Эффект близнецов. Парадокс близнецов (мысленный эксперимент): объяснение

На этом удивительном феномене замедления времени основан следующий знаменитый мысленный эксперимент, так называемый парадокс близнецов. Представим себе, что один из двух близнецов отправляется в длительное путешествие на космическом корабле и уносится от Земли на чрезвычайно высокой скорости. Через пять лет он поворачивает и направляется обратно. Таким образом общее время в пути составляет 10 лет. Дома обнаруживается, что оставшийся на Земле близнец успел постареть, скажем, на 50 лет. На сколько лет путешественник будет моложе, чем оставшийся дома, - зависит от скорости полета. На Земле фактически прошло 50 лет, а значит, близнец-путешественник находился в дороге 50 лет, но для него путешествие уложилось всего в 10 лет.

Возможно, этот мысленный эксперимент кажется абсурдным, однако было проведено бесчисленное множество подобных экспериментов, и все они подтверждают предсказание теории относительности. Пример: сверхточные атомные часы несколько раз облетают Землю на пассажирском самолете. После приземления выясняется, что на атомных часах в самолете действительно прошло меньше времени, чем на других атомных часах, для сравнения оставленных на земле. Поскольку скорость пассажирского самолета значительно меньше, чем скорость света, замедление времени совсем невелико - однако точности атомных часов вполне хватает, чтобы его зарегистрировать. Самые современные атомные часы настолько точны, что ошибка в одну секунду достигается лишь через 100 миллионов лет.

Еще один пример, намного лучше иллюстрирующий эффект замедления времени, заключается в 15-кратном увеличении продолжительности жизни определенных элементарных частиц - мюонов. Мюоны можно представить как тяжелые электроны. Они в 207 раз тяжелее электронов, несут отрицательный заряд и возникают в верхних слоях земной атмосферы под действием космических лучей. Мюоны летят по направлению к Земле со скоростью, составляющей 99.8% скорости света. Но поскольку продолжительность их жизни равна всего 2 микросекундам, даже при такой высокой скорости они должны были бы распасться через 600 метров, не достигнув поверхности.


Для нас, в покоящейся системе отсчета (Земля), мюоны представляют собой чрезвычайно быстро движущиеся "часы распада", время жизни которых увеличивается в 15 раз. Благодаря этому они существуют 30 микросекунд и достигают поверхности Земли.

Для самих мюонов время не растягивается, однако они добираются до Земли. Как такое может быть? Разгадка кроется в еще одном удивительном феномене, "релятивистском сокращении расстояний", которое называют также лоренцевым. Сокращение расстояний означает, что быстро движущиеся объекты укорачиваются по направлению движения.

В покоящейся системе отсчета мюонов ситуация выглядит совсем иначе: гора и вместе с ней Земля приближаются к мюонам со скоростью, равной 99.8% световой. Гора высотой 9000 метров из-за сокращения расстояний кажется в 15 раз ниже, а это всего 600 метров. Поэтому даже при такой короткой продолжительности жизни - 2 микросекунды - мюоны попадают на Землю.

Как мы видим, главное - из какой точки рассматривать физическое явление. В покоящейся системе отсчета "Земля" время растягивается, течет медленнее. Наоборот, в покоящейся системе отсчета "мюоны" пространство сокращается по направлению движения, иначе говоря, сжимается. Расстояние до земной поверхности уменьшается от 9000 до 600 метров.

Итак, постоянство скорости света ведет к двум явлениям, совершенно невероятным с точки зрения здравого смысла: замедлению времени и сокращению расстояний. Но если считать скорость света постоянной величиной и взглянуть на формулу "скорость равна расстоянию, деленному на время", можно сделать следующий вывод: два наблюдателя в двух различных инерциальных системах отсчета, получившие в результате измерений одинаковую скорость света c, обязательно получат разные значения расстояния и времени.

Конечно, нам трудно принять, что не существует ни абсолютного времени, ни абсолютного пространства, только относительное время и относительные расстояния. Однако это объясняется тем, что ни один человек никогда еще не двигался со скоростью, при которой релятивистские эффекты стали бы заметны.

Еще одно странное явление - так называемое релятивистское увеличение масс. Когда мы имеем дело со скоростями, близкими к скорости света, масса тела возрастает, подобно тому, как замедляется время или сокращается расстояние. Если скорость равна 10% световой или больше, "релятивистские эффекты" становятся такими очевидными, что пренебречь ими уже нельзя. Когда скорость равна 99.8% световой, масса тела в 15 раз больше его массы покоя, а когда она равна 99.99% световой, масса превосходит массу покоя в 700 раз. Если скорость составляет 99.9999% от скорости света, масса возрастает в 700 раз. Итак, с ростом скорости тело становится все тяжелее, а чем оно тяжелее, тем больше требуется энергии, чтобы разогнать его еще сильнее. Вследствие этого скорость света представляет собой верхнюю границу, через которую нельзя перешагнуть, сколько бы ни подводилось энергии.


Разумеется, царица физических формул, а может, и самая известная формула вообще, также выведена Альбертом Эйнштейном. Она гласит: E = m * c 2 .

Сам Эйнштейн считал это уравнение важнейшим выводом теории относительности.

Но каков смысл этой формулы? Слева стоит E, энергия, справа - масса, помноженная на возведенную в квадрат скорость света c. Отсюда следует, что энергия и масса, по сути, есть одно и то же - и это действительно так.

Собственно говоря, об этом можно догадаться уже по релятивистскому увеличению масс. Если тело быстро движется, его масса возрастает. Чтобы разогнать тело, естественно, необходима дополнительная энергия.

Однако подвод энергии ведет не только к росту скорости: одновременно увеличивается и масса. Конечно, нам трудно такое представить, но этот факт на 100% подтвержден экспериментами.


