Эволюция звезд рассмотреть разные пути развития. Эволюция звезд с научной точки зрения

Образуются путём конденсации межзвёздной среды. Путём наблюдений удалось определить что звёзды возникали в разное время и возникают по сей день.

Главной проблемой в эволюции звёзд является вопрос о возникновении их энергии, благодаря которой они светятся и излучают огромное количество энергии. Ранее выдвигалось много теорий, которые были призваны выявить источники энергии звёзд. Считали, что непрерывным источником звёздной энергии является непрерывное сжатие. Этот источник конечно хорош, но не может поддерживать соответствующее излучение в течении долгого времени. В середине XX века был найден ответ на этот вопрос. Источником излучения является термоядерные реакции синтеза. В результате этих реакций водород превращается в гелий, а освобождающаяся энергия проходит сквозь недра звезды, трансформируется и излучается в мировое пространство (стоит отметить, что чем больше температура, тем быстрее идут эти реакции; именно поэтому горячие массивные звёзды быстрее сходят с главной последовательности).

Теперь представим возникновение звезды…

Начало конденсироваться облако межзвёздной газопылевой среды. Из этого облака образуется довольно плотный газовый шар. Давление внутри шара пока не в силах уравновесить силы притяжения, поэтому он будет сжиматься (возможно в это время вокруг звезды образуются сгустки с меньшей массой, которые в итоге превращаются в планеты). При сжатии температура повышается. Таким образом, звёзда постепенно садится на главную последовательность. Затем давление газа внутри звезды уравновешивает притяжение и протозвёзда превращается в звезду.

Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.

Превращение водорода в гелий происходит только в центральных областях звезды. В наружных слоях содержание водорода остаётся практически неизменным. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается и ядро звёзды начинает сжиматься, а оболочка разбухать. Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности).

После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, постепенно остывая она превратится в белый карлик . Постепенно остывая они превращаются в невидимые чёрные карлики . Чёрные карлики – это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.

Если масса звезды от 1,2 до 2,5 солнечной, то такая звёзда взорвётся. Этот взрыв называется вспышкой сверхновой . Вспыхнувшая звезда за несколько секунд увеличивает свою светимость в сотни миллионов раз. Такие вспышки происходят крайне редко. В нашей Галактике взрыв сверхновой происходит, примерно, раз в сто лет. После подобной вспышки остаётся туманность, которая имеет большое радиоизлучение, а также очень быстро разлетается, и так называемая нейтронная звезда (об этом чуть позже). Помимо огромного радиоизлучения такая туманность будет ещё источником рентгеновского излучения, но это излучение поглощается атмосферой земли, поэтому может наблюдаться лишь из космоса.

Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10км, а плотность её в таком состоянии составляет 10 17 кг/м 3 , что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется «НЕЙТРОННОЙ» . Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.

Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары . Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.

Пульсар может быть обнаружен только для нас условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.

Если масса звезды превышает 2,5 солнечные, то в конце своего существования она как бы обрушится в себя и будет раздавлена собственным весом. В считанные секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой» .

Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение.

Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.

Рождение

Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.

Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.

Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.

Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.

Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.

Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.

Область активного звездообразования N44 / ©ESO, NASA

Ни детства, ни отрочества, ни юности

Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.

Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.

Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.

Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.

Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.

Коричневый карлик в представлении художника / ©ESO/I. Crossfield/N. Risinger

Неспокойная старость

В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.

Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.

Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.

Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (изотоп железа, который иногда называют «пеплом термоядерного горения»).

Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.

В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.

В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро - белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.

Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу.

Система KOI-256, состоящая из красного и белого карликов / ©NASA/JPL-Caltech

Экстремальная старость

Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.

Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.

В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.

Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.

В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.

Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.

Сверхновая SN 1994D в галактике NGC 4526 (яркая точка в нижнем левом углу) / ©NASA

А что ждет наше Солнце?

Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.

Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.

Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.

Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.

Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.

Солнечная активность / ©NASA/Goddard/SDO

Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.

Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.

А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.

Термоядерный синтез в недрах звёзд

В это время для звёзд массой больше, чем 0.8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остается конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчетах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает ее понижать. И для звёзд меньше 0.08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики , и их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем - постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтоб они компенсировали потери на излучение. У данных звёзд истечения массы и светимость настолько велика, что не просто останавливает коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100-200 массы Солнца.

Середина жизненного цикла звезды

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,08 до более чем 200 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все, новые звезды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд

Старые звёзды с малой массой

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные солнечные ветры . В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик .

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии синтезировать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта , её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия . Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных солнечных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа , OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров .

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии , чтобы быть выброшенными и превратиться в планетарную туманность . В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли .

