преодоления.

Для того, чтобы выяснить, какая концепция верна (традиционная в виде увеличения массы с увеличением скорости или альтернативная в форме преодоления сил сопротивления эфира-вакуума), необходимо поставить такой эксперимент, в котором масса движущейся частицы измерялась бы напрямую без измерения затрат энергии. Но каков должен быть этот эксперимент, я пока не придумал. Может, придумает кто-то другой?

И. А. Прохоров
  • Перевод

Самое знаменитое уравнение Эйнштейна вычисляется более красиво, чем это можно было бы ожидать.

Из специальной теории относительности вытекает, что масса и энергия являются разными проявлениями одного и того же – концепция, среднему уму незнакомая.
- Альберт Эйнштейн

Некоторые научные концепции настолько меняют мир и настолько глубоки, что практически каждый знает о них, даже если полностью и не понимает. Почему бы не поработать над этим вместе? Каждую неделю вы отправляете ваши вопросы и предложения, и на этой неделе я выбрал вопрос Марка Лиюва, который спрашивает:

Эйнштейн вывел уравнение E = mc 2 . Но единицы энергии, массы, времени, длины уже были известны до Эйнштейна. Так как же оно так красиво получается? Почему там нет какой-нибудь константы для длины или времени? Почему это не E = amc 2 , где a – какая-нибудь константа?

Если бы наша Вселенная не была устроена так, как сейчас, то всё могло бы быть по-другому. Давайте посмотрим, что я имею в виду.

С одной стороны, у нас имеются объекты с массой: от галактик, звёзд и планет до самых мелких молекул, атомов и фундаментальных частиц. Хотя они и крохотные, у каждой из компонент того, что известно нам под именем материи, имеется фундаментальное свойство массы, что означает, что даже если исключить его движение, даже если замедлить его до полной остановки, он всё равно будет оказывать влияние на все остальные объекты Вселенной.


Конкретно, он оказывает гравитационное притяжение на всё остальное во Вселенной, неважно, на каком расстоянии находится удалённый объект. Он притягивает всё к себе, испытывает притяжение ко всему остальному, а также обладает энергией, присущей самому его существованию.

Последнее утверждение контринтуитивно, поскольку об энергии, по крайней мере, в физике, говорят, как о возможности что-либо сделать – о возможности совершать работу. А что можно сделать, если ты просто сидишь на месте?

Перед тем, как ответить, давайте посмотрим на другую сторону монеты – вещи без массы.

С другой стороны, существуют вещи, не имеющие массы – например, свет. У этих частиц есть определённая энергия, и это легко понять, наблюдая их взаимодействие с другими вещами – при поглощении свет передаёт им свою энергию. Свет с достаточной энергией может разогревать материю, добавлять кинетическую энергию (и скорость), вышибать электроны на верхние энергетические уровни или вообще ионизировать, в зависимости от энергии.

Более того, количество энергии, содержащейся в безмассовой частице, определяется только её частотой и длиной волны, произведение которых всегда равняется скорости движения частицы: скорости света. Значит, у более длинных волн частоты меньше, и энергия меньше, а у коротких – частоты и энергия выше. Массивную частицу можно замедлить, а попытки отобрать энергию у безмассовой приведут лишь к удлинению её волны, а не к изменению скорости.

Памятуя о вышесказанном, подумаем, как масса-энергия может быть эквивалентной работе? Да, можно взять частицу материи и частицу антиматерии (электрон и позитрон), столкнуть их и получить безмассовые частицы (два фотона). Но почему энергии двух фотонов равны массам электрона и позитрона, умноженным на квадрат скорости света? Почему там нет другого множителя, почему уравнение точно приравнивает E и mc 2 ?

Что интересно, если верить СТО, уравнение просто обязано выглядеть, как E=mc 2 , без всяких отклонений. Поговорим о причинах этого. Для начала представьте, что у вас есть коробочка в космосе. Она неподвижна, и с двух сторон у неё зеркала, а внутри находится фотон, летящий к одному из зеркал.

Изначально коробочка не двигается, но поскольку фотоны обладают энергией (и импульсом), когда фотон сталкивается с зеркалом с одной стороны коробки и отскакивает, коробка начнёт движение в том направлении, в котором изначально двигался фотон. Когда фотон достигнет другой стороны, он отразится от зеркала с другой стороны, изменяя импульс коробки обратно до нуля. И он продолжит отражаться таким образом, в то время как коробка половину времени будет двигаться в одну сторону, а другую половину – оставаться неподвижной.

В среднем коробка будет двигаться и, следовательно, так как у неё есть масса, будет иметь определённую кинетическую энергию, благодаря энергии фотона. Но важно также помнить про импульс, количество движения объекта. Импульс фотонов связан с их энергией и длиной волны очень просто: чем короче волна и выше энергия, тем выше импульс.

Подумаем о том, что это значит, и для этого проведём ещё один эксперимент. Представьте, что происходит, когда изначально двигается только сам фотон. У него будет определённое количество энергии и импульс. Оба свойства должны сохраняться, поэтому в начальный момент энергия фотона определена его длиной волны, а у коробки есть только энергия покоя – какая бы она ни была – и фотон обладает всем импульсом системы, а у коробки импульс нулевой.

Затем фотон сталкивается с коробкой и временно поглощается. Импульс и энергия должны сохраняться – это основные законы сохранения Вселенной. Если фотон поглощён, то существует только один способ сохранить импульс – коробка должна двигаться с определённой скоростью в том же направлении, в котором двигался фотон.

Пока всё нормально. Только теперь мы можем спросить себя, какова энергия коробки. Получается, что если мы идём от нашей обычной формулы о кинетической энергии, K E = ½mv 2 , мы предположительно знаем массу коробки, и, исходя из понятия импульса, её скорость. Но если мы сравним энергию коробки с энергией фотона, которой он обладал до столкновения, мы увидим, что у коробки энергии недостаточно.

Проблема? Нет, это довольно просто решить. Энергия системы коробка/фотон равна массе покоя коробки плюс кинетической энергии коробки плюс энергии фотона. Когда коробка поглощает фотон, большая часть его энергии переходит в увеличение массы коробки. Когда коробка поглотила фотон, её масса меняется (увеличивается) по сравнению с той, что была до столкновения.

