Какие факторы способствовали распространению покрытосеменных растений на Земле? Способы распространения семян Способы адаптации растений.

Большинство исследователей признают, что вскоре после возникновения жизни она разделилась на три корня, которые можно назвать надцарствами. По-видимому, больше всего черт исходных протоорганизмов сохранили архебактерии, которых прежде объединяли с настоящими бактериями - эубактериями. Архебактерии обитают в бескислородных илах, концентрированных растворах солей, горячих вулканических источниках. Второе мощное надцарство - эу- бактерии. Из третьего корня развилась ветвь организмов, имеющих оформленное ядро с оболочкой,- эукариоты. Есть обос-нованная гипотеза (разделяемая все боль-шим числом ученых), что эукариоты возникли в результате симбиоза их предков с пред- ками митохондрий и хлоропла- стов - аэробных бактерий и цианобактерий (рис. 5.3). Эта гипотеза дает удовлетворительное объяснение многим чертам сходства в строении и биохимических особенностях органелл - внутриклеточных источников энергии эукариот,- с таковыми сво- бодноживущих прокариот. Колоссальное значение для развития биосферы в целом имело возникновение и распространение одной из групп эубактерий - цианобакте-рий. Они способны осуществлять оксиген- ный фотосинтез, и в результате их жизне-деятельности в атмосфере Земли должен был появиться кислород в достаточно боль-ших количествах. Появление кислорода в атмосфере определило возможность после-дующего развития растений и животных. Надцарство эукариот очень рано, по-видимому, более чем миллиард лет на-зад, разделилось на царства животных, рас-тений и грибов. Грибы более близки к жи-вотным, чем к растениям (рис. 5.4). До сих пор не вполне ясно положение простейших - следует ли их объединить в единое царство или же разделить на несколько? Наконец, небольшая группа слизевиков на-столько своеобразна, что лишь с трудом может быть включена в царство грибов, с которым его традиционно объединяют. По-видимому, многоклеточность возникла независимо у грибов, растений, кишечнополостных и других животных. Основные пути эволюции растений. Число видов ныне существующих растений достигает более 500 тыс., из них цветковых примерно 300 тыс. видов. Остатки зеленых водорослей находят в породах архейского возраста (около 3 млрд лет назад). В протерозое в морях обитало много разных пред-ставителей зеленых и золотистых водорос-лей. В это же время, видимо, появились первые прикрепленные ко дну водоросли. Первичные почвообразовательные процес-сы в протерозое подготовили условия для выхода настоящих растений на сушу. В си-луре (435-400 млн лет назад) в царстве растений происходит крупное эволюционное событие: растения (риниофиты) выходят на сушу. В первые периоды палеозоя растения населяют в основном моря. Среди прикреп-ленных ко дну встречаются зеленые и бурые водоросли, а в толще воды - диатомовые, золотистые, красные и другие водоросли. С самого начала эволюции параллельно с настоящими растениями существовали и развивались группы с автотрофным и гетеротрофным питанием, взаимодополняющие друг друга в круговороте веществ. Это способствовало усилению целостности растительного мира и его относительной автономности. Первичные фототрофные низшие растения были также разнообразны по составу, среди них были группы с содержанием хлорофилла «а» и «Ь», с высоким содер-жанием каротиноидов и хлорофилла «с» и, наконец, группы с преобладанием фикоби- линов. Вероятно, между этими группами ор- г А Б В Г Рис. 5.5. Некоторые ископаемые растения карбона: А - кордаит (Cordaites Ievis); Б - сигиллярия (Segillaria); В - лепидодендрон (Lepidodendron); Г- каламит (CaIarnites) ганизмов не было генетического единства. Разнообразие состава первичных фототро- фов было вызвано, несомненно, достаточно разнородными условиями существования и позволяло полнее использовать особенно-сти среды. В конце силура отмечено появление первых наземных растений - псилофитов, которые покрывали сплошным зеленым ковром прибрежные участки суши. Это было важным эволюционным шагом. Происходит перестройка в проводящей системе и покровных тканях: у псилофитов появля-ются проводящая сосудистая система со слабо дифференцированной ксилемой и флоэмой, кутикула и устьица. Псилофиты оказались и более надежно прикрепленны-ми к субстрату с помощью дихотомически разветвленных нижних осей: у некоторых из них обнаружены примитивные «листья». Псилофиты занимали промежуточное положение между наземными сосудистыми растениями и водорослями: внешне были похожи на водоросли, тело не было дифференцировано на вегетативные органы и имело большую испаряющую поверхность. Дальнейшая эволюция растений в наземных условиях привела к усилению компактности тела, появлению корней, развитию эпидермальной ткани с толстостенными, пропитанными восковидным веществом клетками, замене трахеид сосудами, изменению способов размножения, распространения и т. д. Самая примитивная сосудистая система состояла из трахеид. Переход от трахеид к сосудам - приспособление к засушливым условиям; с помощью сосудов создается возможность быстрого поднятия воды на большие высоты. Переход к сосудам начался в корнях, стеблях, затем в листьях. Начальные этапы эволюции наземных растений связаны с возникновением архего- нйальных форм - мохообразных, папоротникообразных и голосеменных. У всех этих групп женский половой орган представлен архегонием, а мужской - антеридием. Предполагают, что архегониальные произошли от бурых или зеленых водорослей. При выходе на сушу защита гаметангиев водорослей от иссушения обеспечивалась пре-образованием их в архегоний и антеридий. Этому способствовали изменение формы гаметангиев и образование у них много-слойных стенок. С момента выхода на сушу растения развиваются в двух основных направлениях: гаметофитном и спорофитном. Гаметофит- ное направление было представлено мохо-образными, а спорофитное - остальными высшими растениями, включая цветковые. Спорофитная ветвь оказалась более при-способленной к наземным условиям: особого развития достигает корневая система, усложняется и совершенствуется проводящая система, заметно совершенствуются покровные и механические ткани, а также способы размножения (см. ниже) и создаются возможности для снижения частоты проявления возникающих летальных и дру-гих мутаций (в результате диплондизации организма). В наземных условиях оказались непригодными для размножения свободно плавающие незащищенные половые клетки, здесь для целей размножения формируются споры, разносимые ветром, или семена. Уже в девоне встречаются пышно развитые леса из прогимноспермов, папоротников и плаунов (рис. 5.5). Эти леса еще более распространяются в карбоне, характеризующемся увлажненным и равномерно теплым климатом в течение всего года. Мощные споровые растения - лепидодендроны и сигиллярии - достигали 40 м высоты. В карбоне же получили развитие первые семенные - голосеменные: птеридос- пермы, древесные кордаиты и гинкговые, часть из которых вымирает в перми, около 280 млн лет назад. Генеральная линия эволюции папоротникообразных на суше шла по пути преобразования спорофита (бесполое поколение). Он достиг совершенства как по разнообразию форм (деревья и травы), так и по строению. В засушливых условиях гаметофит (половое поколение) стал уже помехой из-за необходимости капельно-жидкой воды для переноса гамет. Поэтому не удивительны редукция гаметофита и значительное развитие спорофита в ходе дальнейшей эволюции наземных растений. Одним из важных эволюционных приобретений считается появление разноспоровых папоротников, предвестников семенных растений. Начиная с лепидодендрона у некоторых плауновидных (селагинелла), папоротников и семенных папоротников закрепляется разноспоровость; в пазухах спорофитов развиваются мега- и микроспорангии. Такое событие отмечено в силуре - дево-не, т. е. примерно 400 млн лет назад. Ме-гаспорангии имели 4 мегаспоры, а микро-спорангии - множество микроспор. Диф-ференциация спорангиев и спор привела к появлению разных размеров гаметофитов (включая и очень мелких) и разобщению мужского и женского гаметофитов, что в конечном итоге оказало влияние на редук-цию гаметофита (гаплоидного тела). Редук-ция гаметофита способствовала удлинению диплоидной фазы развития организма, удлинению и усложнению процессов дифференциации и онтогенеза. He случайно, что первые разноспоровые достигали гигантских размеров; это сигиллярии, лепидодендроны, гигантские папоротники, каламиты. Важнейшее событие в жизни голосеменных - превращение мегаспорангия в семязачаток, семяпочку с защитными покровами - интегументами и полное освобождение у всех семенных процесса полового размножения от воды. Микроспорангии у голосеменных превращаются в гнезда пыльника. Спермии большинства голосеменных неподвижны, и перенос их к архего- ниям осуществляется пыльцевой трубкой. Потеря мужским гаметофитом самостоятельности привела к редукции его до пыльцевой трубки с вегетативным ядром и двумя сперматозоидами. Опыление у голосемен-ных осуществляется ветром и нередко насе-комыми, после оплодотворения семязачаток превращается в семя. Заметим, что семя появляется у семенных папоротников еще в девоне, т. е. задолго до развития цветка. Переход к семенному размножению связан с рядом эволюционных преимуществ; диплоидный зародыш в семенах защищен от не-благоприятных условий наличием покровов и обеспечен пищей, а семена имеют приспособления для распространения животными и др. Эти и другие преимущества способствовали широкому распространению семенных растений. Непосредственные предки покрытосеменных пока не найдены в ископаемом виде. Считается, что покрытосеменные происходят от беннетитовых (С.В. Мейен). С последними примитивные покрытосеменные сходны наличием общих черт в строении древесины, устьица, пыльцы, энтомофилии и т. п. Прародиной покрытосеменных считают районы с семиарндным или сезонно сухим климатом, где они имели наибольшие шансы обживать нарушенные экосистемы благодаря высоким темпам генеративного развития и формирования зародыша (Г. Стеббинс). Аналогичными признаками как раз обладали раннемеловые беннетитовые и цикадовые. Есть предположение о появлении признаков, характеризующих цветковые (сосуды в древесине, сетчатое жилкование, завязь, рыльце, двойное оплодотворение), параллельно и порознь у разных родствен-ных и неродственных групп. Цветковые воз-никают, когда все эти признаки концентри-руются в одной группе. Такой путь станов-ления характерен и для других таксонов (см. гл. 17, 20). Филогенетические взаимоотношения основных групп растений представлены на рис. 5.6. Цветковые растения, постепенно распространяясь, завоевывают обширные пространства. В процессе эволюции покрытосеменных цветок (основной отличающий их орган) претерпевает значительные изменения. Ось цветка - цветоложе - постепенно укорачивается, междоузлия сближаются, спиральное расположение частей цветка переходит в циклическое, происходит процесс уменьшения числа гомологичных частей (олигомеризация). Первые примитивные энтомофильные цветки привлекали насекомых обилием пыльцы, что одновременно способствовало перекрестному опылению. Преимущество получили те растения, у которых высокая наследственная пластичность потомства, большая вероятность опыления и завязы- ваемости семян. В дальнейшем отбор растений пошел по пути привлечения опылителей с помощью нектара, аромата, окраски и специализации цветков на опыление определенными видами насекомых. Таким путем происходило взаимоприспособление расте-ний и животных по соответствующим при-знакам. При опылении насекомыми повы-шается возможность свободного скрещива-ния растений одного вида, что и служит од-ной из причин высокой эволюционной пла-стичности цветковых растений. У цветковых (в отличие от голосеменных) даже деревья представлены