Это имеет такое важное применение, как получение энергии за счет расщепления ядер: тяжелое ядро урана распадается на две части, например, криптон и барий. Но сумма из масс несколько меньше, чем масса урана до распада. Разность масс "дельта (Δ)м", называемая также дефектом массы, при распаде полностью переходит в энергию. Таким путем получают электроэнергию на АЭС.

8. Парадокс близнецов

Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.

Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.

Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности - это печальное недоразумение.

«Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться », - писал Макмиллан в 1927 г. «За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех - превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу ».

Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).

Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.

Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.

До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов - больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.

Допустим, что космонавт - один из близнецов - проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?

Ответ зависит от скорости движения корабля.

Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!

Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.

До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!

Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.

Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?

Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.

Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:

Юная леди по имени Кэт

Двигалась много быстрее, чем свет.

Но попадала всегда не туда:

Быстро помчишься - придешь во вчера.

Перевод А. И. Базя

Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.

Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.

Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.

Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.

Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.

В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.

Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.

Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.

Как эта разница сказывается на парадоксе?

Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.

Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.

С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве - времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.

Возражение Дингля все еще сохраняется, так как точно те же вычисления можно было бы проделать и при предположении, что неподвижная система отсчета связана с кораблем, а не с Землей. Теперь в путь отправляется Земля, затем она возвращается обратно, меняя инерциальную систему отсчета. Почему бы не проделать те же вычисления и на основе тех же уравнений не показать, что время на Земле отстало? И эти вычисления были бы справедливы, не будь одного необычайной важности факта: при движении Земли вся Вселенная двигалась бы вместе с нею. При повороте Земли поворачивалась бы и Вселенная. Это ускорение Вселенной создало бы мощное гравитационное поле. А как уже было показано, тяготение замедляет часы. Часы на Солнце, например, тикают реже, чем такие же часы на Земле, а на Земле реже, чем на Луне. После выполнения всех расчетов оказывается, что гравитационное поле, созданное ускорением космоса, замедлило бы часы в космическом корабле по сравнению с земными в точности на столько же, на сколько они замедлялись в предыдущем случае. Гравитационное поле, конечно, не повлияло на земные часы. Земля неподвижна относительно космоса, следовательно, на ней и не возникало дополнительного гравитационного поля.

Поучительно рассмотреть случай, при котором возникает точно такая же разница во времени, хотя никаких ускорений нет. Космический корабль А пролетает мимо Земли с постоянной скоростью, направляясь к планете X. В момент прохождения корабля мимо Земли часы на нем устанавливаются на ноль. Корабль А продолжает свое движение к планете X и проходит мимо космического корабля Б, движущегося с постоянной скоростью в противоположном направлении. В момент наибольшего сближения корабль А по радио сообщает кораблю Б время (измеренное по своим часам), прошедшее с момента пролета им мимо Земли. На корабле Б запоминают эти сведения и продолжают с постоянной скоростью двигаться к Земле. Проходя мимо Земли, они сообщают на Землю сведения о времени, затраченном А на путешествие с Земли до планеты X, а также время, затраченное Б (и измеренное по его часам) на путешествие от планеты X до Земли. Сумма этих двух промежутков времени будет меньше, чем время (измеренное по земным часам), протекшее с момента прохождения А мимо Земли до момента прохождения Б.

Эта разница во времени может быть вычислена по уравнениям специальной теории. Никаких ускорений здесь не было. Конечно, в данном случае нет и парадокса близнецов, поскольку нет космонавта, улетевшего и возвратившегося назад. Можно было бы предположить, что путешествующий близнец отправился на корабле А, затем пересел на корабль Б и вернулся обратно; но этого нельзя сделать без перехода от одной инерциальной системы отсчета к другой. Чтобы сделать такую пересадку, он должен был бы подвергнуться действию потрясающе мощных сил инерции. Эти силы вызывались бы тем, что изменилась его система отсчета. При желании мы могли бы сказать, что силы инерции замедлили часы близнеца. Однако если рассматривать весь эпизод с точки зрения путешествующего близнеца, связав его с неподвижной системой отсчета, то в рассуждения войдет сдвигающийся космос, создающий гравитационное поле. (Главный источник путаницы при рассмотрении парадокса близнецов заключается в том, что положение может быть описано с разных точек зрения.) Независимо от принятой точки зрения уравнения теории относительности всегда дают одну и ту же разницу во времени. Эту разницу можно получить, пользуясь одной лишь специальной теорией. И вообще для обсуждения парадокса близнецов мы привлекли общую теорию лишь для того, чтобы опровергнуть возражения Дингля.

Часто бывает невозможно установить, какая из возможностей «правильная». Путешествующий близнец летает туда и обратно или это проделывает домосед вместе с космосом? Есть факт: относительное движение близнецов. Имеется, однако, два различных способа рассказать об этом. С одной точки зрения, изменение инерциальной системы отсчета космонавта, создающее силы инерции, приводит к разнице в возрасте. С другой точки зрения, действие сил тяготения перевешивает эффект, связанный с изменением Землей инерциальной системы. С любой точки зрения домосед и космос неподвижны по отношению друг к другу. Итак, положение полностью различно с разных точек зрения, несмотря на то что относительность движения строго сохраняется. Парадоксальная разница в возрасте объясняется независимо от того, какой из близнецов считается покоящимся. Нет необходимости отбрасывать теорию относительности.

А теперь может быть задан интересный вопрос.

Что, если в космосе нет ничего, кроме двух космических кораблей, А и Б? Пусть корабль А, используя свой ракетный двигатель, ускорится, совершит длинное путешествие и вернется назад. Будут ли предварительно синхронизированные часы на обоих кораблях вести себя по-прежнему?