Когда коробка вновь испускает фотон в другом направлении, она получает ещё больший импульс и скорость (что компенсируется отрицательным импульсом фотона в обратном направлении), ещё больше кинетической энергии (и у фотона есть энергия), но теряет взамен часть массы покоя. Если всё подсчитать (есть три различных способа это сделать, а тут ещё и описание), можно обнаружить, что единственное преобразование массы, позволяющее сохранить энергию и импульс, будет E = mc 2 .

Если добавить любую константу, уравнение перестанет быть сбалансированным, и вы будете терять или приобретать энергию каждый раз при испускании или поглощении фотона. Обнаружив антиматерию в 1930-х, мы непосредственно увидели подтверждение того, что можно превратить энергию в массу и обратно, и результаты превращений точно совпадали с E = mc 2 , но именно мысленные эксперименты позволили вывести эту формулу за несколько десятилетий до наблюдений. Только поставив фотону в соответствие эффективную массу, эквивалентную m = E/c 2 , мы можем обеспечить сохранение энергии и импульса. И хотя мы говорим E = mc 2 , Эйнштейн впервые записал формулу по-другому, присвоив энергетически эквивалентную массу безмассовым частицам.

Так что, спасибо за прекрасный вопрос, Марк, и надеюсь, что этот мысленный эксперимент поможет тебе понять, почему нам нужна не только эквивалентность массы и энергии, но и почему в этом уравнении есть только одно возможное значение для «константы», которое поможет сохранить энергию и импульс – а этого требует наша Вселенная. Единственное уравнение, которое работает, это E = mc 2 .

Полная и окончательная формулировка современной теории относительности содержится в большой статье Альберта Эйнштейна «К электродинамике движущихся тел», опубликованной в 1905 году. Если говорить об истории создания теории относительности, то у Эйнштейна были предшественники. Отдельные важные вопросы теории исследовались в работах Х.Лоренца, Дж.Лармора, А.Пуанкаре, а также некоторых других физиков. Однако теория относительности как физическая теория до появления работы Эйнштейна не существовала. Работа Эйнштейна отличается от предшествующих работ совершенно новым пониманием как отдельных сторон теории, так и всей теории как целого, таким пониманием, которого не было в работах его предшественников.

Теория относительности заставила пересмотреть многие основные представления физики. Относительность одновременности событий, различия в ходе движущихся и покоящихся часов, отличия в длине движущейся и покоящейся линеек — эти и многие другие следствия теории относительности неразрывно связаны с новыми по сравнению с ньютоновской механикой представлениями о пространстве и времени, а также о взаимной связи пространства и времени.

Одно из важнейших следствий теории относительности — знаменитое соотношение Эйнштейна между массой m покоящегося тела и запасом энергии Е в этом теле:

E = m c 2 , (1 )

где с — скорость света.

(Это соотношение называют по-разному. На Западе для него принято название «соотношение эквивалентности между массой и энергией». У нас долгое время было принято более осторожное название «соотношение взаимосвязи между массой и энергией». Сторонники этого более осторожного названия избегают слова «эквивалентность», тождественность, потому что, говорят они, масса и энергия — это разные качества вещества, они могут быть связаны между собой, но не тождественны, не эквивалентны. Мне кажется, что эта осторожность является излишней. Равенство E = mc 2 говорит само за себя. Из него следует, что массу можно измерять в единицах энергии, а энергию — в единицах массы. Кстати, так физики и поступают. А утверждение, что масса и энергия — это разные характеристики вещества, было справедливо в механике Ньютона, а в механике Эйнштейна само соотношение E = mc 2 говорит о тождественности этих двух величин — массы и энергии. Можно, конечно, сказать, что соотношение между массой и энергией не означает их тождественности. Но это все равно, что сказать, глядя на равенство 2 = 2: это не тождество, а соотношение между разными двойками, потому что справа стоит правая двойка, а слева — левая.)

Соотношение (1) обычно выводится из уравнения движения тела в эйнштейновской механике, но этот вывод достаточно труден для ученика средней школы. Поэтому имеет смысл попытаться найти простой вывод этой формулы.

Сам Эйнштейн, сформулировав в 1905 году основы теории относительности в статье «К электродинамике движущихся тел», затем вернулся к вопросу о соотношении между массой и энергией. В том же 1905 году он опубликовал короткую заметку «Зависит ли инерция тела от содержащейся в нем энергии?». В этой статье он дал вывод соотношения E = mc 2 , который опирается не на уравнение движения, а, как и приведенный ниже вывод, на эффект Доплера. Но этот вывод тоже довольно сложный.

Вывод формулы E = mc 2 , который мы хотим вам предложить, не основан на уравнении движения и, кроме того, является достаточно простым, так что школьники старших классов могут его одолеть — для этого почти не потребуется знаний, выходящих за пределы школьной программы. На всякий случай мы приведем все сведения, которые нам понадобятся. Это сведения об эффекте Доплера и о фотоне — частице электромагнитного поля. Но предварительно оговорим одно условие, которое будем считать выполненным и на которое будем опираться при выводе.

Условие малости скоростей

Мы будем предполагать, что тело массой m , с которым мы будем иметь дело, либо покоится (и тогда, очевидно, скорость его равна нулю), либо, если оно движется, то со скоростью υ , малой по сравнению со скоростью света с . Иными словами, мы будем предполагать, что отношение υ c скорости тела к скорости света есть величина малая по сравнению с единицей. Однако мы будем считать отношение υ c хотя и малой, но не пренебрежимо малой величиной — будем учитывать величины, пропорциональные первой степени отношения υ c , но будем пренебрегать вторыми и более высокими степенями этого отношения. Например, если при выводе нам придется иметь дело с выражением 1 − υ 2 c 2 , мы будем пренебрегать величиной υ 2 c 2 по сравнению с единицей:

1 − υ 2 c 2 = 1 , υ 2 c 2 υ c ≪ 1. (2 )

В этом приближении получаются соотношения, которые на первый взгляд могут показаться странными, хотя ничего странного в них нет, надо только помнить, что соотношения эти не являются точными равенствами, а справедливы с точностью до величины υ c включительно, величинами же порядка υ 2 c 2 мы пренебрегаем. В таком предположении справедливо, например, следующее приближенное равенство:

1 1 − υ c = 1 + υ c , υ 2 c 2 ≪ 1. (3 )

Действительно, умножим обе части этого приближенного равенства на 1 − υ c . Мы получим

1 = 1 − υ 2 c 2 ,

т.е. приближенное равенство (2). Поскольку мы считаем, что величина υ 2 c 2 пренебрежимо мала в сравнении с единицей, мы видим, что в приближении υ 2 c 2 ≪ 1 равенство (3) справедливо.