множеством разнообразных форм. Цветковые также были приспособле-ны использовать среду путем быстрого раз-вития и накопления органического вещест-ва. В кайнозое (начало - 66 млн лет назад) вся Европа была покрыта пышными лесами теплого и умеренного климатов, включающими дуб, березу, сосну, каштан, бук, виноград, орех и др. В это время леса достигали наибольшего распространения на Земле. В тропической флоре этого периода были представлены фикусы, лавровые, гвоздичные, эвкалипты, виноград и др. В четвертичном периоде кайнозойской эры (2 млн лет назад) увеличилось количество осадков и наступило оледенение значительной части Земли, вызвавшее отступление теплолюбивой третичной растительности на юг (а местами полное ее вымирание), возникновение холодоустойчивых травяни-стых и кустарниковых растений. На огром-ных территориях завершается начатая в миоцене смена лесов степью, формируется ксерофитная и эфемерная растительность с выраженной сезонностью в цикле развития, складываются современные фитоценозы. Таким образом, растительность нашей планеты постоянно менялась, приобретая все более современные черты. Основные черты эволюции царства растений следующие: I. Переход от гаплоидности к диплоид- ности. С диплоцдизацией организма снижался эффект проявления неблагоприятных мутаций, усиливались морфогенетические потенции организма. У многих водорослей все клетки (кроме зиготы) гаплоидны. У более высокоорганизованных водорослей (бурые и др.) наряду с гаплоидными существуют и диплоидные особи. У мхов преобладает гаплоидное поколение при сравнительно слабом развитии диплоидного. У папоротников преобладает диплоидное поколение, од нако и у них гаплоидное поколение (гамезо-фит) еще представлено самостоятельным образованием, у голосеменных и покрыто-семенных наблюдается почти полная редук-ция гаметофита и переход к диплоидной фазе (рис. 5.7). 2. Утрата связи процесса полового размножения с наличием капельно-жидкой воды, потеря подвижности мужских гамет, заметная редукция гаметофита и сильное развитие спорофита, переход от наружного оплодотворения к внутреннему, возникновение цветка и двойного оплодотворения.? 2. Дифференциация тела с переходом к наземным условиям: деление на корень, стебель и лист, развитие сети проводящей системы, совершенствование покровных, механических и других тканей. 3. Специализация опыления (с помощью насекомых) и распространение семян и плодов животными. Усиление защиты зародыша от неблагоприятных условий: обеспечение пищей, образование покровов и др. Основные пути эволюции животных. Царство животных не менее разнообразно, чем царство растений, а по числу видов животные превосходят растения. Описано око- JlO I млн 200 тыс. видов животных (из них около 900 тыс. видов - членистоногих, 110 тыс. - моллюсков, 42 тыс. - хордовых животных) и считается, что это может быть лишь половина существующих видов. Возникновение животных в ископаемых остатках не прослеживается. Первые останки животных находят в морских отложениях протерозоя, возраст которых превышает I млрд лет. Первые многоклеточные животные представлены сразу несколькими типами: губки, кишечнополостные, плеченогие, членистоногие. В морях кембрийского периода уже существовали все основные типы животных. Облик фауны определяли многочисленные хелицеровые (похожие на современных мечехвостов), губки, кораллы, иглокожие, разнообразные моллюски, плеченогие, трилобиты (рис. 5.8). После кембрия эволюция животных характеризовалась лишь специализацией и совершенствованием основных типов. Исключение составляют позвоночные, останки которых обнаружены в ордовике. Это были так называемые щитковые - существа, отдаленно сходные с со-временными круглоротыми (миноги, микси- ны), но покрытые со спинной стороны мощно развитыми костными пластинами. Предполагают, что они защищали первых мелких (около 10 см длиной) позвоночных от огромных хищных ракообразных: В теплых и мелководных морях ордовика обитали многочисленные кораллы, значительного развития достигали головоногие моллюски - существа, похожие на современных кальмаров, длиной в несколько метров. Силурийский период ознаменовался важными событиями не только для растений, но и для животных. Появились животные, дышащие воздухом. Первыми обитателями суши были паукообразные, напоминавшие по строению современных скорпионов. Тем временем в водоемах происходило бурное развитие разнообразных низших по-звоночных, прежде всего панцирных рыб. Предполагается, что первые позвоночные возникли в мелководных пресных водоемах. Постепенно, в течение девона, эти пресно-водные формы завоевывают моря и океаны В девоне же возникают двоякодышащие, кистеперые и лучеперые рыбы. Все они были приспособлены к дыханию в воде. До наших дней дожили некоторые виды двоякодышащих (рис. 5.9), лучеперые дали начало современным костистым рыбам, а кистеперые - первичным земноводным (стегоцефалам). Стегоцефалы появились в верхнем девоне; примерно в это же время возникает другая чрезвычайно прогрессивная группа животных - насекомые. В развитии линий позвоночных и беспозвоночных проявились две разные тенденции в решении одних и тех же задач. Переход в воздушную среду из водной потребовал укрепления основных несущих органов и всего тела в целом. У позвоночных роль каркаса играет внутренний скелет, у высших форм беспозвоночных - членистоногих - наружный скелет. Развитие в среде, требовавшей все более сложных поведенче-ских реакций, решалось в этих двух ветвях древа жизни двумя принципиально разными способами. У насекомых чрезвычайно сложная нервная система, с разбросанными по всему телу огромными и относительно самостоятельными нервными центрами, преобладание врожденных реакций над приобретенными. У позвоночных - развитие огромного головного мозга и преобладание условных рефлексов над безусловными. В каменноугольном периоде появляются первые пресмыкающиеся, что определило начало активного завоевания суши позвоночными. Рептилии благодаря сухим прочным покровам, яйцам, покрытым твердой скорлупой и не боящимся высыхания, были мало связаны с водоемами. В этом периоде возникают и достигают значительного развития такие древнейшие группы насекомых, как стрекозы и тараканы. В пермском периоде начинают исчезать стегоцефалы и широко распространяются различные рептилии. От примитивных рептилий из группы цельночерепных в это время развивается ветвь пеликозавров, приведшая несколько позже - через терап- сид - к возникновению млекопитающих. В конце палеозоя происходит значи-тельное иссушение климата. Поэтому бур-ное развитие претерпевают разнообразные рептилии; до наших дней из триасовых реп-тилий дожили гаттерия и черепахи. Некото-рые рептилии становятся хищниками, дру гие - растительноядными, третьи - вто-рично возвращаются в водную среду (рис. 5.10), обеспечивающую им пищу в виде многочисленных форм костистых рыб и го-ловоногих моллюсков. Однако особенно сильного развития достигают морские реп-тилии в юре (ихтиозавры, плезиозавры). То-гда же пресмыкающиеся осваивают и воз-душную среду - возникают птерозавры, видимо, охотившиеся на многочисленных и крупных насекомых. В триасе от одной из ветвей рептилий возникают птицы; первые птицы причудливо сочетали признаки реп-тилий и птиц (см. рис. 6.3). Рис. 5.11. Схема максимального распростране-ния покровного оледенения в Европе в плейсто-цене. Последнее мощное оледенение, покрывав-шее всю Скандинавию и часть Прибалтики, окон-чилось лишь около 10 тыс. лет назад: I - 230 тыс. лет назад. 2 - 100 тыс. лет назад; 3 - 65-50 тыс. лет назад; 4 - 23 тыс. лет назад; 5 - 11 тыс. лет назад (по данным разных авторов) В меловом периоде продолжается специализация рептилий: возникают гигант-ские растительноядные динозавры, встреча-ются летающие ящеры с размахом крыльев до 20 м. Знаменательные события происхо-дят и в мире насекомых - начинается ак-тивная сопряженная эволюция энтомофиль- ных растений и насекомых-опылителей. Происходит процесс вымирания аммонитов, белемнитов, морских ящеров. В связи с сокращением пространств, занятых богатой прибрежной растительностью, вымирают растительноядные динозавры, а следом - и охотившиеся на них хищные динозавры. Лишь в тропическом поясе сохраняются крупные рептилии (крокодилы). В условиях похолодания исключительные преимущест-ва получают теплокровные животные - птицы и млекопитающие, которые пышно расцветают лишь в следующем периоде - кайнозое. Кайнозой - время расцвета насекомых, птиц и млекопитающих. В конце мезозоя возникают плацентарные млекопитающие. В палеоцене и эоцене от насекомоядных происходят первые хищники. В это же время или несколько позже первые млекопитающие начинают завоевывать море (китообразные, ластоногие, сиреновые). От древних хищных происходят копытные, от насекомоядных обособляется отряд приматов. К концу неогена встречаются уже все современные семейства млекопитающих, на обширных открытых пространствах саванн Африки появляются многочисленные формы обезьян, многие из которых переходят к прямохождению. Одна из групп таких обезьян - австралопитеки - дала ветви, ведущие к роду Homo (см. гл. 18). В кайнозое особенно четко проявляются тенденции в развитии самых прогрессивных ветвей древа жизни животных, ведущих к возникновению стайного, стадного образа жизни (что стало ступенькой к возникновению социальной формы движения материи). В четвертичном, или антропогеновом, периоде кайнозоя наблюдались резкие изменения климата нашей планеты, в основном связанные с постепенным похолоданием. На этом общем фоне неоднократно повторялись фазы особенно резкого похолодания, при которых в средних широтах Северного полушария возникали значительные оледенения суши. Максимального распространения материковые оледенения достигали во время среднего плейстоцена - около 250 тыс. лет назад. На территории Европы в плейстоцене насчитывается по крайней мере пять таких ледниковых периодов (рис. 5.11). Огромное значение для эволюции современной фауны имело то обстоятельство, что одновременно с наступлением ледниковых периодов происходили значительные колебания уровня Мирового океана: в разные периоды этот уровень понижался или повышался на сотни метров сравнительно с современным. При таких колебаниях уровня океана могла обнажаться большая часть материковой отмели Северной Америки и Северной Евразии. Это, в свою очередь, вело к появлению сухопутных «мостов» типа Берингийской суши, соединявшей Северную Америку и Северную Евразию, соединению Британских островов с европейским материком и т. п. В Европе 5-6 тыс. лет назад климат был заметно теплее совре-менного. Однако эти изменения климата уже не играли столь значительной роли в изменении видового состава животного мира, какую стал играть Человек, не только уничтоживший многие виды животных и растений (по некоторым подсчетам, человек к середине XX в. уничтожил более 200 видов животных), но и создавший новых домашних животных и ставящий сейчас грандиозную задачу управления эволюционным процессом. В эволюции животных можно наметить несколько магистральных направлений развития адаптации: 1. Возникновение многоклеточности и все большее дифференцирование всех систем органов. 2. Возникновение твердого скелета (наружного - у членистоногих, внутренне-го - у позвоночных). 3. Развитие центральной нервной системы. Два разных и чрезвычайно эффективных эволюционных «решения»: у позвоночных развитие головного мозга, основанного на обучении и условных рефлексах, и возрастание ценности отдельных особей; у насекомых - развитие нервной системы, связанной с наследственным закреплением любого типа реакций по типу инстинктов. 4. Развитие социальности в раде ветвей древа животных с разных сторон подходящих к рубежу, отделяющему биологическую форму движения материи от социальной формы движения. Перешагнуть этот рубеж смогла лишь одна ветвь приматов - род Человек. 5.3.