Ответ будет зависеть от того, чьего взгляда на инерцию вы придерживаетесь - Эддингтона или Денниса Скьяма. С точки зрения Эддингтона - «да». Корабль А ускоряется по отношению к пространственно-временной метрике космоса; корабль Б - нет. Их поведение несимметрично и приведет к обычной разнице в возрасте. С точки зрения Скьяма- «нет». Имеет смысл говорить об ускорении только по отношению к другим материальным телам. В данном случае единственными предметами являются два космических корабля. Положение полностью симметрично. И действительно, в данном случае нельзя говорить об инерциальной системе отсчета потому, что нет инерции (кроме крайне слабой инерции, созданной присутствием двух кораблей). Трудно предсказать, что случилось бы в космосе без инерции, если бы корабль включил свои ракетные двигатели! Как выразился с английской осторожностью Скьяма: «Жизнь была бы совсем другой в такой Вселенной!»

Поскольку замедление часов путешествующего близнеца можно рассматривать как гравитационное явление, любой опыт, который показывает замедление времени под действием тяжести, представляет собой косвенное подтверждение парадокса близнецов. В последние годы было получено несколько таких подтверждений с помощью нового замечательного лабораторного метода, основанного на эффекте Мёссбауэра. Молодой немецкий физик Рудольф Мёссбауэр в 1958 г. открыл способ изготовления «ядерных часов», с непостижимой точностью отмеряющих время. Представьте часы, «тикающие пять раз в секунду, и другие часы, тикающие так, что после миллиона миллионов тиканий они отстанут лишь на одну сотую тиканья. Эффект Мёссбауэра способен сразу же обнаружить, что вторые часы идут медленнее первых!

Опыты с применением эффекта Мёссбауэра показали, что время вблизи фундамента здания (где тяжесть больше) течет несколько медленнее, чем на его крыше. По замечанию Гамова: «Машинистка, работающая на первом этаже здания Эмпайр Стейт Билдинг, старится медленнее, чем ее сестра-близнец, работающая под самой крышей». Конечно, эта разница в возрасте неуловимо мала, но она есть и может быть измерена.

Английские физики, используя эффект Мёссбауэра, обнаружили, что ядерные часы, помещенные на краю быстро вращающегося диска диаметром всего в 15 см несколько замедляют свой ход. Вращающиеся часы можно рассматривать как близнеца, непрерывно изменяющего свою инерциальную систему отсчета (или как близнеца, на которого воздействует гравитационное поле, если считать диск покоящимся, а космос - вращающимся). Этот опыт является прямой проверкой парадокса близнецов. Наиболее прямой опыт будет выполнен тогда, когда ядерные часы поместят на искусственном спутнике, который будет вращаться с большой скоростью вокруг Земли.

Затем спутник возвратят и показания часов сравнят с теми часами, которые оставались на Земле. Конечно, быстро приближается то время, когда космонавт сможет сделать самую точную проверку, захватив ядерные часы с собой в далекое космическое путешествие. Никто из физиков, кроме профессора Дингля, не сомневается, что показания часов космонавта после его возвращения на Землю будут немного не совпадать с показаниями ядерных часов, оставшихся на Земле.

Из книги автора

8. Парадокс близнецов Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории

Колонка редактора

Здравствуйте, уважаемые читатели!

Многие мужчины умеют готовить лишь одно блюдо – яичницу, и я не исключение. Меньшее количество могут еще пожарить картошку, но это уже сложнее. И уж совсем небольшое количество истинных героев способны воплотить в съедобном виде такие сложнейшие кулинарные конструкции, как мясо или суп.

До недавнего времени мои способности ограничивались только первыми двумя блюдами. Но теперь, благодаря моей подруге, я могу готовить еще одно блюдо. Его прелесть в том, что оно по сложности занимает промежуточное положение между яичницей и жаренной картошкой, и называется онокурица по-оксански (догадайтесь, почему;-).

Для этого блюда нужно:

  • курица в форме разделанных и приправленных кусков (например, бёдрышек или ножек), такие продаются, они уже посыпаны всякой фигнёй и даже иногда посолены
  • одна луковица
  • микроволновка
  • посуда для микроволновки

Вот. Луковицу надо очистить, порезать кружками и побросать на дно посудины. Потом туда покидать куски курицы. Потом накрыть крышкой. Потом поставить всё это в микроволновку и закрыть дверцу. Поставить регулятор на максимум, а часы – на 30 минут, и всё!

В течение 30 минут можно делать всё, что заблагорассудится, а потом можно вкусно поесть и даже не один раз!

И еще вопрос к читателям: кто может сделать на php/MySQL или знает, где взять бесплатно, какой-нибудь хороший тест интеллекта для нашего сайта? Лучше, тест Айзенка!

Введение

Ну а сегодня мы рассмотрим, пожалуй, самый известный из парадоксов относительности, который называетсяпарадокс близнецов.

Сразу говорю, что никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.

Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.

Сперва напомню вам наше базовое рассуждение о замедлении времени.

Помните анекдот про Жору Батарейкина, когда за Жорой послали следить полковника, а за полковником – подполковника? Нам понадобится воображение, чтбы представить себя на месте подполковника, то есть, понаблюдать за наблюдателем.

Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.

Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом уменьшается со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! 😉 причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.

Помните другой анекдот, про двух наркоманов, которые увидели, как по небу несколько раз пронесся огненный шар, а потом оказалось, что они простояли на балконе три дня, а огненный шар – это было солнце? Так вот этот наблюдатель как раз и должен находиться в состоянии такого замедленного наркомана. Разумеется, это будет видно только нам, а сам он ничего особенного не заметит, ведь замедлятся все процессы вокруг него.

Описание эксперимента

Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца – Костя и Яша.

Костя Яша

Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):

10 20 30 40 50 60 70

подросток

трудный возраст

молодой повеса

молодой работник

заслуженный работник

пенсионер

дряхлый старик

Но всё происходит не так.

Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.

Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.

Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.

Предсказание относительности

Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.

Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!

Костя Яша

Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!

Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.

Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятиенаблюдает. Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.

Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новыйкадр изображения приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.

Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на . Мы там написаливсё равно увидит, что, но мы не имели в виду именноувидит глазами. Мы имели в видуполучит в результате, с учётом всех известных явлений. Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!

Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.

По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.

Космический брат
10 20 30 40
Земной брат
10 30 50 70

Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.

Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из .

Кажущееся противоречие

Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.

Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной – остаться более молодым.

Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.

Вот это противоречие и называется парадоксом близнецов.

Инерциальные и неинерциальные системы отсчёта

Как же нам разрешить это противоречие? Как известно, противоречий быть не может 🙂

Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?

Сам вывод того, что время должно замедляться – безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!

Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки : его прижимает к креслу. А для того, кто не разгоняется – перегрузок не создаёт.

Почему природа так поступает – в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.

Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можнотолько разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.

Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали – мы утверждали для случая отсутствия перегрузок.

Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описаниянормального мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно – ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта.

Что же такое инерциальная система отсчёта (ИСО)

Ясно, что первое , что мы можем сказать об ИСО – это такое описание мира, которое нам кажетсянормальным. То есть, это то описание, с которого мы начали.

В инерциальных системах отсчёта действует так называемый закон инерции – каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.

Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения – тоже будет ИСО.

Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО – также будет ИСО.

Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением – будет не-ИСО.

Часть последняя: история Кости

Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?

Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.

Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов – не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются супер-пупер противоперегрузочные кресла, а корабль сделан из инопланетянской стали.

Что же получится?

В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша – только на 5.

К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской+5 .

Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.

Где-то между этими участками, в самой середине полёта, должно происходить что-то, чтосшивает процесс старения земного брата воедино.

Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!

Выводы

Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени – парадоксом не является.

Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.

Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно – оно проматывается вперёд.

Взгляд на парадокс близнецов из четырехмерного пространства-времени можно увидеть в .

Димс.

Специальные и общие теории относительности говорят о том, что у каждого наблюдателя свое время. То есть, грубо говоря, один человек движется и по своим часам определяет одно время, другой человек как-то движется и по своим часам определяет другое время. Безусловно, если эти люди движутся относительно друг друга с небольшими скоростями и ускорениями, они измеряют практически одно и то же время. По нашим часам, которые мы используем, мы это отличие измерить неспособны. Я не исключаю, что если часами, которые измеряют время с точностью до одной секунды за время жизни Вселенной, будут оснащены два человека, то, походив как-то по-разному, они, возможно, увидят какую-то разницу в каком-то n знаке. Однако эти различия слабые.

Специальные и общие теории относительности предсказывают, что эти различия будут существенными, если два товарища друг относительно друга движутся с большими скоростями, ускорениями или вблизи черной дыры. Например, один из них далеко от черной дыры, а другой близко к черной дыре или какому-нибудь сильно гравитирующему телу. Или один покоится, а другой движется с какой-то скоростью относительно него или с большим ускорением. Тогда различия будут существенные. Насколько большие, я не говорю, и это измеряется на эксперименте с высокоточными атомными часами. Люди летают на самолете, потом привозят, сравнивают, что показали часы на земле, что показали часы на самолете и не только. Таких экспериментов множество, все они согласуются с форменными предсказаниями общей и специальной теории относительности. В частности, если один наблюдатель покоится, а другой относительно него движется с постоянной скоростью, то пересчет хода часов от одного к другому задается преобразованиями Лоренца, как пример.

В специальной теории относительности на основе этого есть так называемый парадокс близнецов, который описан во многих книгах. Заключается он в следующем. Вот представьте себе, что у вас есть два близнеца: Ваня и Вася. Скажем, Ваня остался на Земле, а Вася полетел на альфу Центавра и вернулся. Теперь говорится, что относительно Вани Вася двигался с постоянной скоростью. У него время двигалось медленнее. Он вернулся, соответственно, он должен быть моложе. С другой стороны, парадокс формулируется так: теперь, наоборот, относительно Васи (движение с постоянной скоростью относительно) Ваня движется с постоянной скоростью, несмотря на то что он находился на Земле, то есть, когда Вася вернется на Землю, по идее, у Вани часы должны показывать меньше времени. Кто же из них младше? Какое-то логическое противоречие. Совершенная чушь эта специальная теория относительности, получается.

Факт номер раз: сразу нужно понять, что преобразованиями Лоренца можно пользоваться, если переходить из одной инерциальной системы отсчета в другую инерциальную систему отсчета. И эта логика, что у одного время движется медленнее за счет того, что он движется с постоянной скоростью, только на основе преобразования Лоренца. А у нас в данном случае один из наблюдателей почти инерциальный - тот, который находится на Земле. Почти инерциальный, то есть эти ускорения, с которыми Земля движется вокруг Солнца, Солнце движется вокруг центра Галактики и так далее, - это все маленькие ускорения, для данной задачи заведомо можно этим пренебречь. А второй должен слетать на альфу Центавра. Он должен разогнаться, затормозиться, потом опять разогнаться, затормозиться - это все неинерциальные движения. Поэтому такой наивный пересчет сразу не работает.

Как же правильно объяснить этот парадокс близнецов? Он на самом деле достаточно просто объясняется. Для того чтобы сравнивать время жизни двух товарищей, они должны встречаться. Они должны сначала встретиться в первый раз, оказаться в одной точке пространства в одно и то же время, сравнить часы: 0 часов 0 минут 1 января 2001 года. Потом разлететься. Один из них будет двигаться одним образом, у него как-то часы будут тикать. Другой будет двигаться другим образом, и у него как-то своим образом будут тикать часы. Потом они снова встретятся, вернутся в одну и ту же точку в пространстве, но уже в другое время по отношению к первоначальному. В одно и то же время окажутся в одной и той же точке по отношению к каким-нибудь дополнительным часам. Важно следующее: теперь они могут сравнить часы. У одного натикало столько-то, у другого натикало столько-то. Как это объясняется?