Белые карлики

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звезд более массивных, чем Солнце , давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант , ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы , из кремния синтезируется железо -56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа -56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами , образуют нейтроны . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли черные дыры вообще?» Ведь чтобы сказать точно, что данный объект это черная дыра необходимо наблюдать его горизонт событий. Все попытки это сделать оканчивались провалом. Но надежда пока есть, так как некоторые объекты нельзя объяснить без привлечения аккреции , причем аккреции на объект без твердой поверхности, но само существование черных дыр это не доказывает.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    ✪ С. А. Ламзин - "Звездная эволюция"

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,

Каждый из нас хотя бы раз в жизни смотрел в звездное небо. Кто-то смотрел на эту красоту, испытывая романтические чувства, другой пытался понять, откуда берется вся эта красота. Жизнь в космосе, в отличие от жизни на нашей планете, течет на другой скорости. Время в космическом пространстве живет своими категориями, расстояния и размеры во Вселенной колоссальны. Мы редко задумываемся над тем, что на наших глазах постоянно происходит эволюция галактик и звезд. Каждый объект в бескрайнем космосе является следствием определенным физических процессов. У галактик, у звезд и даже у планет имеются основные фазы развития.

Наша планета и мы все зависим от нашего светила. Как долго Солнце будет радовать нас своим теплом, вдыхая жизнь в Солнечную систему? Что ждет нас в будущем через миллионы и миллиарды лет? В связи с этим, любопытно больше узнать о том, каковы этапы эволюции астрономических объектов, откуда берутся звезды и чем оканчивается жизнь этих чудесных светил в ночном небе.

Происхождение, рождение и эволюция звезд

Эволюция звезд и планет, населяющих нашу галактику Млечный Путь и всю Вселенную, большей частью неплохо изучена. В космосе незыблемо действуют законы физики, которые помогают понять происхождение космических объектов. Опираться в данном случае принято на теорию Большого Взрыва, которая сейчас является доминирующей доктриной о процессе происхождения Вселенной. Событие, потрясшее мироздание и приведшее к формированию вселенной, по космическим меркам молниеносно. Для космоса от рождения звезды до ее гибели проходят мгновения. Огромные расстояния создают иллюзию постоянства Вселенной. Вспыхнувшая вдали звезда светит нам миллиарды лет, в то время ее уже может и не быть.

Теория эволюции галактики и звезд является развитием теории Большого Взрыва. Учение о рождении звезд и возникновении звездных систем отличается масштабами происходящего и временными рамками, которые, в отличие от Вселенной в целом, возможно наблюдать современными средствами науки.

Изучая жизненный цикл звезд можно на примере ближайшего к нам светила. Солнце – одна из сотни триллионов звезд в нашем поле зрения. К тому же расстояние от Земли до Солнца (150 млн. км) предоставляет уникальную возможность изучить объект, не покидая пределов Солнечной системы. Полученная информация позволит детально разобраться с тем, как устроены другие звезды, как быстро эти гигантские источники тепла истощаются, каковы стадии развития звезды и каким будет финал этой блистательной жизни — тихий и тусклый или сверкающий, взрывной.

После Большого взрыва мельчайшие частицы сформировали межзвездные облака, которые стали «роддомом» для триллионов звезд. Характерно, что все звезды рождались в одно и то же время в результате сжатия и расширения. Сжатие в облаках космического газа возникало под воздействием собственной гравитации и аналогичных процессов у новых звезд по соседству. Расширение возникло в результате внутреннего давления межзвездного газа и под действием магнитных полей внутри газового облака. При этом облако свободно вращалось вокруг своего центра масс.

Облака газа, образовавшиеся после взрыва, на 98% состоят из атомарного и молекулярного водорода и гелия. Только 2% в этом массиве приходится на пылевые и твердые микроскопические частицы. Ранее считалось, что в центре любой звезды лежит ядро железа, раскаленного до температуры в миллион градусов. Именно этим аспектом и объяснялась гигантская масса светила.

В противостоянии физических сил преобладали силы сжатия, так как свет, возникающий в результате выделения энергии, не проникает внутрь газового облака. Свет вместе с частью выделяемой энергии распространяется наружу, создавая внутри плотного скопления газа минусовую температуру и зону низкого давления. Находясь в таком состоянии, космический газ стремительно сжимается, влияние сил гравитационного притяжения приводит к тому, что частицы начинают формировать звездное вещество. Когда скопление газа плотное, интенсивное сжатие приводит к тому, что образуются звездное скопление. Когда размеры газового облака незначительны, сжатие приводит к образованию одиночной звезды.