    У высших растений происходит насасывание воды из почвы корневой системой, проведение ее вместе с растворенными веществами к отдельным органам и клеткам и выведение путем транспирации . В водном обмене у высших растений около 5 % воды используется в ходе фотосинтеза , остальная часть идет на компенсацию испарения и поддержание осмотического давления.

    Вода, поступающая из почвы в растения, почти полностью испаряется через поверхность листьев. Это явление называется транспирацией. Транспирация - уникальное явление в наземных экосистемах, играющее важную роль в энергетике экосистем. Рост растений существенно зависит от транспирации. Если влажность воздуха слишком велика, как, например, в тропическом лесу, где относительная влажность приближается к 100 %, то деревья отстают в росте. В этих лесах большая часть растительности представлена эпифитами, по-видимому, из-за отсутствия "транспирационной тяги".

    Отношение роста растений (чистой продукции) к количеству транспирированной воды называется эффективностью транспирации . Она выражается в граммах сухого вещества на 1000 г транспирированной воды. Для большинства видов сельскохозяйственных культур и диких видов растений эффективность транспирации равна или менее 2. У засухоустойчивых растений (сорго, просо) она равна 4. У растительности пустынь она не намного больше, так как адаптация у них выражается не в уменьшении транспирации, а в способности прекращать рост при отсутствии воды. В сухой сезон эти растения сбрасывают листья или, как кактусы, закрывают на дневное время устьица.

    Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Адаптации животных

      Животные теряют влагу с испарениями, а также путем выделения конечных продуктов обмена веществ. Компенсацией потерь воды у животных служит ее поступление с пищей и питьем. (н апример, большинство амфибий, некоторые насекомые и клещи).

      Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей

      Другие всасывают ее через покровы тела в жидком или парообразном состоянии .

      В неблагоприятных условиях животные часто сами регулируют свое поведение так, чтобы избежать недостатка влаги: переходят в защищенные от иссушения места, ведут ночной образ жизни. Многие животные не покидают пределов переувлажненных местообитаний.

      Другие животные получает воду в процессе окисления жиров . Например, верблюд, и насекомые - рисовый и амбарный долгоносик и другие.

Классификация организмов по отношению к влажности среды

Гидатофиты - это водные растения.

Гидрофиты - это растения наземно-водные.

Гигрофиты - наземные растения живущие в условиях повышенной влажности.

Мезофиты - это растения, произрастающие при среднем увлажнении

Ксерофиты - это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на:

Суккуленты - сочные растения (кактусы).

Склерофиты - это растения с узкими и мелкими листьями, и свернутыми в трубочки.

Осадки, тесно связанные с влажностью воздуха, представляют собой результат конденсации и кристаллизации водяных паров в высоких слоях атмосферы. В приземном слое воздуха образуются росы, туманы, а при низких температурах наблю­дается кристаллизация влаги - выпадает иней.

Одна из основных физиологических функций любого организма - поддержание на достаточном уровне количества воды в теле. В процессе эволюции у организмов сформировались разнообразные приспособления к добыванию и экономному расходованию воды, а также к переживанию засушливого периода. Одни животные пустыни получают воду из пищи, другие за счет окисления своевременно запасенных жиров (например, верблюд, способный путем биологического окисления из 100 г жира получить 107 г метаболической воды); при этом у них минимальна водопроницаемость наружных покровов тела, преимущественно ночной образ жизни и т. д. При периодической засушливости характерно впадание в состояние покоя с минимальной интенсивностью обмена веществ. Наземные растения получают воду главным образом из почвы. Малое количество осадков, быстрый дренаж, интенсивное испарение либо сочетания этих факторов ведут к иссушению, а избыток влаги - к переувлажнению и заболачиванию почв.

Баланс влаги зависит от разницы между количеством выпавших осадков и количеством воды, испарившейся с поверхностей растений и почвы, а также путем транспирации.

4. Влияние концентрации биогенных элементов, солености, рН, газового состава среды, течений и ветера, гравитация, электромагнитных полей на организмы.

Биогенные элементы химические элементы, постоянно входящие в состав организмов и имеющие определённое биологическое значение. Прежде всего это кислород (составляющий 70% массы организмов), углерод (18%), водород (10%), кальций, азот, калий, фосфор, магний, сера, хлор, натрий, железо. Эти элементы входят в состав всех живых организмов, составляют их основную массу и играют большую роль в процессах жизнедеятельности.

Многие элементы имеют большое значение только для определённых групп живых существ (например, бор необходим для растений, ванадий - для асцидий и т.п.). Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений - от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Элементы, постоянно содержащиеся в организмах млекопитающих, по их изученности и значению можно разделить на 3 группы: элементы, входящие в состав биологически активных соединений (ферменты, гормоны, витамины, пигменты) , они являются незаменимыми; элементы, физиологическая и биохимическая роль которых мало выяснена или неизвестна.

Соленость

Водный обмен теснейшим образом связан с солевым обменом. Он приобретает особое значение для водных организмов (гидробионтов ).

Для всех водных организмов характерно наличие проницаемых для воды покровов тела, поэтому различие в концентрации растворенных в воде солей и солей, определяющих осмотическое давление в клетках организма, ток. создает осмотический Он направлен в сторону большего давления.

У гидробионтов, обитающих в морских и пресноводных экосистемах наблюдаются существенные отличия в адаптациях к концентрации растворенных в водной среде солей.

У большинства морских организмов внутриклеточная концентрация солей близка к таковой в морской воде.

Любые изменения внешней концентрации приводят к пассивному изменению осмотического тока.

Внутриклеточное осмотическое давление меняется соответственно изменению концентрации солей в водной среде. Такие организмы называютпойкилоосмотическими.

К ним относятся все низшие растения (в том числе сине-зеленые водоросли- цианобактерии), большинство морских беспозвоночных животных.

Диапазон толерантности к изменениям концентрации солей у этих организмов невелик; они распространены, как правило, в морских экосистемах с относительно постоянной соленостью .

К другой группе водных организмов относятся так называемые гомойоосмотические.

Они способны активно регулировать осмотическое давление и поддерживать его на определенном уровне независимо от изменений концентрации солей в воде, поэтому их называют также осморегуляторами.

К ним относятся высшие раки, моллюски, водные насекомые. Осмотическое давление внутри их клеток не зависит от химической природы растворенных в цитоплазме солей. Оно обусловлено общим количеством растворенных частиц (ионов). У осморегуляторов активная ионная регуляция обеспечивает относительное постоянство внутренней среды, а также способность избирательно извлекать из воды отдельные ионы и накапливать их в клетках своего организма.

Задачи осморегуляции в пресной воде противоположны таковым в морской.

У пресноводных организмов внутриклеточная концентрация солей всегда выше, чем в окружающей среде.

Осмотический ток всегда направлен внутрь клеток, и эти виды являются гомойосмотическими.

Важным механизмом поддержания у них водно-солевого гомеостаза является активный перенос ионов против градиента концентрации.

У некоторых водных животных этот процесс осуществляется поверхностью тела, но главным местом такого активного транспорта служат специальные образования – жабры.

В ряде случаев покровные образования затрудняют проникновение воды через кожу, например, чешуя, панцири, слизь; тогда активное выведение воды из организма происходит с помощью специализированных органов выделения.

Водно-солевой обмен у рыб представляет собой более сложный процесс, который требует отдельного рассмотрения. Здесь отметим лишь, что он происходит по следующей схеме:

Вода поступает в организм осмотическим путем через жабры и слизистую оболочку желудочно-кишечного тракта, избыток ее выводится через почки. Фильтрационно-реабсорбционная функция почек может меняться в зависимости от соотношения осмотических давлений водной среды и жидкостей организма. Благодаря активному переносу ионов и способности к осморегуляции многие пресноводные организмы, в том числе рыбы, приспособились к жизни в солоноватой и даже в морской воде.

Наземные организмы имеют в той или иной мере специализированные структурно-функциональные образования, обеспечивающие водной-солевой обмен. Известны многочисленные варианты приспособлений к солевому составу среды и его изменениям у обитателей суши. Эти приспособления становятся решающими в тех случаях, когда вода является лимитирующим фактором жизни. Например амфибии , обитают во влажных наземных биотопах благодаря особенностям водно-солевого обмена, которые сходны с обменом у пресноводных животных. По-видимому, такой тип приспособления сохранился в ходе эволюции при переходе из водной среды обитания в наземную.

Для растений аридных (засушливых) зон большое значение в ксерофитных условиях имеет повышенное содержание солей в почве.

Солеустойчивость различных видов растений существенно отличается. На засоленных почвах обитают галофиты – растения, которые переносят большие концентрации солей.

Они накапливают в тканях до 10 % солей, что ведет к повышению осмотического давления и способствует более эффективному насасыванию влаги из засоленных почв.

Некоторые растения выводят избыток солей через специальные образования на поверхности листа, другие обладают способностью связывать соли с органическими веществами.

Реакция среды рН

Распространение и численность организмов существенно зависит от реакции почвы или водной среды.

Загрязнение атмосферного воздуха вследствие сжигания ископаемого топлива (чаще всего диоксидом серы) приводит к отложению сухих ацидогенных частиц и выпадению дождя, состоящего, по сути, из слабой сернистой кислоты. Выпадение таких «кислых дождей» вызывает закисле-ние различных объектов окружающей среды. Сейчас проблема «кислых дождей» стала приобретать глобальный характер.

Влияние закисления сводится к следующему :

    Снижение рН ниже 3, также как повышение выше 9, приводит к повреждению протоплазмыкорней большинства сосудистых растений.

    Изменение рН в почве вызывает ухудшение условий питания: снижается доступность биогенных элементов для растений.