Аналогично, нетрудно доказать в том же приближении равенство

1 1 + υ c = 1 − υ c . (4 )

Чем меньше величина υ c , тем точнее эти приближенные равенства.

Мы не случайно будем использовать приближение малых скоростей. Нередко приходится слышать и читать, что теория относительности должна применяться в случае больших скоростей, когда отношение скорости тела к скорости света имеет порядок единицы, при малых же скоростях применима механика Ньютона. На самом деле теория относительности не сводится к механике Ньютона даже в случае сколь угодно малых скоростей. Мы это увидим, доказав соотношение E = mc 2 для покоящегося или очень медленно движущегося тела. Механика Ньютона такого соотношения дать не может.

Оговорив малость скоростей по сравнению со скоростью света, перейдем к изложению некоторых сведений, которые понадобятся нам при выводе формулы E = mc 2 .

Эффект Доплера

Мы начнем с явления, которое называется по имени австрийского физика Кристиана Доплера, открывшего это явление в середине позапрошлого века.

Рассмотрим источник света, причем будем считать, что источник движется вдоль оси x со скоростью υ . Предположим для простоты, что в момент времени t = 0 источник проходит через начало координат, т.е. через точку х = 0. Тогда положение источника в любой момент времени t определяется формулой

x = υ t .

Предположим, что далеко впереди излучающего тела на оси x помещен наблюдатель, который следит за движением тела. Ясно, что при таком расположении тело приближается к наблюдателю. Допустим, что наблюдатель взглянул на тело в момент времени t . В этот момент до наблюдателя доходит световой сигнал, излученный телом в более ранний момент времени t’ . Очевидно, момент излучения должен предшествовать моменту приема, т.е. должно быть t’ < t .

Определим связь между t’ и t . В момент излучения t’ тело находится в точке x = υ t , a наблюдатель пусть находится в точке х = L . Тогда расстояние от точки излучения до точки приема равно L − υ t , а время, за которое свет пройдет такое расстояние, равно L − υ t c . Зная это, мы легко можем записать уравнение, связывающее t’ и t :

t = t + L − υ t c . t = t − L c 1 − υ c . (5 )

Таким образом, наблюдатель, глядя на движущееся тело в момент времени t , видит это тело там, где оно находилось в более ранний момент времени t’ , причем связь между t и t’ определяется формулой (5).

Предположим теперь, что яркость источника периодически меняется по закону косинуса. Обозначим яркость буквой I . Очевидно, I есть функция времени, и мы можем, учитывая это обстоятельство, записать

I = I 0 + I 1 cos ω t (I 0 > I 1 > 0 ) ,

где I 0 и I 1 — некоторые постоянные, не зависящие от времени. Неравенство в скобках необходимо потому, что яркость не может быть отрицательной величиной. Но для нас в данном случае это обстоятельство не имеет никакого значения, поскольку в дальнейшем нас будет интересовать только переменная составляющая — второе слагаемое в формуле для I (t ).

Пусть наблюдатель смотрит на тело в момент времени t . Как уже было сказано, он видит тело в состоянии, соответствующем более раннему моменту времени t’ . Переменная часть яркости в момент t’ пропорциональна cos ωt’ . С учетом соотношения (5) получаем

cos ω t = cos ω t − L c 1 − υ c = cos ( ω t 1 − υ c − ω L c 1 1 − υ c ) .

Коэффициент при t под знаком косинуса дает частоту изменения яркости, как ее видит наблюдатель. Обозначим эту частоту через ω’ , тогда

ω = ω 1 − υ c . (6 )

Если источник покоится (υ = 0), то ω’ = ω , т.е. наблюдатель воспринимает ту же самую частоту, что излучается источником. Если же источник движется к наблюдателю (в этом случае наблюдатель принимает излучение, направленное вперед по движению источника), то принимаемая частота ω’ ω , причем принимаемая частота больше излучаемой.

Случай, когда источник движется от наблюдателя, можно получить, изменив знак перед υ в соотношении (6). Видно, что тогда принимаемая частота оказывается меньше излучаемой.

Можно сказать, что вперед излучаются большие частоты, а назад — малые (если источник удаляется от наблюдателя, то наблюдатель, очевидно, принимает излучение, испущенное назад).

В несовпадении частоты колебаний источника и частоты, принимаемой наблюдателем, и состоит эффект Доплера. Если наблюдатель находится в системе координат, в которой источник покоится, то излучаемая и принимаемая частоты совпадают. Если же наблюдатель находится в системе координат, в которой источник движется со скоростью υ , то связь излучаемой и принимаемой частот определяется формулой (6). При этом мы предполагаем, что наблюдатель всегда покоится.

Как видно, связь между излучаемой и принимаемой частотами определяется скоростью v относительного движения источника и наблюдателя. В этом смысле безразлично, кто движется — источник приближается к наблюдателю или наблюдатель к источнику. Но нам в дальнейшем удобнее будет считать, что наблюдатель покоится.

Строго говоря, в разных системах координат время течет по-разному. Изменение хода времени также сказывается на величине наблюдаемой частоты. Если,например, частота колебаний маятника в системе координат, где он покоится, равна ω , то в системе координат, где он движется со скоростью υ , частота равна ω 1 − υ 2 c 2 − − − − − . К такому результату приводит теория относительности. Но поскольку мы с самого начала условились пренебрегать величиной υ 2 c 2 по сравнению с единицей, то изменение хода времени для нашего случая (движение с малой скоростью) пренебрежимо мало.