Представьте эти две точки в пространстве и времени, где они встречались в начальный момент и в конечный момент, в момент отлета на альфу Центавра, в момент прилета с альфы Центавра. Один из них двигался инерциально, будем считать для идеала, то есть он двигался по прямой. Второй из них двигался неинерциально, поэтому он в этом пространстве и времени двигался по какой-то кривой - ускорялся, замедлялся и так далее. Так вот одна из этих кривых обладает свойством экстремальности. Ясно, что среди всех возможных кривых в пространстве и времени прямая является экстремальной, то есть она имеет экстремальную длину. Наивно, кажется, что она должна иметь наименьшую длину, потому что на плоскости среди всех кривых наименьшую длину между двумя точками имеет прямая. В пространстве и времени Минковского у него так устроена метрика, так устроен способ измерения длин, прямая имеет наидлиннейшую длину, как это ни странно звучит. Прямая имеет самую большую длину. Поэтому тот, который двигался инерциально, оставался на Земле, измерит больший промежуток времени, чем тот, который летал на альфу Центавра и вернулся, поэтому он будет старше.

Обычно такие парадоксы придумываются для того, чтобы опровергнуть ту или иную теорию. Придумываются самими же учеными, которые занимаются этой областью науки.

Исходно, когда появляется новая теория, ясное дело, что ее вообще никто не воспринимает, особенно если она противоречит каким-то устоявшимся на тот момент данным. И люди просто сопротивляются, это безусловно, придумывают всякие контраргументы и так далее. Это все проходит тяжелейший процесс. Человек борется за то, чтобы его признали. Это всегда связано с долгими промежутками времени и большой нервотрепкой. Возникают вот такие парадоксы.

Кроме парадокса близнецов есть, например, такой парадокс со стержнем и сараем, так называемое Лоренцево сокращение длин, что если вы стоите и смотрите на стержень, который мимо вас летит с очень высокой скоростью, то он выглядит короче, чем он на самом деле есть в той системе отсчета, в которой он покоится. С этим связан вот такой парадокс. Представьте себе ангар или сквозной сарай, у него две дырки, он какой-то длины, неважно какой. Представьте себе, что на него летит этот стержень, собирается пролететь сквозь него. Сарай в своей системе покоя имеет одну длину, скажем 6 метров. Стержень в своей системе покоя имеет длину 10 метров. Представьте себе, что у них скорость сближения такая, что в системе отсчета сарая стержень сократился до 6 метров. Можно посчитать, какая это скорость, но сейчас неважно, она достаточно близка к скорости света. Стержень сократился до 6 метров. Это значит, что в системе отсчета сарая стрежень в какой-то момент целиком поместится в сарай.

Человек, который стоит в сарае, - вот мимо него летит стержень - в какой-то момент увидит этот стержень, целиком лежащий в сарае. С другой стороны, движение с постоянной скоростью относительное. Соответственно, можно рассматривать, как будто бы стержень покоится, а на него летит сарай. Значит, в системе отсчета стержня сарай сократился, причем сократился он в то же число раз, что и стрежень в системе отсчета сарая. Значит, в системе отсчета стержня сарай сократился до 3,6 метра. Теперь в системе отсчета стержня стержень никак не может поместиться в сарай. В одной системе отсчета он помещается, в другой системе отсчета он не помещается. Чушь какая-то.

Ясное дело, что такая теория не может быть верной, - кажется на первый взгляд. Однако объяснение простое. Когда вы видите стержень и говорите: «Он данной длины», это значит, что к вам поступает сигнал от этого и от этого конца стержня одновременно. То есть, когда я говорю, что стержень поместился в сарай, двигаясь с какой-то скоростью, это значит, что событие совпадения этого конца стержня с этим концом сарая одновременно с событием совпадения этого конца стержня с этим концом сарая. Эти два события одновременны в системе отсчета сарая. Но вы же слышали, наверное, что в теории относительности одновременность относительна. Так вот оказывается, что в системе отсчета стержня эти два события неодновременны. Просто сначала совпадает правый конец стержня с правым концом сарая, потом совпадает левый конец стержня с левым концом сарая через какой-то промежуток времени. Этот промежуток времени как раз равен тому времени, за которое эти 10 метров минус 3,6 метра с этой данной скоростью пролетят конец стержня.

Чаще всего теорию относительности опровергают по той причине, что для нее очень легко придумываются подобные парадоксы. Этих парадоксов существует масса. Есть такая книжка Тейлора и Уилера «Физика пространства-времени», она написана достаточно доступным языком для школьников, где подавляющее большинство этих парадоксов разбираются и объясняются с использованием достаточно простых аргументов и формул, как объясняется тот или иной парадокс в рамках теории относительности.

Можно придумать какой-нибудь способ объяснения каждого данного факта, который выглядит проще, чем тот способ, который предоставляет теория относительности. Однако важным свойством специальной теории относительности является то, что она объясняет не каждый отдельный факт, а всю эту совокупность фактов, вместе взятых. Вот если вы придумали объяснение какого-то одного факта, выделенного из всей этой совокупности, пусть оно объясняет этот факт лучше, чем специальная теория относительности, на ваш взгляд, однако еще нужно проверить, что он и все остальные факты тоже объясняет. А как правило, все эти объяснения, которые звучат более просто, не объясняют всего остального. И надо помнить, что в тот момент, когда придумывается та или иная теория, - это действительно какой-то психологический, научный подвиг. Потому что фактов на этот момент существует один, два или три. И вот человек, основываясь на этом одном или трех наблюдениях, формулирует свою теорию.