    Снижение рН до 4,0 – 4,5 в почве или донных осадках в водных экосистемах вызывает разложение глинистых пород (алюмосиликатов), вследствие чего среда становится токсичной из-за поступления в воду ионов алюминия (Al).

    Железо и марганец, необходимые для нормального роста и развития растений, при низких рН становятся токсичными вследствие перехода в ионную форму.

Пределы устойчивости к закислению почвы у разных растений различны, но только немногие растения могут расти и размножаться при рН ниже 4,5.

    При высоких значениях рН, т. е. при подщелачивании, также создаются неблагоприятные условия для жизнедеятельности растений. В щелочных почвах железо, марганец, фосфаты присутствуют в виде малорастворимых соединений и плохо доступны для растений.

    Резко отрицательное воздействие оказывает на биоту закисление водных экосистем.Повышенная кислотность действует негативно в трех направлениях:

    нарушения осморегуляции, активности ферментов (они имеют оптимумы рН), газообмена;

    токсического воздействия ионов металлов;

    нарушений в пищевых цепях, изменения пищевого рациона и доступности пищи.

В пресноводных экосистемах определяющую роль в реакции среды играет кальций, который наряду с диоксидом углерода определяет состояние карбонатной системы водных объектов.

Присутствие ионов кальция имеет значение и для поведения остальных компонентов, например железа.

Поступление кальция в воду связано с неорганическим углеродом карбонатных пород, из которых происходит его выщелачивание.

Газовый состав среды обитания

Для многих видов организмов, как бактерий, так и высших животных и растений, концентрация кислорода и двуокиси углерода, которые составляют в атмосферном воздухе 21 % и 0,03 % по объему соответственно, являются лимитирующими факторами.

    При этом в наземных экосистемах состав внутренней воздушной среды – атмосферного воздуха – относительно постоянен.

    В водных экосистемахколичество и состав газов, растворенных в воде, сильно варьирует.

КИСЛОРОД

В водных объектах – озерах и водохранилищах, богатых органическим веществом – кислород становится фактором, лимитирующим процессы окисления, и тем самым приобретает первостепенную важность.

В воде содержится значительно меньше кислорода, чем в атмосферном воздухе, а вариации его содержания там связаны со значительными колебаниями температуры и растворенных солей.

    Растворимость кислорода в воде повышается с понижением температуры и снижается с повышением солености.

Общее количество кислорода в воде обеспечивается поступлением из двух источников:

    из атмосферного воздуха (путем диффузии)

    из растений (как продукт фотосинтеза).

    Физический процесс диффузии из воздуха протекает медленно и зависит от ветра и движения воды.

    Поступление кислорода при фотосинтезе определяется интенсивностью процесса диффузии, который зависит, прежде всего, от освещенности и температуры воды.

    Вследствие этих причин количество кислорода, растворенного в воде, сильно изменяется в течение суток, в разные сезоны, а также отличается в различных физико-географических и климатических условиях.

УГЛЕКИСЛЫЙ ГАЗ

Диоксид углерода в водных экосистемах не имеет такого большого значения, как кислород.

Растворимость его в воде высокая.

Он образуется в результате дыхания живых организмов, разложения отмерших остатков животных и растений.

Углекислота, образующаяся в воде, вступает в реакцию с известняками, образуя карбонаты и бикарбонаты.

Карбонатная система океанов служит основным резервуаром углекислого газа в биосфере и буфером, поддерживающим концентрацию водородных ионов на уровне, близком к нейтральному.

В целом для всех живых существ кислород и углекислый газ, несомненно, являются лимитирующими факторами существования. Диапазоны величин этих факторов, сложившиеся в ходе эволюции, довольно узки.

Концентрации кислорода, необходимые для дыхания, достаточно постоянны и закрепились в ходе эволюции.

Гомеостаз обеспечивается постоянством параметров внутренней среды организмов; содержание кислорода и углекислого газа в различных тканях и органах поддерживается на относительно постоянном уровне.

Карбонатная система жидкостей организма служит хорошим буфером, обеспечивающим гомеостаз.

течение, ветер

Водные течения :

Глобальные (морские) и локальные.

Глобальные:

    Учавствуют в распространении организмов.

    Определяют климатические условия многих регионов планеты (гольфстрим)

Локальные:

    Влияют на газовый состав среды (воды) (увеличивается концентрация кислорода).

    Увеличение течения в водоемах создает увеличение продуктивности сообщества. Стоячая вода создает стрессовые условия, а проточная создает дополнительный источник энергии, повышающий продуктивность.

    Способствуют возникновению комплекса морфологических адаптаций, противостоящих течению (?).

Воздушные течения (ветра):

    Ветер является лимитирующим фактором, ограничивающим распространение многих животных (насекомые).

    Играет важную роль в миграции насекомых. Восходящие токи воздуха подхватывают мелких насекомых на 1-2 км, а затем ветер переносит их на огромные расстояния.

    Чем сильнее ветер, тем больше направление миграции совпадает с направлением ветра (бражники, тля и цветочные мухи на Шпицбергене).

    Ветер влияет на распределение насекомых по биотопу (поляны, опушки, за кустами, за деревьями ветер слабее).

    Определяет возможность полета и активности большинства летающих животных (насекомые, птицы). Активность нападения кровососущих двукрылых.

    Влияет на распространение веществ используемых животными в качестве стимуляторов полового поведения (особенно феромоны у насекомых). Запах самки и т.д.

    Лимитирует рост растений (в условиях тундры или альпийских лугов растения карликовые). Но влияет и температура.

    Определяет особенности миграционного и трофического поведения птиц (парящий полет, миграции мелких птиц).

Сила тяжести

    Гравитация влияет на формообразование и физиологию крупных животных (биомеханика). Один из определяющих факторов существования жизни на земле.

    Сила тяжести может служить сигнальным фактором у насекомых, в качестве указателя к направлению в открытое пространство. (отрицательный геотропизм ). Стремление вверх по стеблю (против градиента силы тяжести – это стремление к свету, теплу, свободе (особенно для летающих). Эксперименты с голодной саранчой в садках где еда на дне (опустились за едой только через несколько часов).

    Положительный геотропизм наблюдается у почвенных животных (Опыты Гилярова с насекомыми в сухой и влажной почвой в садках. Хоть почва и сухая все равно ползли вниз, а там погибали).

    Геотропизм может меняться по сезонам в зависимости от условий обитания и зимовки (подкорковые клопы то вниз, то вверх).

ЭЛЕКТОРМАГНИТНЫЕ ПОЛЯ ЗЕМЛИ

1. Многие жужелицы используют магнитное поле землидля ориентации и перемещения в ночное время.

2. Многие ориентируются и передвигаются под углом или параллельно геомагнитным линиям, используя их в ориентации (пчелы, мучные хрущаки, майские жуки.

3. В обычных условиях зрительные и другие ориентиры, а при их отсутствиях включаются магнитные механизмы ориентации.

5. Концепция лимитирующих факторов. "Закон Ю. Либиха". Закон толерантности. Зависимость общего обмена и его интенсивности от массы тела. Правило Аллена, Бергмана, Глогера. Классификация ресурсов. Экологическая ниша. Свойства ниши.

В Мировом океане, к примеру, развитие жизни лимитируется главным образом недостатком азота и фосфора. Поэтому любой подъем на поверхность донных вод, обогащенных этими минеральными элементами, оказывает благотворное влияние на развитие жизни. Особенно ярко это проявляется в тропических и субтропических районах.

закон минимума Ю. Либиха

Живой организм в природных условиях одновременно подвергается воздействия не одного, а многих экологических факторов. Причем любой фактор требуется организму в определенных колическах/дозах. Либих установил, что развитие растения или его состояние зависит не от тех химических эл-в, которые присутствуют в почве в достаточных кол-вах, а от тех, которых не хватает. Если

любого, хотя бы одного из элементов питания в почве меньше, чем требуется данным растениям, то оно будет развиваться ненормально, замедленно, или иметь патологические отклонения.

закон минимума Ю.ЛИБИХА - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.

Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму.

Закон толерантности Шелфорда - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме.

Закон толерантности расширяет закон минимума Либиха.

Формулировка

«Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору».

Любой фактор, находящийся в избытке или недостатке, ограничивает рост и развитие организмов и популяций.

Закон толернатности был дополнен в 1975г Ю.Одумом.

Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого.

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены

Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может сузиться и в отношении других экологических факторов (например, если содержание азота в почве мало, то требуется больше воды для злаков)

Диапазоны толерантности к отдельным факторам и их комбинациям различны.

Период размножения является критическим для всех организмов, поэтому именно в этот период увеличивается число лимитирующих факторов.

Зависимость общего обмена и его интенсивности от массы тела

Правило Аллена - в экологии - закон, согласно которому выступающие части тела теплокровных животных в холодном климате короче, чем в теплом, поэтому они отдают в окружающую среду меньше тепла. Отчасти правило Аллена справедливо и для побегов высших растений.

Правило Бергмана - в экологии - закон, согласно которому у теплокровных животных, подверженных географической изменчивости, размеры тела особей статистически больше у популяций, живущих в более холодных частях ареала вида.

Правило Глогера - в экологии - закон, согласно которому географические расы животных в теплых и влажных регионах пигментированы сильнее, чем в холодных и сухих регионах. Правило Глогера имеет большое значение в систематике животных.

Ресурсы –количественно выраженные составляющие его жизнедеятельности. Все то что организм потребляет. Ресурсы могут быть органической и неорганической природы (живые и не живые). Доступные и недоступные. Нора, дупло, самка –это все тоже ресурсы. При этом наличный запас всего того что используется организмом и что его окружает постоянно меняется в количественном и качественном отношении. Все это и будет ресурсом.

Ресурсы – вещества из которых состоят тела, энергия, используемая в процессах, места где протекают их стадии жизни. Есть ресурсы пищевые, есть энергетические, пространственные.

Классификация ресурсов (по Тилману -Tilman, 1982):

1.Незаменимые ресурсы

Ни один не в состоянии заменить другой. Скорость роста, которой можно достигнуть при снабжении ресурсом 1 жестко ограничена количеством ресурса 2. Олигофаги.

(-1, +1, 0 – скорость роста биомассы)

2.Взаимозаменяемые ресурсы. Любой из них можно полностью заменить другим. Полифаги. При любой скорости роста количество любого ресурса всегда необходимо. При снижении одного необходимо большее другого и наоборот.

3.Взаимодополняющие (комплементарные) При совместном потреблении организмом данных ресурсов их требуется мньше, чем при раздельном потреблении (для достижения одной и той же скорости роста).

4.Антагонистические. При совместном потреблении скорость роста меньше чем при раздельном потреблении ресурсов. Ядовитые растения в пищу травоядным.