Таким образом, наблюдение за движущимся телом имеет свои особенности. Наблюдатель видит тело не там, где оно находится (пока сигнал идет к наблюдателю, тело успевает переместиться), и принимает сигнал, частота которого ω’ отличается от излучаемой частоты ω .

Выпишем теперь окончательные формулы, которые понадобятся нам в дальнейшем. Если движущийся источник излучает вперед по направлению движения, то частота ω’ , принятая наблюдателем, связана с частотой источника ω соотношением

ω = ω 1 − υ c = ω ( 1 + υ c ) , υ c ≪ 1. (7 )

Для излучения назад имеем

ω = ω 1 + υ c = ω ( 1 − υ c ) , υ c ≪ 1. (8 )

Энергия и импульс фотона

Современное представление о частице электромагнитного поля — фотоне, как и формула E = mc 2 , которую мы собираемся доказать, принадлежит Эйнштейну и было высказано им в том же 1905 году, в котором он доказал эквивалентность массы и энергии. Согласно Эйнштейну, электромагнитные и, в частности, световые волны состоят из отдельных частиц — фотонов. Если рассматривается свет некоторой определенной частоты ω , то каждый фотон имеет энергию E , пропорциональную этой частоте:

E = ℏ ω .

Коэффициент пропорциональности называется постоянной Планка. По порядку величины постоянная Планка равна 10 -34 , размерность ее Дж·с. Мы здесь не выписываем точного значения постоянной Планка, оно нам не понадобится.

Иногда вместо слова «фотон» говорят «квант электромагнитного поля».

Фотон имеет не только энергию, но и импульс, равный

p = ℏ ω c = E c .

Этих сведений нам будет достаточно для дальнейшего.

Вывод формулы E = mc 2

Рассмотрим покоящееся тело массой m . Предположим, что это тело одновременно излучает два фотона в прямо противоположных направлениях. Оба фотона имеют одинаковые частоты ω и, значит, одинаковые энергии E = ℏ ω , а также равные по величине и противоположные по направлению импульсы. В результате излучения тело теряет энергию

Δ E = 2 ℏ ω . (9 )

Потеря импульса равна нулю, и, следовательно, тело после излучения двух квантов остается в покое.

Этот мысленный опыт представлен на рисунке 1. Тело изображено кружком, а фотоны — волнистыми линиями. Один из фотонов излучается в положительном направлении оси x , другой — в отрицательном. Около волнистых линий приведены значения энергии и импульса соответствующих фотонов. Видно, что сумма излученных импульсов равна нулю.

Рис.1. Картина двух фотонов в системе отсчета, в которой излучающее тело покоится: а) тело до излучения; б) после излучения

Рассмотрим теперь ту же картину с точки зрения наблюдателя, который движется по оси x влево (т.е. в отрицательном направлении оси x ) с малой скоростью υ . Такой наблюдатель увидит уже не покоящееся тело, а тело, движущееся с малой скоростью вправо. Величина этой скорости равна υ , а направлена скорость в положительном направлении оси x . Тогда частота, излучаемая вправо, будет определяться формулой (7) для случая излучения вперед:

ω = ω ( 1 + υ c ) .

Мы частоту фотона, излучаемого движущимся телом вперед по направлению движения, обозначили через ω’ , чтобы не спутать эту частоту с частотой ω излучаемого фотона в той системе координат, где тело покоится. Соответственно, частота фотона, излучаемого движущимся телом влево, определяется формулой (8) для случая излучения назад:

ω ′′ = ω ( 1 − υ c ) .

Чтобы не перепутать излучение вперед и излучение назад, мы будем величины, относящиеся к излучению назад, обозначать двумя штрихами.

Поскольку, из-за эффекта Доплера, частоты излучения вперед и назад различны, энергия и импульс у излученных квантов также будут различаться. Квант, излученный вперед, будет иметь энергию

E = ℏ ω = ℏ ω ( 1 + υ c )

и импульс

p = ω c = ℏ ω c ( 1 + υ c ) .

Квант, излученный назад, будет иметь энергию

E ′′ = ℏ ω ′′ = ℏ ω ( 1 − υ c )

и импульс

p ′′ = ω ′′ c = ℏ ω c ( 1 − υ c ) .

При этом импульсы квантов направлены в противоположные стороны.

Картина процесса излучения, каким его видит движущийся наблюдатель, изображена на рисунке 2.

Рис.2. Картина двух фотонов в системе отсчета, где скорость излучающего тела равна υ : а) тело до излучения; б) после излучения

Важно здесь подчеркнуть, что на рисунках 1 и 2 изображен один и тот же процесс, но с точки зрения разных наблюдателей. Первый рисунок относится к случаю, когда наблюдатель покоится относительно излучающего тела, а второй — когда наблюдатель движется.

Подсчитаем баланс энергии и импульса для второго случая. Потеря энергии в системе координат, где излучатель имеет скорость υ , равна

Δ E = E + E ′′ = ℏ ω ( 1 + υ c ) + ℏ ω ( 1 − υ c ) = 2 ℏ ω = Δ E ,

т.е. она такая же, как и в системе, где излучатель покоится (см. формулу (9)). Но потеря импульса в системе, где излучатель движется, не равна нулю, в отличие от системы покоя:

Δ p = p p ′′ = ℏ ω c ( 1 + υ c ) ℏ ω c ( 1 1 υ c ) = 2 ℏ ω c υ c = Δ E c 2 υ . (10 )

Движущийся излучатель теряет импульс Δ E υ c 2 и, следовательно, должен, казалось бы, тормозиться, уменьшать свою скорость. Но в системе покоя излучение симметрично, излучатель не меняет скорости. Значит, скорость излучателя не может измениться и в той системе, где он движется. А если скорость тела не меняется, то как оно может потерять импульс?

Чтобы ответить на этот вопрос, вспомним, как записывается импульс тела массой m :

p = m υ

— импульс равен произведению массы тела на его скорость. Если скорость тела не меняется, то его импульс может измениться только за счет изменения массы:

Δ p = Δ m υ

Здесь Δp — изменение импульса тела при неизменной скорости, Δm — изменение его массы.