В тот момент кажется, что она противоречит всему, что было до того известно, если теория кардинальная. Придумываются вот такие парадоксы, чтобы ее опровергнуть, и так далее. Но, как правило, эти парадоксы объясняются, появляются какие-то новые дополнительные экспериментальные данные, они проверяются, соответствуют ли они этой теории. Также из теории следуют какие-то предсказания. Она же основывается на каких-то фактах, что-то там утверждает, из этого утверждения можно что-то вывести, получить и потом сказать, что если эта теория верна, то должно быть так-то и так-то. Идем, проверяем, так это или не так. Так-то. Значит, теория хороша. И так до бесконечности. В общем-то требуется бесконечно много экспериментов, чтобы подтвердить теорию, но на данный момент в той области, в которой специальная и общая теория относительности применимы, фактов, опровергающих эти теории, не существует.

Парадокс близнецов

Затем, в 1921 году простое объяснение, основанное на инвариантности собственного времени, предложил Вольфганг Паули .

Некоторое время «парадокс близнецов» почти не привлекал к себе внимания. В 1956-1959 годах Герберт Дингл выступил с рядом статей , в которых утверждалось, что известные объяснения «парадокса» неверны. Несмотря на ошибочность аргументации Дингла , его работы вызвали многочисленные дискуссии в научных и научно-популярных журналах . В результате появился ряд книг, посвящённых этой теме. Из русскоязычных источников стоит отметить книги , а также статью .

Большинство исследователей не считают «парадокс близнецов» демонстрацией противоречия теории относительности, хотя история появления тех или иных объяснений «парадокса» и придания ему новых форм не прекращается до настоящего времени .

Классификация объяснений парадокса

Объяснить парадокс, подобный «парадоксу близнецов», можно при помощи двух подходов:

1) Выявить происхождение логической ошибки в рассуждениях, которые привели к противоречию; 2) Провести детальные вычисления величины эффекта замедления времени с позиции каждого из братьев.

Первый подход зависит от деталей формулировки парадокса. В разделах «Простейшие объяснения » и «Физическая причина парадокса » будут приведены различные версии «парадокса» и даны объяснения того, почему противоречия на самом деле не возникает.

В рамках второго подхода расчёты показаний часов каждого из братьев проводятся как с точки зрения домоседа (что обычно не представляет труда), так и с точки зрения путешественника. Так как последний менял свою систему отсчёта , возможны различные варианты учёта этого факта. Их условно можно разделить на две большие группы.

К первой группе относятся вычисления на основе специальной теории относительности в рамках инерциальных систем отсчёта. В этом случае этапы ускоренного движения считаются пренебрежимо малыми по сравнению с общим временем полёта. Иногда вводится третья инерциальная система отсчёта, движущаяся навстречу путешественнику, при помощи которой показания его часов «передаются» брату-домоседу. В разделе «Обмен сигналами » будет приведен простейший расчёт, основанный на эффекте Доплера .

Ко второй группе относятся вычисления, учитывающие детали ускоренного движения . В свою очередь, они делятся по признаку использования или неиспользования в них теории гравитации Эйнштейна (ОТО). Расчёты с использованием ОТО основаны на введении эффективного гравитационного поля , эквивалентного ускорению системы, и учёте изменения в нём темпа хода времени. Во втором способе неинерциальные системы отсчёта описываются в плоском пространстве-времени и понятие гравитационного поля не привлекается. Основные идеи этой группы расчётов будут представлены в разделе «Неинерциальные системы отсчёта ».

Кинематические эффекты СТО

При этом, чем короче момент ускорения, тем оно больше, и как следствие больше разница в скорости часов на Земле и космического корабля, если он удалён от Земли в момент изменения скорости. Поэтому ускорением никогда нельзя пренебречь.

Конечно, сама по себе констатация несимметричности братьев не объясняет, почему замедлиться должны часы именно у путешественника, а не у домоседа. Кроме этого, часто возникает непонимание:

«Почему нарушение равноправия братьев в течение столь короткого времени (остановка путешественника) приводит к такому разительному нарушению симметрии?»

Чтобы глубже понять причины несимметричности и следствия, к которым они приводят, необходимо ещё раз выделить ключевые посылки, явно или неявно присутствующие в любой формулировке парадокса. Для этого будем считать, что вдоль траектории движения путешественника в «неподвижной» системе отсчёта, связанной с домоседом, расположены синхронно идущие (в этой системе) часы. Тогда возможна следующая цепочка рассуждений, как бы «доказывающих» противоречивость выводов СТО:

  1. Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход.
  2. Более медленный темп хода часов означает, что их накопленные показания отстанут от показаний часов путешественника, и при длительном полёте - сколь угодно сильно.
  3. Быстро остановившись, путешественник по-прежнему должен наблюдать отставание часов, расположенных в «точке остановки».
  4. Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО.

Итак, почему путешественник на самом деле будет наблюдать отставание своих часов от часов «неподвижной» системы, несмотря на то, что все такие часы с его точки зрения идут медленнее? Наиболее простым объяснением в рамках СТО является то, что синхронизовать все часы в двух инерциальных системах отсчёта невозможно. Рассмотрим это объяснение подробнее.

Физическая причина парадокса

Во время полёта путешественник и домосед находятся в различных точках пространства и не могут сравнивать свои часы непосредственно. Поэтому, как и выше, будем считать, что вдоль траектории движения путешественника в «неподвижной» системе, связанной с домоседом, расставлены одинаковые, синхронно идущие часы, которые может наблюдать путешественник во время полёта. Благодаря процедуре синхронизации в «неподвижной» системе отсчёта введено единое время, определяющее в данный момент «настоящее» этой системы.

После старта путешественник «переходит» в инерциальную систему отсчёта , движущуюся относительно «неподвижной» со скоростью . Этот момент времени принимается братьями за начальный . Каждый из них будет наблюдать замедленный ход часов другого брата.

Однако, единое «настоящее» системы для путешественника перестаёт существовать. В системе отсчёта есть своё «настоящее» (множество синхронизированных часов). Для системы , чем дальше по ходу движения путешественника находятся части системы , тем в более отдалённом «будущем» (с точки зрения «настоящего» системы ) они находятся.