5.Ингибирующие. Это незаменимые ресурсы, но при больших концентрациях являются антагонистами

Реакции на неблагоприятные факторы среды только при некоторых условиях являются губительными для живых организмов, а в большинстве случаев они имеют адаптивное значение. Поэтому эти ответные реакции были названы Селье «общим адаптационным синдромом». В более поздних работах термины «стресс» и «общий адаптационный синдром» он употреблял как синонимы.

Адаптация — это генетически детерминированный процесс формирования защитных систем, которые обеспечивают повышение устойчивости и протекание онтогенеза в неблагоприятных для него условиях.

Адаптация является одним из важнейших механизмов, который повышает устойчивость биологической системы, в том числе растительного организма, в изменившихся условиях существования. Чем лучше организм адаптирован к какому-то фактору, тем он устойчивее к его колебаниям.

Генотипически обусловленная способность организма изменять метаболизм в определенных пределах в зависимости от действия внешней среды называется нормой реакции . Она контролируется генотипом и свойственна всем живым организмам. Большинство модификаций, которые возникают в пределах нормы реакции, имеют адаптивное значение. Они соответствуют изменениям среды обитания и обеспечивают лучшую выживаемость растений при колебаниях условии окружающей среды. В этой связи такие модификации имеют эволюционное значение. Термин «норма реакции» введен В.Л. Йогансеном (1909).

Чем больше способность вида или сорта модифицироваться в соответствии с окружающей средой, тем шире его норма реакции и выше способность к адаптации. Это свойство отличает устойчивые сорта сельскохозяйственных культур. Как правило, несильные и кратковременные изменения факторов внешней среды не приводят к существенным нарушениям физиологических функций растений. Это обусловлено их способностью сохранять относительное динамическое равновесие внутренней среды и устойчивость основных физиологических функций в условиях изменяющейся внешней среды. В то же время резкие и продолжительные воздействия приводят к нарушению многих функций растения, а нередко и к его гибели.

Адаптация включает в себя все процессы и приспособления (анатомические, морфологические, физиологические, поведенческие и др.), которые способствуют повышению устойчивости и способствуют выживанию вида.

1. Анатомо-морфологические приспособления . У некоторых представителей ксерофитов длина корневой системы достигает несколько десятков метров, что позволяет растению использовать грунтовую воду и не испытывать недостатка влаги в условиях почвенной и атмосферной засухи. У других ксерофитов наличие толстой кутикулы, опушенность листьев, превращение листьев в колючки уменьшают потери воды, что очень важно в условиях недостатка влаги.

Жгучие волоски и колючки защищают растения от поедания животными.

Деревья в тундре или на больших горных высотах имеют вид приземистых стелющихся кустарников, зимой они засыпаются снегом, который защищает их от сильных морозов.

В горных районах с большими суточными колебаниями температуры растения часто имеют форму распластанных подушек с плотно расположенными многочисленными стеблями. Это позволяет сохранять внутри подушек влагу и относительно равномерную в течение суток температуру.

У болотных и водных растений формируется специальная воздухоносная паренхима (аэренхима), которая является резервуаром воздуха и облегчает дыхание частей растения, погруженных в воду.

2. Физиолого-биохимические приспособления . У суккулентов приспособлением для произрастания в условиях пустынь и полупустынь является усвоение СО 2 в ходе фотосинтеза по CAM-пути. У этих растений устьица днем закрыты. Таким образом, растение сохраняет внутренние запасы воды от испарения. В пустынях вода является главным фактором, ограничивающим рост растений. Устьица открываются ночью, и в это время происходит поступление СО 2 в фотосинтезирующие ткани. Последующее вовлечение СО 2 в фотосинтетический цикл происходит днем уже при закрытых устьицах.

К физиолого-биохимическим приспособлениям относятся способность устьиц открываться и закрываться, в зависимости от внешних условий. Синтез в клетках абсцизовой кислоты, пролина, защитных белков, фитоалексинов, фитонцидов, повышение активности ферментов, противодействующих окислительному распаду органических веществ, накопление в клетках сахаров и ряд других изменений в обмене веществ содействует повышению устойчивости растений к неблагоприятным условиям внешней среды.

Одна и та же биохимическая реакция может осуществляться несколькими молекулярными формами одного и того же фермента (изоферментами), при этом каждая изоформа проявляет каталитическую активность в относительно узком диапазоне некоторого параметра окружающей среды, например температуры. Наличие целого ряда изоферментов позволяет растению осуществлять реакцию в значительно более широком диапазоне температур, по сравнению с каждым отдельным изоферментом. Это дает возможность растению успешно выполнять жизненные функции в изменяющихся температурных условиях.

3. Поведенческие приспособления, или избегание действия неблагоприятного фактора . Примером могут служить эфемеры и эфемероиды (мак, звездчатка, крокусы, тюльпаны, подснежники). Они проходят весь цикл своего развития весной за 1,5-2 месяца, еще до наступления жары и засухи. Таким образом, они как бы уходят, или избегают попадания под влияние стрессора. Подобным образом раннеспелые сорта сельскохозяйственных культур формируют урожай до наступления неблагоприятных сезонных явлений: августовских туманов, дождей, заморозков. Поэтому селекция многих сельскохозяйственных культур направлена на создание раннеспелых сортов. Многолетние растения зимуют в виде корневищ и луковиц в почве под снегом, защищающим их от вымерзания.

Адаптация растений к неблагоприятным факторам осуществляется одновременно на многих уровнях регуляции — от отдельной клетки до фитоценоза. Чем выше уровень организации (клетка организм, популяция) тем большее число механизмов одновременно участвует в адаптации растений к стрессам.

Регуляция метаболических и адаптационных процессов внутри клетки осуществляется с помощью систем: метаболической (ферментативной); генетической; мембранной. Эти системы тесно связаны между собой. Так, свойства мембран зависят от генной активности, а дифференциальная активность самих генов находится под контролем мембран. Синтез ферментов и их активность контролируются на генетическом уровне, в то же время ферменты регулируют нуклеиновый обмен в клетке.

На организменном уровне к клеточным механизмам адаптации добавляются новые, отражающие взаимодействие органов. В неблагоприятных условиях растения создают и сохраняют такое количество плодоэлементов, которое в достаточном количестве обеспечено необходимыми веществами, чтобы сформировать полноценные семена. Например, в соцветиях культурных злаков и в кронах плодовых деревьев в неблагоприятных условиях более половины заложившихся завязей могут опасть. Такие изменения основаны на конкурентных отношениях между органами за физиологически активные и питательные вещества.

В условиях стрессов резко ускоряются процессы старения и опадения нижних листьев. При этом нужные растениям вещества перемещаются из них в молодые органы, отвечая стратегии выживания организма. Благодаря реутилизации питательных веществ из нижних листьев сохраняются жизнеспособными более молодые — верхние листья.

Действуют механизмы регенерации утраченных органов. Например, поверхность ранения покрывается вторичной покровной тканью (раневой перидермой), рана на стволе или ветке зарубцовывается наплывами (каллюсами). При утрате верхушечного побега у растений пробуждаются спящие почки и усиленно развиваются боковые побеги. Весеннее восстановление листьев вместо опавших осенью — это также пример естественной регенерации органов. Регенерация как биологическое приспособление, обеспечивающее вегетативное размножение растений отрезками корня, корневища, слоевища, стеблевыми и листовыми черенками, изолированными клетками, отдельными протопластами, имеет большое практическое значение для растениеводства, плодоводства, лесоводства, декоративного садоводства и пр.

В процессах защиты и адаптации на уровне растения участвует и гормональная система. Например, при действии неблагоприятных условий в растении резко возрастает содержание ингибиторов роста: этилена и абсциссой кислоты. Они снижают обмен веществ, тормозят ростовые процессы, ускоряют старение, опадение органов, переход растения в состояние покоя. Торможение функциональной активности в условиях стресса под влиянием ингибиторов роста является характерной для растений реакцией. Одновременно с этим в тканях снижается содержание стимуляторов роста: цитокинина, ауксина и гиббереллинов.

На популяционном уровне присоединяется отбор, который приводит к появлению более приспособленных организмов. Возможность отбора определяется существованием внутрипопуляционной изменчивости устойчивости растений к разным факторам внешней среды. Примером внутрипопуляционной изменчивости по устойчивости может служить недружность появления всходов на засоленной почве и увеличение варьирования сроков прорастания при усилении действия стрессора.

Вид в современном представлении состоит из большого числа биотипов — более мелких экологических единиц, генетически одинаковых, но проявляющих разную устойчивость к факторам внешней среды. В различных условиях не все биотипы одинаково жизненны, и в результате конкуренции остаются лишь те из них, которые наиболее отвечают данным условиям. То есть, устойчивость популяции (сорта) к тому или иному фактору определяется устойчивостью составляющих популяцию организмов. Устойчивые сорта имеют в своем составе набор биотипов, обеспечивающих хорошую продуктивность даже в неблагоприятных условиях.

Вместе с тем, в процессе многолетнего культивирования у сортов изменяется состав и соотношение биотипов в популяции, что отражается на продуктивности и качестве сорта, часто не в лучшую сторону.

Итак, адаптация включает в себя все процессы и приспособления, повышающие устойчивость растений к неблагоприятным условиям среды (анатомические, морфологические, физиологические, биохимические, поведенческие, популяционные и др.)

Но для выбора наиболее эффективного пути адаптации главным является время, в течение которого организм должен приспособиться к новым условиям.

При внезапном действии экстремального фактора ответ не может быть отложен, он должен последовать незамедлительно, чтобы исключить необратимые повреждения растения. При длительных воздействиях небольшой силы адаптационные перестройки происходят постепенно, при этом увеличивается выбор возможных стратегий.

В этой связи различают три главные стратегии адаптации: эволюционные , онтогенетические и срочные . Задача стратегии — эффективное использование имеющихся ресурсов для достижения основной цели — выживания организма в условиях стресса. Стратегия адаптации направлена на поддержание структурной целостности жизненно важных макромолекул и функциональной активности клеточных структур, сохранение систем регуляции жизнедеятельности, обеспечение растений энергией.

Эволюционные, или филогенетические адаптации (филогенез — развитие биологического вида во времени) — это адаптации, возникающие в ходе эволюционного процесса на основе генетических мутаций, отбора и передающиеся по наследству. Они являются наиболее надежными для выживания растений.

У каждого вида растений в процессе эволюции выработались определенные потребности к условиям существования и приспособленность к занимаемой им экологической нише, стойкое приспособление организма к среде обитания. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в результате длительного действия соответствующих условий. Так, теплолюбивые и короткодневные растения характерны для южных широт, менее требовательные к теплу и длиннодневные растения — для северных. Хорошо известны многочисленные эволюционные адаптации к засухе растений-ксерофитов: экономное расходование воды, глубоко залегающая корневая система, сбрасывание листьев и переход в состояние покоя и другие приспособления.