Краткая характеристика происходящего заключается в том, что будущее светило проходит два этапа — быстрое и медленное сжатие до состояния протозвезды. Говоря простым и понятным языком, быстрое сжатие является падением звездного вещества к центру протозвезды. Медленное сжатие происходит уже на фоне образовавшегося центра протозвезды. В течение последующих сотен тысяч лет новое образование сокращается в размерах, а его плотность увеличивается в миллионы раз. Постепенно протозвезда становится непрозрачной из-за высокой плотности звездного вещества, а продолжающееся сжатие запускает механизм внутренних реакций. Рост внутреннего давления и температур приводит к образованию у будущей звезды собственного центра тяжести.

В таком состоянии протозвезда пребывает миллионы лет, медленно отдавая тепло и постепенно сжимаясь, уменьшаясь в размерах. В результате вырисовываются контуры новой звезды, а плотность его вещества становится сравнима с плотностью воды.

В среднем плотность нашей звезды составляет 1,4 кг/см3 — практически такая же, как плотность воды в соленом Мертвом море. В центре Солнце имеет плотность 100 кг/см3. Звездное вещество находится не в жидком состоянии, а пребывает в виде плазмы.

Под воздействием огромного давления и температуры приблизительно в 100 миллионов К начинаются термоядерные реакции водородного цикла. Сжатие прекращается, масса объекта возрастает, когда энергия гравитации переходит в термоядерное горение водорода. С этого момента новая звезда, излучая энергию, начинает терять массу.

Вышеописанный вариант образования звезды — всего лишь примитивная схема, которая описывает начальный этап эволюции и рождения звезды. Сегодня такие процессы в нашей галактике и во всей Вселенной практически незаметны ввиду интенсивного истощения звездного материала. За всю сознательную историю наблюдений за нашей Галактикой были отмечены лишь единичные появления новых звезд. В масштабах Вселенной эта цифра может быть увеличена в сотни и в тысячи раз.

Большую часть своей жизни протозвезды скрыты от человеческого глаза пылевой оболочкой. Излучение ядра можно наблюдать только в инфракрасном диапазоне, который является единственной возможностью видеть рождение звезды. К примеру, в Туманности Ориона в 1967 году ученые-астрофизики в инфракрасном диапазоне обнаружили новую звезду, температура излучения которой составляла 700 градусов Кельвина. Впоследствии выяснилось, что местом рождения протозвезд являются компактные источники, которые имеются не только в нашей галактике, но и в других отдаленных от нас уголках Вселенной. Помимо инфракрасного излучения места рождения новых звезд отмечены интенсивными радиосигналами.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Изучая спектральный анализ энергии Солнца и других звезд, ученые пришли к выводу, что эволюция звезд и планет имеет общие корни. Все космические тела имеют однотипный, сходный химический состав и произошли из одной и той же материи, возникшей в результате Большого Взрыва.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины — квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента — водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы — гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны — более 3-4 млн. тонн каждую секунду.

Нетрудно подсчитать, сколько за все годы своего существования наша звезда потеряла в весе. Это будет громадная цифра, однако из-за своей огромной массы и высокой плотности такие потери в масштабах Вселенной выглядят ничтожными.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Истощение запасов водорода приведет к тому, что под воздействием гравитации ядро солнца начнет стремительно сжиматься. Плотность ядра станет очень высокой, в результате чего термоядерные процессы переместятся в прилегающие к ядру слои. Подобное состояние называется коллапсом, который может быть вызван прохождением термоядерных реакций в верхних слоях звезды. В результате высокого давления запускаются термоядерные реакции с участием гелия.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

В результате такой трансформации сократится расстояние от Земли до Солнца, так что Земля попадет в зону влияния солнечной короны и начнет «жариться» в ней. Температура на поверхности планеты вырастет в десятки раз, что приведет к исчезновению атмосферы и к испарению воды. В результате планета превратится в безжизненную каменистую пустыню.

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Известные науке нейтронные звезды имеют диаметр в 10-15 км. При таких малых размерах нейтронная звезда имеет колоссальную массу. Один кубический сантиметр звездного вещества может весить миллиарды тонн.

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Следует отметить, что при трансформации красного гиганта в нейтронную звезду или в черную дыру, Вселенная может пережить уникальное явление — рождение нового космического объекта.

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

В заключение

Эволюция звезд — это процесс, который растянут по времени на десятки миллиардов лет. Наше представление о происходящих процессах — всего лишь математическая и физическая модель, теория. Земное время является лишь мгновением в огромном временном цикле, которым живет наша Вселенная. Мы можем только наблюдать то, что происходило миллиарды лет назад и предполагать, с чем могут столкнуться последующие поколения землян.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Похожие публикации