Это выражение для потери импульса надо приравнять к выражению (10), которое связывает потерю импульса с потерей энергии. Мы получим формулу

Δ E c 2 υ = Δ m υ ,
Δ E = Δ m c 2 ,

которая означает, что изменение энергии тела влечет за собой пропорциональное изменение его массы. Отсюда легко получить соотношение между полной массой тела и полным запасом энергии:

E = m c 2 .

Открытие этой формулы явилось огромным шагом вперед в понимании природных явлений. Само по себе осознание эквивалентности массы и энергии есть великое достижение. Но полученная формула, помимо того, имеет широчайшее поле применения. Распад и слияние атомных ядер, рождение и распад частиц, превращения элементарных частиц одна в другую и множество других явлений требуют для своего объяснения учета формулы связи между массой и энергией.

Если взять обычную пальчиковую батарейку из пульта от телевизора, и превратить ее в энергию, то точно такую же энергию можно получить от 250 миллиардов таких же батареек, если использовать их по-старинке. Не очень хороший получается КПД.

А то и означает, что масса и энергия - это одно и то же. То есть масса - это частный случай энергии. Энергию, заключенную в массе чего угодно, можно посчитать по этой простой формуле.

Скорость света - это очень много. Это 299 792 458 метров в секунду или, если вам так удобнее, 1 079 252 848,8 километров в час. Из-за этой большой величины получается, что если превратить чайный пакетик целиком в энергию, то этого хватит, чтобы вскипятить 350 миллиардов чайников.

У меня есть пара грамм вещества, где мне получить мою энергию?

Перевести всю массу предмета в энергию можно, только если вы где-нибудь найдете столько же антиматерии. А ее получить в домашних условиях проблематично , этот вариант отпадает.

Термоядерный синтез

Существует очень много природных термоядерных реакторов, вы можете их наблюдать, просто . Солнце и другие звезды - это и есть гигантские термоядерные реакторы.

Другой способ откусить от материи хоть сколько-то массы и превратить ее в энергию - это произвести термоядерный синтез . Берем два ядра водорода, сталкиваем их, получаем одно ядро гелия. Весь фокус в том, что масса двух ядер водорода немного больше, чем масса одного ядра гелия. Вот эта масса и превращается в энергию.

Но тут тоже не так все просто: ученые еще не научились поддерживать реакцию управляемого ядерного синтеза, промышленный термоядерный реактор фигурирует только в самых оптимистичных планах на середину этого столетия.

Ядерный распад

Ближе к реальности - реакция ядерного распада. Она вовсю используется в . Это когда два больших ядра атома распадаются на два маленьких. При такой реакции масса осколков получается меньше массы ядра, пропавшая масса и уходит в энергию.

Ядерный взрыв - это тоже ядерный распад, но неуправляемый, прекрасная иллюстрация этой формулы.

Горение

Превращение массы в энергию вы можете наблюдать прямо у вас в руках. Зажгите спичку - и вот она. При некоторых химических реакциях, например, горения, выделяется энергия от потери массы. Но она очень мала по сравнению с реакцией распада ядра, и вместо ядерного взрыва у вас в руках происходит просто горение спички.

Более того, когда вы поели, еда через сложные химические реакции благодаря мизерной потере массы отдает энергию, которую вы потом используете, чтобы сыграть в настольный теннис, ну или на диване перед телеком, чтобы поднять пульт и переключить канал.

Так что, когда вы едите бутерброд, часть его массы превратится в энергию по формуле E=mc 2 .

Болотовский Б. Простой вывод формулы E = mc 2 //Квант. - 2005. - № 6. - С. 2-7.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Введение

Полная и окончательная формулировка современной теории относительности содержится в большой статье Альберта Эйнштейна «К электродинамике движущихся тел», опубликованной в 1905 году. Если говорить об истории создания теории относительности, то у Эйнштейна были предшественники. Отдельные важные вопросы теории исследовались в работах Х.Лоренца, Дж.Лармора, А.Пуанкаре, а также некоторых других физиков. Однако теория относительности как физическая теория до появления работы Эйнштейна не существовала. Работа Эйнштейна отличается от предшествующих работ совершенно новым пониманием как отдельных сторон теории, так и всей теории как целого, таким пониманием, которого не было в работах его предшественников.

Теория относительности заставила пересмотреть многие основные представления физики. Относительность одновременности событий, различия в ходе движущихся и покоящихся часов, отличия в длине движущейся и покоящейся линеек - эти и многие другие следствия теории относительности неразрывно связаны с новыми по сравнению с ньютоновской механикой представлениями о пространстве и времени, а также о взаимной связи пространства и времени.

Одно из важнейших следствий теории относительности - знаменитое соотношение Эйнштейна между массой m покоящегося тела и запасом энергии Е в этом теле:

\(~E = mc^2, \qquad (1)\)

где с - скорость света.

(Это соотношение называют по-разному. На Западе для него принято название «соотношение эквивалентности между массой и энергией». У нас долгое время было принято более осторожное название «соотношение взаимосвязи между массой и энергией». Сторонники этого более осторожного названия избегают слова «эквивалентность», тождественность, потому что, говорят они, масса и энергия - это разные качества вещества, они могут быть связаны между собой, но не тождественны, не эквивалентны. Мне кажется, что эта осторожность является излишней. Равенство E = mc 2 говорит само за себя. Из него следует, что массу можно измерять в единицах энергии, а энергию - в единицах массы. Кстати, так физики и поступают. А утверждение, что масса и энергия - это разные характеристики вещества, было справедливо в механике Ньютона, а в механике Эйнштейна само соотношение E = mc 2 говорит о тождественности этих двух величин - массы и энергии. Можно, конечно, сказать, что соотношение между массой и энергией не означает их тождественности. Но это все равно, что сказать, глядя на равенство 2 = 2: это не тождество, а соотношение между разными двойками, потому что справа стоит правая двойка, а слева - левая.)