В этой связи сорта сельскохозяйственных растений проявляют устойчивость именно к тем факторам внешней среды, на фоне которых проводится селекция и отбор продуктивных форм. Если отбор проходит в ряде последовательных генераций на фоне постоянного влияния какого-либо неблагоприятного фактора, то устойчивость сорта к нему может быть существенно увеличена. Закономерно, что сорта селекции НИИ сельского хозяйства Юго-Востока (г. Саратов), более устойчивы к засухе, чем сорта, созданные в селекционных центрах Московской области. Таким же путем в экологических зонах с неблагоприятными почвенноклиматическими условиями сформировались устойчивые местные сорта растений, а эндемичные виды растений устойчивы именно к тому стрессору, который выражен в ареале их обитания.

Характеристика устойчивости сортов яровой пшеницы из коллекции Всероссийского института растениеводства (Семенов и др., 2005)

Сорт Происхождение Устойчивость
Энита Подмосковье Средне засухоустойчивый
Саратовская 29 Саратовская обл. Засухоустойчивый
Комета Свердловская обл. Засухоустойчивый
Каразино Бразилия Кислотоустойчивый
Прелюдия Бразилия Кислотоустойчивый
Колониас Бразилия Кислотоустойчивый
Тринтани Бразилия Кислотоустойчивый
ППГ-56 Казахстан Солеустойчивый
Ошская Киргизия Солеустойчивый
Сурхак 5688 Таджикистан Солеустойчивый
Мессель Норвегия Соленеустойчивый

В природной обстановке условия среды обычно изменяются очень быстро, и времени, в течение которого стрессовый фактор достигает повреждающего уровня, недостаточно для формирования эволюционных приспособлений. В этих случаях растения используют не постоянные, а индуцируемые стрессором защитные механизмы, формирование которых генетически предопределено (детерминировано).

Онтогенетические (фенотипические) адаптации не связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода адаптаций требует сравнительно много времени, поэтому их называют долговременными адаптациями. Одним из таких механизмов является способность ряда растений формировать водосберегающий путь фотосинтеза CAM-типа в условиях водного дефицита, вызванного засухой, засолением, действием низких температур и других стрессорами.

Эта адаптация связана с индукцией экспрессии «неактивного» в нормальных условиях гена фосфоенолпируваткарбоксилазы и генов других ферментов CAM-пути усвоения СО 2 , с биосинтезом осмолитов (пролина), с активацией антиоксидантных систем и изменением суточных ритмов устьичных движений. Все это приводит к очень экономному расходованию воды.

У полевых культур, например, у кукурузы, аэренхима в обычных условиях произрастания отсутствует. Но в условиях затопления и недостатка в тканях кислорода в корнях у нее происходит гибель части клеток первичной коры корня и стебля (апоптоз, или программируемая смерть клеток). На их месте образуются полости, по которым кислород из надземной части растения транспортируется в корневую систему. Сигналом для гибели клеток является синтез этилена.

Срочная адаптация происходит при быстрых и интенсивных изменениях условий обитания. В основе ее лежит образование и функционирование шоковых защитных систем. К шоковым защитным системам относятся, например, система белков теплового шока, которая образуется в ответ на быстрое повышение температуры. Эти механизмы обеспечивают кратковременные условия выживания при действии повреждающего фактора и тем самым создают предпосылки для формирования более надежных долговременных специализированных механизмов адаптации. Примером специализированных механизмов адаптации является новообразование антифризных белков при низких температурах или синтез сахаров в процессе перезимовки озимых культур. Вместе с тем, если повреждающее действие фактора превышает защитные и репарационные возможности организма, то неминуемо наступает смерть. В этом случае организм погибает на этапе срочной или на этапе специализированной адаптации в зависимости от интенсивности и продолжительности действия экстремального фактора.

Различают специфические и неспецифические (общие) ответные реакции растений на стрессор.

Неспецифические реакции не зависят от природы действующего фактора. Они одни и те же при действии высокой и низкой температуры, недостатка или избытка влаги, высокой концентрации солей в почве или вредных газов в воздухе. Во всех случаях в клетках растений повышается проницаемость мембран, нарушается дыхание, возрастает гидролитический распад веществ, увеличивается синтез этилена и абсцизовой кислоты, тормозится деление и растяжение клеток.

В таблице представлен комплекс неспецифических изменений, протекающих у растений под влиянием различных факторов внешней среды.

Изменение физиологических параметров у растений под действием стрессовых условий (по Г.В, Удовенко, 1995)

Параметры Характер изменения параметров в условиях
засухи засоления высокой температуры низкой температуры
Концентрация ионов в тканях Растет Растет Растет Растет
Активность воды в клетке Падает Падает Падает Падает
Осмотический потенциал клетки Растет Растет Растет Растет
Водоудерживающая способность Растет Растет Растет
Водный дефицит Растет Растет Растет
Проницаемость протоплазмы Растет Растет Растет
Интенсивность транспирации Падает Падает Растет Падает
Эффективность транспирации Падает Падает Падает Падает
Энергетическая эффективность дыхания Падает Падает Падает
Интенсивность дыхания Растет Растет Растет
Фотофосфорилирование Снижается Снижается Снижается
Стабилизация ядерной ДНК Растет Растет Растет Растет
Функциональнаяя активность ДНК Снижается Снижается Снижается Снижается
Концентрация пролина Растет Растет Растет
Содержание водорастворимых белков Растет Растет Растет Растет
Синтетические реакции Подавлены Подавлены Подавлены Подавлены
Поглощение ионов корнями Подавлено Подавлено Подавлено Подавлено
Транспорт веществ Подавлен Подавлен Подавлен Подавлен
Концентрация пигментов Падает Падает Падает Падает
Деление клеток Тормозится Тормозится
Растяжение клеток Подавлено Подавлено
Число плодоэлементов Снижено Снижено Снижено Снижено
Старение органов Ускорено Ускорено Ускорено
Биологический урожай Понижен Понижен Понижен Понижен

Исходя из данных таблицы видно, что устойчивость растений к нескольким факторам сопровождается однонаправленными физиологическими изменениями. Это дает основание считать, что повышение устойчивости растений к одному фактору может сопровождаться повышением устойчивости к другому. Это подтверждено экспериментами.

Опытами в Институте физиологии растений РАН (Вл. В. Кузнецов и др.) показано, что кратковременная тепловая обработка растений хлопчатника сопровождается повышением их устойчивости к последующему засолению. А адаптация растений к засолению приводит к повышению их устойчивости к высокой температуре. Тепловой шок повышает способность растений приспосабливаться к последующей засухе и, наоборот, в процессе засухи повышается устойчивость организма к высокой температуре. Кратковременное воздействие высокой температурой повышает устойчивость к тяжелым металлам и УФ-Б облучению. Предшествующая засуха способствует выживанию растений в условиях засоления или холода.

Процесс повышения устойчивости организма к данному экологическому фактору в результате адаптации к фактору иной природы называется кросс-адаптацией .

Для изучения общих (неспецифических) механизмов устойчивости большой интерес представляет ответ растений на факторы, вызывающие у растений водный дефицит: на засоление, засуху, низкие и высокие температуры и некоторые другие. На уровне целого организма все растения реагируют на водный дефицит одинаково. Характерно угнетение роста побегов, усиление роста корневой системы, синтеза абсцизовой кислоты, снижение устьичной проводимости. Спустя некоторое время, ускоренно стареют нижние листья, и наблюдается их гибель. Все эти реакции направлены на снижение расходования воды за счет сокращения испаряющей поверхности, а также за счет увеличения поглотительной деятельности корня.

Специфические реакции — это реакции на действие какого-либо одного стрессового фактора. Так, фитоалексины (вещества со свойствами антибиотиков) синтезируются в растениях в ответ на контакт с болезнетворными микроорганизмами (патогенами).

Специфичность или не специфичность ответных реакций, подразумевает, с одной стороны, отношение растения к различным стрессорам и, с другой стороны, характерность реакций растений различных видов и сортов на один и тот же стрессор.

Проявление специфических и неспецифических ответных реакций растений зависит от силы стресса и скорости его развития. Специфические ответные реакции возникают чаще, если стресс развивается медленно, и организм успевает перестроиться и приспособиться к нему. Неспецифические реакции обычно возникают при более кратковременном и сильном действии стрессора. Функционирование неспецифических (общих) механизмов устойчивости позволяет растению избегать больших затрат энергии для формирования специализированных (специфических) механизмов адаптации в ответ на любое отклонение от нормы условий их обитания.

Устойчивость растений к стрессовому воздействию зависит от фазы онтогенеза. Наиболее устойчивы растения и органы растений в покоящемся состоянии: в виде семян, луковиц; древесные многолетние — в состоянии глубокого покоя после листопада. Наиболее чувствительны растения в молодом возрасте, так как в условиях стресса процессы роста повреждаются в первую очередь. Вторым критическим периодом является период формирования гамет и оплодотворения. Действие стресса в этот период приводит к снижению репродуктивной функции растений и снижению урожая.

Если стрессовые условия повторяются и имеют небольшую интенсивность, то они способствуют закаливанию растений. На этом основаны методы повышения устойчивости к низким температурам, жаре, засолению, повышенному содержанию в воздухе вредных газов.

Надежность растительного организма определяется его способностью не допускать или ликвидировать сбои на разных уровнях биологической организации: молекулярном, субклеточном, клеточном, тканевом, органном, организменном и популяционном.

Для предотвращения сбоев в жизнедеятельности растений под влиянием неблагоприятных факторов используются принципы избыточности , гетерогенности функционально равнозначных компонентов , системы репарации утраченных структур .

Избыточность структур и функциональных возможностей — один из основных способов обеспечения надежности систем. Избыточность и резервирование имеет многообразные проявления. На субклеточном уровне повышению надежности растительного организма способствуют резервирование и дублирование генетического материала. Это обеспечивается, например, двойной спиралью ДНК, увеличением плоидности. Надежность функционирования растительного организма в изменяющихся условиях поддерживается также благодаря наличию разнообразных молекул информационной РНК и образованию гетерогенных полипептидов. К ним относятся и изоферменты, которые катализируют одну и ту же реакцию, но отличаются по свои физико-химическим свойствам и устойчивостью структуры молекул в изменяющихся условиях среды.

На уровне клетки пример резервирования — избыток клеточных органелл. Так, установлено, что для обеспечения растения продуктами фотосинтеза достаточно части имеющихся хлоропластов. Остальные хлоропласты как бы остаются в резерве. То же касается и общего содержания хлорофилла. Избыточность проявляется также в большом накоплении предшественников для биосинтеза многих соединений.