Непосредственно это будущее наблюдать путешественник не может. Это могли бы сделать другие наблюдатели системы , расположенные впереди по движению и имеющие синхронизированное с путешественником время.

Поэтому, хотя все часы в неподвижной системе отсчёта, мимо которых пролетает путешественник, идут с его точки зрения медленнее, из этого не следует , что они отстанут от его часов.

В момент времени , чем дальше впереди по курсу находятся «неподвижные» часы, тем больше их показания с точки зрения путешественника. Когда он достигает этих часов, они не успеют отстать настолько, чтобы скомпенсировать начальное расхождение времени.

Действительно, положим координату путешественника в преобразованиях Лоренца равной . Закон его движения относительно системы имеет вид . Время, прошедшее после начала полёта, по часам в системе меньше, чем в :

Другими словами, время на часах путешественника отстаёт от показаний часов системы . В то же время часы, мимо которых пролетает путешественник, неподвижны в : . Поэтому их темп хода для путешественника выглядит замедленным:

Таким образом:

несмотря на то, что все конкретные часы в системе идут медленнее с точки зрения наблюдателя в , разные часы вдоль его траектории будут показывать время, ушедшее вперед.

Разность темпа хода часов и - эффект относительный, тогда как значения текущих показаний и в одной пространственной точке - носят абсолютный характер. Наблюдатели, находящиеся в различных инерциальных системах отсчёта, но «в одной» пространственной точке, всегда могут сравнить текущие показания своих часов. Путешественник, пролетая мимо часов системы видит, что они ушли вперёд . Поэтому, если путешественник решит остановиться (быстро затормозив), ничего не изменится, и он попадёт в «будущее» системы . Естественно, после остановки темп хода его часов и часов в станет одинаковым. Однако, часы путешественника будут показывать меньшее время чем часы системы , находящиеся в точке остановки. В силу единого времени в системе часы путешественника отстанут от всех часов , в том числе и от часов его брата. После остановки путешественник может вернуться домой. В этом случае весь анализ повторяется. В результате, как в точке остановки и разворота, так и в исходной точке при возвращении путешественник оказывается моложе своего брата-домоседа.

Если же вместо остановки путешественника до его скорости ускорится домосед, то последний «попадёт» в «будущее» системы путешественника. В результате «домосед» окажется моложе «путешественника». Таким образом:

кто изменяет свою систему отсчёта, тот и оказывается моложе.

Обмен сигналами

Вычисление замедления времени с позиции каждого брата можно провести при помощи анализа обмена сигналами между ними. Хотя братья, находясь в различных точках пространства, не могут непосредственно сравнивать показания своих часов, они могут передавать сигналы «точного времени» при помощи световых импульсов или видеотрансляции изображения часов. Понятно, что при этом они наблюдают не «текущее» время на часах брата, а «прошлое», так как сигналу требуется время для распространения от источника к приёмнику.

При обмене сигналами необходимо учитывать эффект Доплера . Если источник удаляется от приёмника, то частота сигнала уменьшается, а когда он приближается - увеличивается:

где - собственная частота излучения, а - частота принимаемого наблюдателем сигнала. Эффект Доплера имеет классическую составляющую и составляющую релятивистскую, непосредственно связанную с замедлением времени. Скорость , входящая в соотношения изменения частоты, является относительной скоростью источника и приёмника.

Рассмотрим ситуацию, в которой братья передают друг другу каждую секунду (по своим часам) сигналы точного времени. Проведём сначала расчёт с позиции путешественника.

Расчёт путешественника

Пока путешественник удаляется от Земли, он, в силу эффекта Доплера , регистрирует уменьшение частоты принимаемых сигналов. Видеотрансляция с Земли выглядит более медленной. После быстрого торможения и остановки путешественник перестаёт удаляться от земных сигналов, и их период сразу оказывается равным его секунде. Темп видеотрансляции становится «естественным», хотя, в силу конечности скорости света, путешественник по-прежнему наблюдает «прошлое» своего брата. Развернувшись и разогнавшись, путешественник начинает «набегать» на идущие ему навстречу сигналы и их частота увеличивается. «Движения брата» на видеотрансляции с этого момента начинают выглядеть для путешественника ускоренными .

Время полёта по часам путешественника в одну сторону равно , и такое же в обратную. Количество принятых «земных секунд» в течение путешествия равно их частоте , умноженной на время. Поэтому при удалении от Земли путешественник получит существенно меньше «секунд»:

а при приближении, наоборот, больше:

Суммарное количество «секунд», полученных с Земли за время , больше, чем переданных на неё:

в точном соответствии с формулой замедления времени.

Расчёт домоседа

Несколько иная арифметика у домоседа. Пока его брат удаляется, он также регистрирует увеличенный период точного времени, передаваемый путешественником. Однако, в отличие от брата, домосед наблюдает такое замедление дольше . Время полёта на расстояние в одну сторону составляет по земным часам . Торможение и разворот путешественника домосед увидит спустя дополнительное время , требуемое свету для прохождения расстояния от точки разворота. Поэтому, только через время от начала путешествия домосед зарегистрирует ускоренную работу часов приближающегося брата:

Время движения света от точки разворота выражается через время полёта к ней путешественника следующим образом (см. рисунок):

Поэтому количество «секунд», полученных от путешественника, до момента его разворота (по наблюдениям домоседа) равно:

Сигналы с повышенной частотой домосед принимает в течение времени (см. рисунок выше), и получает «секунд» путешественника:

Суммарное число полученных «секунд» за время равно:

Таким образом, соотношение для показания часов в момент встречи путешественника () и брата-домоседа () не зависит от того, с чьей точки зрения оно рассчитывается.