Соотношение (1) обычно выводится из уравнения движения тела в эйнштейновской механике, но этот вывод достаточно труден для ученика средней школы. Поэтому имеет смысл попытаться найти простой вывод этой формулы.

Сам Эйнштейн, сформулировав в 1905 году основы теории относительности в статье «К электродинамике движущихся тел», затем вернулся к вопросу о соотношении между массой и энергией. В том же 1905 году он опубликовал короткую заметку «Зависит ли инерция тела от содержащейся в нем энергии?». В этой статье он дал вывод соотношения E = mc 2 , который опирается не на уравнение движения, а, как и приведенный ниже вывод, на эффект Доплера. Но этот вывод тоже довольно сложный.

Вывод формулы E = mc 2 , который мы хотим вам предложить, не основан на уравнении движения и, кроме того, является достаточно простым, так что школьники старших классов могут его одолеть - для этого почти не потребуется знаний, выходящих за пределы школьной программы. На всякий случай мы приведем все сведения, которые нам понадобятся. Это сведения об эффекте Доплера и о фотоне - частице электромагнитного поля. Но предварительно оговорим одно условие, которое будем считать выполненным и на которое будем опираться при выводе.

Условие малости скоростей

Мы будем предполагать, что тело массой m , с которым мы будем иметь дело, либо покоится (и тогда, очевидно, скорость его равна нулю), либо, если оно движется, то со скоростью υ , малой по сравнению со скоростью света с . Иными словами, мы будем предполагать, что отношение \(~\frac{\upsilon}{c}\) скорости тела к скорости света есть величина малая по сравнению с единицей. Однако мы будем считать отношение \(~\frac{\upsilon}{c}\) хотя и малой, но не пренебрежимо малой величиной - будем учитывать величины, пропорциональные первой степени отношения \(~\frac{\upsilon}{c}\), но будем пренебрегать вторыми и более высокими степенями этого отношения. Например, если при выводе нам придется иметь дело с выражением \(~1 - \frac{\upsilon^2}{c^2}\), мы будем пренебрегать величиной \(~\frac{\upsilon^2}{c^2}\) по сравнению с единицей:

\(~1 - \frac{\upsilon^2}{c^2} = 1, \ \frac{\upsilon^2}{c^2} \ll \frac{\upsilon}{c} \ll 1. \qquad (2)\)

В этом приближении получаются соотношения, которые на первый взгляд могут показаться странными, хотя ничего странного в них нет, надо только помнить, что соотношения эти не являются точными равенствами, а справедливы с точностью до величины \(~\frac{\upsilon}{c}\) включительно, величинами же порядка \(~\frac{\upsilon^2}{c^2}\) мы пренебрегаем. В таком предположении справедливо, например, следующее приближенное равенство:

\(~\frac{1}{1 - \frac{\upsilon}{c}} = 1 + \frac{\upsilon}{c}, \ \frac{\upsilon^2}{c^2} \ll 1. \qquad (3)\)

Действительно, умножим обе части этого приближенного равенства на \(~1 - \frac{\upsilon}{c}\). Мы получим

\(~1 = 1 - \frac{\upsilon^2}{c^2},\)

т.е. приближенное равенство (2). Поскольку мы считаем, что величина \(~\frac{\upsilon^2}{c^2}\) пренебрежимо мала в сравнении с единицей, мы видим, что в приближении \(~\frac{\upsilon^2}{c^2} \ll 1\) равенство (3) справедливо.

Аналогично, нетрудно доказать в том же приближении равенство

\(~\frac{1}{1 + \frac{\upsilon}{c}} = 1 - \frac{\upsilon}{c}. \qquad (4)\)

Чем меньше величина \(~\frac{\upsilon}{c}\), тем точнее эти приближенные равенства.

Мы не случайно будем использовать приближение малых скоростей. Нередко приходится слышать и читать, что теория относительности должна применяться в случае больших скоростей, когда отношение скорости тела к скорости света имеет порядок единицы, при малых же скоростях применима механика Ньютона. На самом деле теория относительности не сводится к механике Ньютона даже в случае сколь угодно малых скоростей. Мы это увидим, доказав соотношение E = mc 2 для покоящегося или очень медленно движущегося тела. Механика Ньютона такого соотношения дать не может.

Оговорив малость скоростей по сравнению со скоростью света, перейдем к изложению некоторых сведений, которые понадобятся нам при выводе формулы E = mc 2 .

Эффект Доплера

Мы начнем с явления, которое называется по имени австрийского физика Кристиана Доплера, открывшего это явление в середине позапрошлого века.

Рассмотрим источник света, причем будем считать, что источник движется вдоль оси x со скоростью υ . Предположим для простоты, что в момент времени t = 0 источник проходит через начало координат, т.е. через точку х = 0. Тогда положение источника в любой момент времени t определяется формулой

\(~x = \upsilon t.\)

Предположим, что далеко впереди излучающего тела на оси x помещен наблюдатель, который следит за движением тела. Ясно, что при таком расположении тело приближается к наблюдателю. Допустим, что наблюдатель взглянул на тело в момент времени t . В этот момент до наблюдателя доходит световой сигнал, излученный телом в более ранний момент времени t’ . Очевидно, момент излучения должен предшествовать моменту приема, т.е. должно быть t’ < t .

Определим связь между t’ и t . В момент излучения t’ тело находится в точке \(~x" = \upsilon t"\), a наблюдатель пусть находится в точке х = L . Тогда расстояние от точки излучения до точки приема равно \(~L - \upsilon t"\), а время, за которое свет пройдет такое расстояние, равно \(~\frac{L - \upsilon t"}{c}\). Зная это, мы легко можем записать уравнение, связывающее t’ и t :

\(~t = t" + \frac{L - \upsilon t"}{c}.\)

\(~t" = \frac{t - \frac Lc}{1 - \frac{\upsilon}{c}}. \qquad (5)\)

Таким образом, наблюдатель, глядя на движущееся тело в момент времени t , видит это тело там, где оно находилось в более ранний момент времени t’ , причем связь между t и t’ определяется формулой (5).