На организменном уровне принцип избыточности выражается в образовании и в разновременной закладке большего, чем требуется для смены поколений, числа побегов, цветков, колосков, в огромном количестве пыльцы, семязачатков, семян.

На популяционном уровне принцип избыточности проявляется в большом числе особей, различающихся по устойчивости к тому или иному стрессовому фактору.

Системы репарации также работают на разных уровнях — молекулярном, клеточном, организменном, популяционном и биоценотическом. Репаративные процессы идут с затратой энергии и пластических веществ, поэтому репарация возможна только при сохранении достаточной интенсивности обмена веществ. Если обмен веществ прекращается, то прекращается и репарация. В экстремальных условиях внешней среды особенно большое значение имеет сохранение дыхания, так как именно дыхание обеспечивает энергией репарационные процессы.

Восстановительная способность клеток адаптированных организмов определяется устойчивостью их белков к денатурации, а именно устойчивостью связей, которые определяют вторичную, третичную и четвертичную структуру белка. Например, устойчивость зрелых семян к высоким температурам, как правило, связана с тем, что после обезвоживания их белки приобретают устойчивость к денатурации.

Главным источником энергетического материала как субстрата дыхания является фотосинтез, поэтому от устойчивости и способности фотосинтетического аппарата восстанавливаться после повреждений зависит энергообеспечение клетки и связанные с ним репарационные процессы. Для поддержания фотосинтеза в экстремальных условиях в растениях активизируется синтез компонентов мембран тилакоидов, происходит торможение окисления липидов, восстанавливается ультраструктура пластид.

На организменном уровне примером регенерации может служить развитие замещающих побегов, пробуждение спящих почек при повреждении точек роста.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивос­ти, наследственности, отбора). На протяжении филогенеза каж­дого вида растений в процессе эволюции выработались опреде­ленные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длитель­ного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

В природе в одном географическом регионе каждый вид рас­тений занимает экологическую нишу, соответствующую его био­логическим особенностям: влаголюбивые - ближе к водоемам, теневыносливые - под пологом леса и т. д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельско­хозяйственных культур, испытывая действие тех или иных небла­гоприятных факторов, проявляют устойчивость к ним как ре­зультат приспособления к условиям существования, сложившим­ся исторически, что отмечал еще К. А. Тимирязев.

1. Основные среды жизни.

При изучении окружающей среды (среды обитания растений и животных и производственной деятельности человека) выделяют следующие ее ос­новные составляющие: воздушную среду; водную среду (гидросферу); животный мир(человек, домашние и дикие животные, в том числе рыбы и птицы); растительный мир (культурные и дикие растения в том числе растущие в воде);почву(растительный слой);недра(верхняя часть земной коры, в пределах которой возможна добыча полезных ископаемых); климатическую и акустическую среду.

Воздушная среда может быть наружной, в которой большинс­тво людей проводят меньшую часть времени (до 10-15%), внутрен­ней производственной (в ней человек проводит до 25-30% своего времени) и внутренней жилой, где люди пребывают большую часть времени (до 60-70% и более).


Наружный воздух у поверхности земли содержит по объему: 78,08% азота; 20,95% кислорода; 0,94% инертных газов и 0,03% углекислого газа. На высоте 5 км содержание кислорода остает­ся тем же, а азота увеличивается до 78,89%. Часто воздух у поверхности земли имеет различные примеси, особенно в городах: там он содержит более 40 ингредиентов, чуждых природной воз­душной среде. Внутренний воздух в жилищах, как правило, имеет


повышенное содержание углекислого газа, а внутренний воздух производственных помещений обычно содержит примеси, характер которых определяется технологией производства. Среди газов выделяется водяной пар, который попадает в атмосферу в результате испарений с Земли. Большая его часть (90%) сосредоточена в самом нижнем пятикилометровом слое атмосферы, с высотой его количество очень быстро уменьшается. Атмосфера содержит много пыли, которая попадает туда с поверхности Земли и частично из космоса. При сильных волнениях ветры подхватывают водяные брызги из морей и океанов. Так попадают в атмосферу из воды частицы соли. В результате извержения вулканов, лесных пожаров, работы промышленных объектов и т.д. воздух загрязняется продуктами неполного сгорания. Больше всего пыли и других примесей в приземном слое воздуха. Даже после дождя в 1 см содержится около 30 тыс. пылинок, а в сухую погоду их в сухую погоду их в несколько раз больше.

Все эти мельчайшие примеси влияют на цвет неба. Молекулы газов рассеивают коротковолновую часть спектра солнечного луча, т.е. фиолетовые и синие лучи. Поэтому днем небо голубого цвета. А частицы примесей, которые значительно крупней молекул газов, рассеивают световые лучи почти всех длин волн. Поэтому, когда воздух запылен или в нем содержатся капельки воды, небо становится белесоватым. На больших высотах небо темно-фиолетовое и даже черное.

В результате происходящего на Земле фотосинтеза растительность ежегодно образует 100 млрд. т. органических веществ (около половины приходится на долю морей и океанов), усваивая при этом около 200 млрд. т. углекислого газа и выделяя во внешнюю среду около 145 млрд.т. свободного кисло­рода, полагают, что благодаря фотосинтезу образуется весь кислород атмосферы. О роли в этом круговороте зеленых на­саждений говорят следующие данные: 1 га зеленых насаждений в среднем за 1 час очищает воздух от 8 кг углекислого газа (выделяемого за это время при дыхании 200 человек). Взрос­лое дерево за сутки выделяет 180 литров кислорода, а за пять месяцев (с мая по сентябрь) оно поглощает около 44 кг углекислого газа.

Количество выделяемого кислорода и поглощаемого угле­кислого газа зависит от возраста зеленых насаждений, видо­вого состава, плотности посадки и других факторов.

Не меньшее значение имеют и морские растения - фито­планктон(в основном водоросли и бактерии), высвобождаю­щие путем фотосинтеза кислород.


Водная среда включает поверхностные и подземные воды. Поверхностные воды в основном сосредоточены в океане, содержа­нием 1 млрд. 375 млн. кубических километров - около 98% всей воды на Земле. Поверхность океана (акватория) составляет 361 млн. квадратных километров. Она примерно в 2,4 раза больше площади суши--территории, занимающей 149 млн. квадратных ки­лометров. Вода в океане соленая, причем большая ее часть (бо­лее 1 млрд. кубических километров) сохраняет постоянную со­леность около 3,5% и температуру, примерно равную 3,7є С. За­метные различия в солености и температуре наблюдаются почти исключительно в поверхностном слое воды, а также в окраинных и особенно в средиземных морях. Содержание растворенного кис­лорода в воде существенно уменьшается на глубине 50-60 мет­ров.


Подземные воды бывают солеными, солоноватыми (меньшей солености) и пресными; существующие геотермальные воды имеют повышенную температуру (более 30єС).

Для производственной деятельности человечества и его хозяйственно-бытовых нужд требуется пресная вода, количество которой составляет всего лишь 2,7% общего объема воды на Зем­ле, причем очень малая ее доля (всего 0,36%) имеется в легко­доступных для добычи местах. Большая часть пресной воды со­держится в снегах и пресноводных айсбергах, находящихся в районах в основном Южного полярного круга.

Годовой мировой речной сток пресной воды составляет 37,3 тыс. кубических километров. Кроме того, может использо­ваться часть подземных вод, равная 13 тыс. кубическим кило­метрам. К сожалению, большая часть речного стока в России, составляющая около 5000 кубических километров, приходится на малоплодородные и малозаселенные северные территории.

Климатическая среда является важным фактором, опреде­ляющим развитие различных видов животного, растительного мира и его плодородие. Характерной особенностью России являет­ся то, что большая часть ее территории имеет значительно бо­лее холодный климат, чем в других странах.

Все рассмотренные составляющие окружающей среды входят в

БИОСФЕРУ: оболочку Земли, включающую часть атмосферы, гидро­сферу и верхнюю часть литосферы, которые взаимно связанны слож­ными биохимическими циклами миграции вещества и энергии, геоло­гическую оболочку Земли, населенную живыми организмами. Верхний предел жизни биосферы ограничен интенсивной концентрацией уль­трафиолетовых лучей; нижний - высокой температурой земных недр (свыше100`С). Крайних пределов ее достигают только низшие орга­низмы - бактерии.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) - благодаря механизмам генетической изменчивости, наследствен­ности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

В естественных для вида природных условиях произрастания или возделывания растения в процессе своего роста и развития часто испытывают воздействие неблагоприятных факторов внеш­ней среды, к которым относят температурные колебания, засуху, избыточное увлажнение, засоленность почвы и т. д. Каждое рас­тение обладает способностью к адаптации в меняющихся услови­ях внешней среды в пределах, обусловленных его генотипом. Чем выше способность растения изменять метаболизм в соответ­ствии с окружающей средой, тем шире норма реакции данного растения и лучше способность к адаптации. Это свойство отли­чает устойчивые сорта сельскохозяйственных культур. Как пра­вило, несильные и кратковременные изменения факторов внеш­ней среды не приводят к существенным нарушениям физиологи­ческих функций растений, что обусловлено их способностью сохранять относительно стабильное состояние при изменяющих­ся условиях внешней среды, т. е. поддерживать гомеостаз. Одна­ко резкие и длительные воздействия приводят к нарушению многих функций растения, а часто и к его гибели.

При действии неблагоприятных условий снижение физиоло­гических процессов и функций может достигать критических уровней, не обеспечивающих реализацию генетической програм­мы онтогенеза, нарушаются энергетический обмен, системы ре­гуляции, белковый обмен и другие жизненно важные функции растительного организма. При воздействии на растение неблаго­приятных факторов (стрессоров) в нем возникает напряженное состояние, отклонение от нормы - стресс. Стресс - общая не­специфическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений: физические - недостаточная или избыточная влаж­ность, освещенность, температура, радиоактивное излучение, ме­ханические воздействия; химические - соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические - поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Теперь, когда мы познакомились с отличитель­ными признаками четырех основных групп рас­тений, а именно моховидных, папоротниковид­ных, голосеменных и покрытосеменных (цвет­ковых), нам легче представить эволюционный прогресс, сделанный растениями в процессе адаптации к жизни на суше.

Проблемы

Пожалуй, наитруднейшей проблемой, которую надо было как-то преодолеть, чтобы перейти от водного образа жизни к наземному, была про­блема обезвоживания . Любое растение, незащи­щенное тем или иным способом, например не покрытое восковой кутикулой, очень скоро вы­сохнет и несомненно погибнет. Даже если пре­одолеть эту трудность, останутся другие нере­шенные проблемы. И прежде всего вопрос о том, как успешно осуществить половое размножение. У первых растений в размножении участвовали мужские гаметы, способные приблизиться к женским гаметам, только плавая в воде.