Геометрическая интерпретация

, где - гиперболический арксинус

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра , удалённой от Земли на расстояние в 4,3 световых года . Если время измеряется в годах, а расстояния в световых годах, то скорость света равна единице, а единичное ускорение св.год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с единичным ускорением потенциально может совершить путешествие (вернувшись на Землю) к галактике Андромеды , удалённой на 2,5 млн св. лет . На Земле за время такого полёта пройдёт около 5 млн лет. Развивая вдвое большее ускорение (к которому тренированный человек вполне может привыкнуть при соблюдении ряда условий и использования ряда приспособлений, например, анабиоза), можно подумать даже об экспедиции к видимому краю Вселенной (около 14 млрд. св. лет), которая займёт у космонавтов порядка 50 лет; правда, возвратившись из такой экспедиции (через 28 млрд. лет по земным часам), её участники рискуют не застать в живых не то что Землю и Солнце, но даже нашу Галактику. Исходя из этих расчётов, разумный радиус доступности для межзвёздных экспедиций с возвратом не превышает нескольких десятков световых лет, если, конечно, не будут открыты какие-либо принципиально новые физические принципы перемещения в пространстве-времени. Впрочем, обнаружение многочисленных экзопланет даёт основания полагать, что планетные системы встречаются у достаточно большой доли звёзд, поэтому космонавтам будет что исследовать и в этом радиусе (например, планетные системы ε Эридана и Глизе 581).

Расчёт путешественника

Для проведения того же расчёта с позиции путешественника, необходимо задать метрический тензор , соответствующий его неинерциальной системе отсчёта . Относительно этой системы скорость путешественника нулевая, поэтому время на его часах равно

Заметим, что является координатным временем и в системе путешественника отличается от времени системы отсчёта домоседа.

Земные часы свободны, поэтому они движутся вдоль геодезической , определяемой уравнением :

где - символы Кристоффеля , выражающиеся через метрический тензор . При заданном метрическом тензоре неинерциальной системы отсчёта эти уравнения позволяют найти траекторию часов домоседа в системе отсчёта путешественника. Её подстановка в формулу для собственного времени даёт интервал времени, прошедший по «неподвижным» часам:

где - координатная скорость земных часов.

Подобное описание неинерциальных систем отсчёта возможно либо при помощи теории гравитации Эйнштейна , либо без ссылки на последнюю. Детали расчёта в рамках первого способа можно найти, например, в книге Фока или Мёллера . Второй способ рассмотрен в книге Логунова .

Результат всех этих вычислений показывает, что и с точки зрения путешественника его часы отстанут от часов неподвижного наблюдателя. В итоге разница времени путешествия с обеих точек зрения будет одинаковая, и путешественник окажется моложе домоседа. Если длительность этапов ускоренного движения много меньше длительности равномерного полёта, то результат более общих вычислений совпадает с формулой, полученной в рамках инерциальных систем отсчёта.

Выводы

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет. Кроме этого, важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Расчёт величины замедления времени с позиции каждого брата может быть выполнен как в рамках элементарных вычислений в СТО, так и при помощи анализа неинерциальных систем отсчёта. Все эти вычисления согласуются друг с другом и показывают, что путешественник окажется моложе своего брата-домоседа.

Парадоксом близнецов часто также называют сам вывод теории относительности о том, что один из близнецов состарится сильнее другого. Хотя такая ситуация и необычна, в ней нет внутреннего противоречия. Многочисленные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода макроскопических часов при их движении подтверждают теорию относительности. Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

См. также

Примечания

Источники

  1. Эйнштейн А. «К электродинамике движущихся тел », Ann. d. Phys.,1905 b. 17, s. 89, русский перевод в «Эйнштейн А. Собрание научных трудов в четырёх томах. Том 1. Работы по теории относительности 1905-1920.» М.: Наука, 1965.
  2. Langevin P. «L’evolution de l’espace et du temps ». Scientia 10: 31-54. (1911)
  3. Laue M. (1913) "Das Relativit\"atsprinzip ". Wissenschaft (No. 38) (2 ed.). (1913)
  4. Эйнштейн А. «Диалог по поводу возражений против теории относительности », Naturwiss., 6, с.697-702. (1918). русский перевод «А. Эйнштейн, Собрание научных трудов», т. I, М., «Наука» (1965)
  5. Паули В. - «Теория Относительности » М.: Наука, 1991.
  6. Dingle Н. «Relativity and Space travel », Nature 177, 4513 (1956).
  7. Dingle H. «A possible experimental test of Einstein’s Second postulate », Nature 183, 4677 (1959).
  8. Coawford F. «Experimental verification of the clock-paradox in relativity », Nature 179, 4549 (1957).
  9. Darvin S. , «The clock paradox in relativity », Nature 180, 4593 (1957).
  10. Бойер Р. , «Парадокс часов и общая теория относительности », Эйнштейновский сборник, «Наука», (1968).
  11. Campbell W. , «The clock paradox », Canad. Aeronaut. J.4, 9, (1958)
  12. Frey R., Brigham V., «Paradox of the twins », Amer. J. Phys. 25, 8 (1957)
  13. Leffert С. , Donahue T., «Clock paradox and the physics of discontinuous gravitational fields », Amer. J. Phys. 26, 8 (1958)
  14. McMillan E., «The „clock-paradox“ and Space travel », Science, 126, 3270 (1957)
  15. Romer R. , «Twin paradox in special relativity ». Amer. J. Phys. 27, 3 (1957)
  16. Schild, A. «The clock paradox in relativity theory », Amer. Math. Mouthly 66, 1, 1-8 (1959).
  17. Singer S., «Relativity and space travel », Nature 179,4567 (1957)
  18. Скобельцын Д. В. , «Парадокс близнецов в теории относительности », «Наука», (1966).
  19. Гольденблат И. И., «Парадоксы времени в релятивистской механике », М. «Наука», (1972).
  20. Терлецкий Я. П. «Парадоксы теории относительности », М.: Наука (1965)
  21. Угаров В. А. - «Специальная теория относительности » М.: «Наука», (1977)
Похожие публикации