Предположим теперь, что яркость источника периодически меняется по закону косинуса. Обозначим яркость буквой I . Очевидно, I есть функция времени, и мы можем, учитывая это обстоятельство, записать

\(~I = I_0 + I_1 \cos \omega t \ (I_0 > I_1 > 0),\)

где I 0 и I 1 - некоторые постоянные, не зависящие от времени. Неравенство в скобках необходимо потому, что яркость не может быть отрицательной величиной. Но для нас в данном случае это обстоятельство не имеет никакого значения, поскольку в дальнейшем нас будет интересовать только переменная составляющая - второе слагаемое в формуле для I (t ).

Пусть наблюдатель смотрит на тело в момент времени t . Как уже было сказано, он видит тело в состоянии, соответствующем более раннему моменту времени t’ . Переменная часть яркости в момент t’ пропорциональна cos ωt’ . С учетом соотношения (5) получаем

\(~\cos \omega t" = \cos \omega \frac{t - \frac Lc}{1 - \frac{\upsilon}{c}} = \cos \left(\frac{\omega t}{1 - \frac{\upsilon}{c}} - \omega \frac Lc \frac{1}{1 - \frac{\upsilon}{c}}\right).\)

Коэффициент при t под знаком косинуса дает частоту изменения яркости, как ее видит наблюдатель. Обозначим эту частоту через ω’ , тогда

\(~\omega" = \frac{\omega}{1 - \frac{\upsilon}{c}}. \qquad (6)\)

Если источник покоится (υ = 0), то ω’ = ω , т.е. наблюдатель воспринимает ту же самую частоту, что излучается источником. Если же источник движется к наблюдателю (в этом случае наблюдатель принимает излучение, направленное вперед по движению источника), то принимаемая частота ω’ ω , причем принимаемая частота больше излучаемой.

Случай, когда источник движется от наблюдателя, можно получить, изменив знак перед υ в соотношении (6). Видно, что тогда принимаемая частота оказывается меньше излучаемой.

Можно сказать, что вперед излучаются большие частоты, а назад - малые (если источник удаляется от наблюдателя, то наблюдатель, очевидно, принимает излучение, испущенное назад).

В несовпадении частоты колебаний источника и частоты, принимаемой наблюдателем, и состоит эффект Доплера. Если наблюдатель находится в системе координат, в которой источник покоится, то излучаемая и принимаемая частоты совпадают. Если же наблюдатель находится в системе координат, в которой источник движется со скоростью υ , то связь излучаемой и принимаемой частот определяется формулой (6). При этом мы предполагаем, что наблюдатель всегда покоится.

Как видно, связь между излучаемой и принимаемой частотами определяется скоростью v относительного движения источника и наблюдателя. В этом смысле безразлично, кто движется - источник приближается к наблюдателю или наблюдатель к источнику. Но нам в дальнейшем удобнее будет считать, что наблюдатель покоится.

Строго говоря, в разных системах координат время течет по-разному. Изменение хода времени также сказывается на величине наблюдаемой частоты. Если,например, частота колебаний маятника в системе координат, где он покоится, равна ω , то в системе координат, где он движется со скоростью υ , частота равна \(~\omega \sqrt{1 - \frac{\upsilon^2}{c^2}}\). К такому результату приводит теория относительности. Но поскольку мы с самого начала условились пренебрегать величиной \(~\frac{\upsilon^2}{c^2}\) по сравнению с единицей, то изменение хода времени для нашего случая (движение с малой скоростью) пренебрежимо мало.

Таким образом, наблюдение за движущимся телом имеет свои особенности. Наблюдатель видит тело не там, где оно находится (пока сигнал идет к наблюдателю, тело успевает переместиться), и принимает сигнал, частота которого ω’ отличается от излучаемой частоты ω .

Выпишем теперь окончательные формулы, которые понадобятся нам в дальнейшем. Если движущийся источник излучает вперед по направлению движения, то частота ω’ , принятая наблюдателем, связана с частотой источника ω соотношением

\(~\omega" = \frac{\omega}{1 - \frac{\upsilon}{c}} = \omega \left(1 + \frac{\upsilon}{c} \right), \ \frac{\upsilon}{c} \ll 1. \qquad (7)\)

Для излучения назад имеем

\(~\omega" = \frac{\omega}{1 + \frac{\upsilon}{c}} = \omega \left(1 - \frac{\upsilon}{c} \right), \ \frac{\upsilon}{c} \ll 1. \qquad (8)\)

Энергия и импульс фотона

Современное представление о частице электромагнитного поля - фотоне, как и формула E = mc 2 , которую мы собираемся доказать, принадлежит Эйнштейну и было высказано им в том же 1905 году, в котором он доказал эквивалентность массы и энергии. Согласно Эйнштейну, электромагнитные и, в частности, световые волны состоят из отдельных частиц - фотонов. Если рассматривается свет некоторой определенной частоты ω , то каждый фотон имеет энергию E , пропорциональную этой частоте:

\(~E = \hbar \omega .\)

Коэффициент пропорциональности \(~\hbar\) называется постоянной Планка. По порядку величины постоянная Планка равна 10 -34 , размерность ее Дж·с. Мы здесь не выписываем точного значения постоянной Планка, оно нам не понадобится.

Иногда вместо слова «фотон» говорят «квант электромагнитного поля».

Фотон имеет не только энергию, но и импульс, равный

\(~p = \frac{\hbar \omega}{c} = \frac Ec .\)

Этих сведений нам будет достаточно для дальнейшего.

Вывод формулы E = mc 2

Рассмотрим покоящееся тело массой m . Предположим, что это тело одновременно излучает два фотона в прямо противоположных направлениях. Оба фотона имеют одинаковые частоты ω и, значит, одинаковые энергии \(~E = \hbar \omega\), а также равные по величине и противоположные по направлению импульсы. В результате излучения тело теряет энергию

\(~\Delta E = 2 \hbar \omega. \qquad (9)\)

Потеря импульса равна нулю, и, следовательно, тело после излучения двух квантов остается в покое.

Этот мысленный опыт представлен на рисунке 1. Тело изображено кружком, а фотоны - волнистыми линиями. Один из фотонов излучается в положительном направлении оси x , другой - в отрицательном. Около волнистых линий приведены значения энергии и импульса соответствующих фотонов. Видно, что сумма излученных импульсов равна нулю.