Обычно считают, что первые растения, осво­ившие сушу, произошли от зеленых водорослей, у отдельных из наиболее эволюционно продви­нутых представителей которых появились ре­продуктивные органы, а именно архегонии (женские) и антеридии (мужские); в этих органах были спрятаны, а, следовательно и защищены гаметы. Это обстоятельство и ряд других вполне определенных приспособлений, помогающих избежать высыхания, позволили некоторым представителям зеленых водорослей завладеть сушей.

Одна из важнейших эволюционных тенден­ций у растений – это постепенно увеличиваю­щаяся независимость их от воды.

Ниже перечислены те основные трудности, которые связаны с переходом от водного к на­земному существованию.

  1. Обезвоживание. Воздух – это среда, спо­собствующая высыханию, а вода необхо­дима для жизни по целому ряду причин (разд. 3.1.2). Следовательно, возникает не­обходимость в приспособлениях для полу­чения и запасания воды.
  2. Размножение. Нежные половые клетки должны быть защищены, а подвижные мужские гаметы (спермии) могут встре­титься с женскими гаметами только в воде.
  3. Опора. В отличие от воды воздух не может служить опорой растениям.
  4. Питание. Растениям необходимы свет и ди­оксид углерода (CO 2) для фотосинтеза, поэтому хотя бы часть растения должна возвы­шаться над землей. Однако минеральные соли и вода находятся в почве или на ее по­верхности, и, чтобы эффективно использо­вать эти вещества, часть растения должна находиться в земле и расти в темноте.
  5. Газообмен. Для фотосинтеза и дыхания нужно, чтобы обмен диоксида углерода и кислорода происходил не с окружающим раствором, а с атмосферой.
  6. Факторы окружающей среды. Вода, осо­бенно, когда ее так много, как, скажем, в озере или в океане, обеспечивает высокое постоянство условий окружающей среды. Наземная же среда обитания в гораздо большей степени характеризуется измен­чивостью таких важных факторов, как температура, интенсивность освещения, концентрация ионов и pH.

Печеночники и мхи

Мхи хорошо приспособились к распростране­нию спор в наземных условиях: оно зависит от высыхания коробочки и рассеивания мелких легких спор ветром. Однако эти растения все еще находятся в зависимости от воды по следую­щим причинам.

  1. Вода необходима им для размножения, по­скольку спермии должны подплывать к ар­хегониям. У этих растений возникли адап­тации, позволяющие им высвобождать спермии только во влажной среде, потому что только в такой среде вскрываются ан­теридии. Эти растения частично приспо­собились к наземной жизни, поскольку га­меты у них образуются в защитных струк­турах – антеридиях и архегониях.
  2. У них нет специальных опорных тканей, и поэтому рост растения вверх ограничен.
  3. У моховидных нет корней, способных да­леко проникать в субстрат, и они могут жить только там, где на поверхности поч­вы или в ее верхних слоях имеется доста­точно влаги и минеральных солей. Однако у них имеются ризоиды, которыми они прикрепляются к грунту; это – одна из адаптаций к жизни на твердом субстрате.

2.4. Печеночники и мхи часто называют амфибиями (земноводными) растительного мира. Объясните вкратце, почему.

Папоротники

2.5. Папоротники лучше адаптировались к жизни на суше, чем печеночники и мхи. В чем это проявляется?

2.6. По каким важным признакам мхи, папоротники и печеночники плохо адаптировались к жизни на суше?

Семенные растения – хвойные и цветковые

Одна из основных трудностей, с которой сталки­ваются растения на суше, связана с уязвимостью гаметофитного поколения. Например, у папо­ротников гаметофит – это нежный заросток, который образует мужские гаметы (спермии), нуждающиеся в воде, чтобы достичь яйцеклетки. Однако у семенных растений гаметофит защи­щен и сильно редуцирован.

Семенные растения обладают тремя важны­ми преимуществами: во-первых, разноспорово­стью; во-вторых, появлением неплавающих мужских гамет и, в-третьих, образованием се­мян.

РАЗНОСПОРОВОСТЬ И НЕПЛАВАЮЩИЕ МУЖСКИЕ ГАМЕТЫ.

Рис. 2.34. Обобщенная схема жизненного цикла растений, отражающая чередование поколений. Обратите вни­мание на наличие гаплоидных (n) и диплоидных (2n) стадий. Гаметофит всегда гаплоидный и всегда образует га­меты путем митотического деления. Спорофит всегда диплоидный и всегда образует споры в результате мейо­тического деления.

Очень важную роль в эволюции растений сыгра­ло возникновение некоторых папоротников и их близких родичей, образующих споры двух типов. Явление это называют разноспоровостью , а рас­тения – разноспоровыми. Все семенные растения относятся к разноспоровым. Они образуют крупные споры, называемые мегаспорами , в спорангиях одного типа (мегаспорангиях) и мелкие споры, называемые микроспорами, – в споран­гиях другого типа (микроспорангиях). Прора­стая, споры образуют гаметофиты (рис. 2.34). Мегаспоры развиваются в женские гаметофиты, микроспоры – в мужские. У семенных растений гаметофиты, образуемые мегаспорами и микро­спорами, очень малы по размерам и никогда не высвобождаются из спор. Таким образом, гаме­тофиты оказываются защищенными от высыха­ния, что представляет собой важное эволюцион­ное достижение. Однако спермии из мужского гаметофита все еще должны перемещаться к женскому гаметофиту, что значительно облегча­ется рассеиванием микроспор. Будучи очень мелкими, они могут образовываться в больших количествах и разноситься ветром далеко от ро­дительского спорофита. Случайно они могут оказаться в тесной близости от мегаспоры, кото­рая у семенных растений не отделяется от роди­тельского спорофита (рис. 2.45). Именно таким путем и происходит опыление у растений, пыль­цевые зерна которых представляют собой мик­роспоры. В пыльцевых зернах образуются муж­ские гаметы.

Рис. 2.45. Схематическое изображение основных элементов разноспоровости и опыления.

У семенных растений возникло еще одно эво­люционное преимущество. Мужским гаметам не нужно больше подплывать к женским гаметам, поскольку у семенных растений появились пыль­цевые трубки. Они развиваются из пыльцевых зе­рен и растут в направлении женских гамет. По этой трубке мужские гаметы достигают женской гаметы и оплодотворяют ее. Плавающие спермии больше не образуются, в оплодотворении участ­вуют только мужские ядра.

Следовательно, у растений выработался ме­ханизм оплодотворения, независимый от воды. Это и послужило одной из причин, по которой семенные растения столь превзошли другие рас­тения в освоении суши. Первоначально опыле­ние происходило только с помощью ветра – процесс довольно случайный, сопровождаю­щийся большими потерями пыльцы. Однако уже на ранних этапах эволюции примерно 300 млн. лет назад в каменноугольном периоде, появились летающие насекомые, а с ними и воз­можность более эффективного опыления. Цвет­ковые растения широко используют опыление насекомыми, тогда как у хвойных все еще пре­обладает опыление ветром.

СЕМЕНА. У ранних разноспоровых растений мегаспоры высвобождались из родительского спорофита подобно микроспорам. У семенных же растений мегаспоры не отделяются от роди­тельского растения, оставаясь в мегаспорангиях, или семязачатках (рис. 2.45). Семязачаток содер­жит женскую гамету. После оплодотворения женской гаметы семязачаток называют уже семенем . Таким образом, семя – это оплодотворен­ный семязачаток. Наличие семязачатка и семени дает определенные преимущества семенным растениям.

  1. Женский гаметофит защищен семязачат­ком. Он полностью зависит от родитель­ского спорофита и в отличие от свободно живущего гаметофита нечувствителен к обезвоживанию.
  2. После оплодотворения в семени образует­ся запас питательных веществ, получаемых гаметофитом от родительского спорофит­ного растения, от которого он по-прежне­му не отделен. Этот запас используется развивающейся зиготой (следующим спо­рофитным поколением) после прораста­ния семени.
  3. Семена предназначены для того, чтобы переживать неблагоприятные условия, и остаются в состоянии покоя до тех пор, пока условия не станут благоприятными для прорастания.
  4. У семян могут развиваться различные приспособления, облегчающие их распространение.

Семя представляет собой сложную структуру, в которой собраны клетки трех поколений – ро­дительского спорофита, женского гаметофита и зародыша следующего спорофитного поколе­ния. Родительский спорофит дает семени все, что нужно для жизни, и только после того, как семя полностью созреет, т.е. накопит запас пи­тательных веществ для зародыша спорофита, оно отделяется от родительского спорофита.

2.7. Шансы для выживания и развития пыльцевых зерен (микроспор), переносимых ветром, намного меньше, чем для спор Dryopteris. Почему?

2.8. Объясните, почему мегаспоры крупные, а микроспоры мелкие.

2.7.7. Краткое перечисление адаптаций семенных растений к жизни на суше

Основные преимущества семенных растений над всеми остальными сводятся к следующему.

  1. Гаметофитное поколение сильно редуци­ровано и полностью зависит от хорошо приспособленного к жизни на суше спорофита, внутри которого гаметофит всегда защищен. У других растений гаметофит очень легко высыхает.
  2. Оплодотворение происходит независимо от воды. Мужские гаметы неподвижны и разносятся внутри пыльцевых зерен вет­ром или насекомыми. Окончательный пе­ренос мужских гамет к женским происхо­дит с помощью пыльцевой трубки.
  3. Оплодотворенные семязачатки (семена) остаются некоторое время на родитель­ском спорофите, от которого они получа­ют защиту и пищу прежде, чем будут раз­веяны.
  4. У многих семенных растений наблюдается вторичный рост с отложением больших количеств древесины, несущей опорную функцию. Такие растения вырастают в де­ревья и кустарники, способные эффектив­но конкурировать в борьбе за свет и другие ресурсы.

Некоторые из важнейших эволюционных тенденций приводятся в обобщенном виде на рис. 2.33. У семенных растений имеются и другие признаки, присущие растениям не только этой группы, но также выполняющие роль адаптаций к жизни на суше.

Рис. 2.33. Систематика растений и некоторые основные тенденции в эволюции растений.

  1. Настоящие корни обеспечивают извлече­ние влаги из почвы.
  2. Растения защищены от высыхания эпи­дермисом с водонепроницаемой кутику­лой (или пробкой, образующейся после вторичного роста).
  3. Эпидермис наземных частей растения, особенно листьев, пронизан множеством мельчайших щелей, называемых устьицами , через которые осуществляется газооб­мен между растением и атмосферой.
  4. У растений имеются и специализирован­ные адаптации к жизни в жарких засушли­вых условиях (гл. 19 и 20).
Похожие публикации