Рис.1. Картина двух фотонов в системе отсчета, в которой излучающее тело покоится: а) тело до излучения; б) после излучения

Рассмотрим теперь ту же картину с точки зрения наблюдателя, который движется по оси x влево (т.е. в отрицательном направлении оси x ) с малой скоростью υ . Такой наблюдатель увидит уже не покоящееся тело, а тело, движущееся с малой скоростью вправо. Величина этой скорости равна υ , а направлена скорость в положительном направлении оси x . Тогда частота, излучаемая вправо, будет определяться формулой (7) для случая излучения вперед:

\(~\omega" = \omega \left(1 + \frac{\upsilon}{c} \right).\)

Мы частоту фотона, излучаемого движущимся телом вперед по направлению движения, обозначили через ω’ , чтобы не спутать эту частоту с частотой ω излучаемого фотона в той системе координат, где тело покоится. Соответственно, частота фотона, излучаемого движущимся телом влево, определяется формулой (8) для случая излучения назад:

\(~\omega"" = \omega \left(1 - \frac{\upsilon}{c} \right).\)

Чтобы не перепутать излучение вперед и излучение назад, мы будем величины, относящиеся к излучению назад, обозначать двумя штрихами.

Поскольку, из-за эффекта Доплера, частоты излучения вперед и назад различны, энергия и импульс у излученных квантов также будут различаться. Квант, излученный вперед, будет иметь энергию

\(~E" = \hbar \omega" = \hbar \omega \left(1 + \frac{\upsilon}{c} \right)\)

и импульс

\(~p" = \frac{\hbar \omega"}{c} = \frac{\hbar \omega}{c} \left(1 + \frac{\upsilon}{c} \right).\)

Квант, излученный назад, будет иметь энергию

\(~E"" = \hbar \omega"" = \hbar \omega \left(1 - \frac{\upsilon}{c} \right)\)

и импульс

\(~p"" = \frac{\hbar \omega""}{c} = \frac{\hbar \omega}{c} \left(1 - \frac{\upsilon}{c} \right).\)

При этом импульсы квантов направлены в противоположные стороны.

Картина процесса излучения, каким его видит движущийся наблюдатель, изображена на рисунке 2.

Рис.2. Картина двух фотонов в системе отсчета, где скорость излучающего тела равна υ : а) тело до излучения; б) после излучения

Важно здесь подчеркнуть, что на рисунках 1 и 2 изображен один и тот же процесс, но с точки зрения разных наблюдателей. Первый рисунок относится к случаю, когда наблюдатель покоится относительно излучающего тела, а второй - когда наблюдатель движется.

Подсчитаем баланс энергии и импульса для второго случая. Потеря энергии в системе координат, где излучатель имеет скорость υ , равна

\(~\Delta E" = E" + E"" = \hbar \omega \left(1 + \frac{\upsilon}{c} \right) + \hbar \omega \left(1 - \frac{\upsilon}{c} \right) = 2 \hbar \omega = \Delta E,\)

т.е. она такая же, как и в системе, где излучатель покоится (см. формулу (9)). Но потеря импульса в системе, где излучатель движется, не равна нулю, в отличие от системы покоя:

\(~\Delta p" = p" - p"" = \frac{\hbar \omega}{c} \left(1 + \frac{\upsilon}{c} \right) - \frac{\hbar \omega}{c} \left(1 1 \frac{\upsilon}{c} \right) = \frac{2 \hbar \omega}{c} \frac{\upsilon}{c} = \frac{\Delta E}{c^2} \upsilon. \qquad (10)\)

Движущийся излучатель теряет импульс \(~\frac{\Delta E \upsilon}{c^2}\) и, следовательно, должен, казалось бы, тормозиться, уменьшать свою скорость. Но в системе покоя излучение симметрично, излучатель не меняет скорости. Значит, скорость излучателя не может измениться и в той системе, где он движется. А если скорость тела не меняется, то как оно может потерять импульс?

Чтобы ответить на этот вопрос, вспомним, как записывается импульс тела массой m :

\(~p = m \upsilon\)

Импульс равен произведению массы тела на его скорость. Если скорость тела не меняется, то его импульс может измениться только за счет изменения массы:

\(~\Delta p = \Delta m \upsilon\)

Здесь Δp - изменение импульса тела при неизменной скорости, Δm - изменение его массы.

Это выражение для потери импульса надо приравнять к выражению (10), которое связывает потерю импульса с потерей энергии. Мы получим формулу

\(~\frac{\Delta E}{c^2}\upsilon = \Delta m \upsilon,\)

\(~\Delta E = \Delta m c^2,\)

которая означает, что изменение энергии тела влечет за собой пропорциональное изменение его массы. Отсюда легко получить соотношение между полной массой тела и полным запасом энергии:

\(~E = mc^2.\)

Открытие этой формулы явилось огромным шагом вперед в понимании природных явлений. Само по себе осознание эквивалентности массы и энергии есть великое достижение. Но полученная формула, помимо того, имеет широчайшее поле применения. Распад и слияние атомных ядер, рождение и распад частиц, превращения элементарных частиц одна в другую и множество других явлений требуют для своего объяснения учета формулы связи между массой и энергией.

В заключение - два домашних задания для любителей теории относительности.

  1. Прочитайте статью А.Эйнштейна «Зависит ли инерция тела от содержащейся в нем энергии?» .
  2. Попробуйте самостоятельно вывести соотношение \(~\Delta m = \frac{\Delta E}{c^2}\) для случая системы отсчета, скорость которой υ может быть не малой по сравнению со скоростью света с . Указание . Используйте точную формулу для импульса частицы: \(~p = \frac{m \upsilon}{\sqrt{1 - \frac{\upsilon^2}{c^2}}}\) и точную формулу для эффекта Доплера: \(~\omega" = \omega \sqrt{\frac{1 + \frac{\upsilon}{c}}{1 - \frac{\upsilon}{c}}},\) которая получается, если учесть различие в ходе времени в покоящейся и движущейся системах отсчета.
Похожие публикации