Какие температурные шкалы вам известны. Проекты по физике

Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в Х V III веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.

Температурные шкалы - это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу повсеместно принят один градус.

Наиболее популярные и получившие самое широкое распространение в мире шкалы температур - шкала Цельсия и Фаренгейта. Впрочем, рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известных шкал пять:

1. Шкала Фаренгейта была изобретена Фаренгейтом, немецким ученым. В один из холодных зимних дней 1709 года ртуть в термометре ученого опустилась до очень низкой температуры, которую он предложил принять за нуль по новой шкале. Другой реперной точкой стала температура человеческого тела. Температурой замерзания воды по его шкале стали +32°, а температурой кипения +212°. Шкала Фаренгейта не является особенно продуманной и удобной. Ранее она широко применялась в в настоящее время - практически только в США.

2. По шкале Реомюра, изобретенной французским ученым Рене де Реомюром в 1731 году, нижней реперной точкой служит точка замерзания воды. Шкала основана на использовании спирта, который расширяется при нагревании, за градус была принята тысячная часть объема спирта в резервуаре и трубке при нуле. Сейчас эта шкала вышла из употребления.

3. По шкале Цельсия (предложена шведом в 1742 году) за нуль принята температура смеси льда и воды (температура, при которой тает лед), другая основная точка - температура, при которой вода закипает. Интервал между ними решено было поделить на 100 частей, и одна часть принята за единицу измерения - градус Цельсия. более рациональна, чем шкала Фаренгейта и шкала Реомюра, и сейчас используется повсеместно.

4. Шкала Кельвина изобретена в 1848 году лордом Кельвином (английский ученый У. Томсон). На ней нулевая точка соответствовала самой низкой возможной температуре, при которой прекращается движение молекул вещества. Это значение было теоретически вычислено при изучении свойств газов. По шкале Цельсия это значение соответствует приблизительно - 273°С, т. е. нуль по Цельсию равняется 273 К. Единицей измерения новой шкалы стал один кельвин (первоначально именовался «градус Кельвина»).

5. (по фамилии шотландского физика У. Ранкина) имеет тот же принцип, что у шкалы Кельвина, а размерность ту же, что шкала Фаренгейта. Эта система практически не получила распространения.

Значения температур, которые дает нам шкала Фаренгейта и Цельсия, могут быть легко переведены друг в друга. При переводе «в уме» (т. е. быстро, не пользуясь специальными таблицами) значений по Фаренгейту в градусы Цельсия нужно исходную цифру уменьшить на 32 единицы и умножить на 5/9. Наоборот (из шкалы Цельсия в Фаренгейта) - умножить исходное значение на 9/5 и добавить 32. Для сравнения: температура по Цельсию - 273,15 °, по Фаренгейту- 459,67°.

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .



Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

o C

459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65

273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9

60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5

51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6

4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2

20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200

6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Зачем в физике применяются несколько шкал измерения температуры ? Ну ведь есть - "по Цельсию" - и хватило бы , а то - "по Фаренгейту", "по Реомюру", "по Кельвину", да ещё и "по Ранкину", "по Ньютону"... каждый хотел встрять в историю и в науку.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала Кельвина (K)

Была предложена в 1848 году английским ученым Уильямом Томсоном (он же лорд Кельвин ) как более точный способ измерения температуры. По этой шкале нулевая точка, или абсолютный нуль, представляет собой самую низкую температуру, какая только возможна, т. е. некое теоретическое состояние вещества, при котором его молекулы полностью перестают двигаться. это значение было получено путём теоретического изучения свойств газа, находящегося под нулевым давлением. По стоградусной шкале абсолютный нуль, или нуль Кельвина, соответствует -273,15ºС. Следовательно на практике 0ºС может быть приравнен к 273К. До 1968 года единица измерения кельвин (К) именовалась как градус Кельвина (ºК). Используется в термодинамике.

Температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.15 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия (ºC)

В 1742 году шведский астроном Андерс Цельсий предложил свою шкалу, в которой за нуль принималась температура смеси воды и льда, а температура кипения воды приравнивалась к 100º. За градус принимается сотая часть интервала между этими реперными точками. Эта шкала более рациональна, чем шкалы Фаренгейта и Реомюра, и широко используется в науке и в быту.

Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта (ºF)

Была предложена зимой 1724 года немецким учёным Габриэлем Фаренгейтом . По этой шкале за нуль принималась точка, до которой в один очень холодный зимний день (дело было в Данциге и там жил Фаренгейт) опустилась ртуть в термометре учёного. В качестве другой отправной точки он выбрал температуру человеческого тела. Этот интервал разделен на 100 градусов. По этой не слишком логичной системе точка замерзания воды (то есть - ноль градусов Цельсия) на уровне моря оказалась равной +32º, а точка кипения воды +212º. Шкала популярна в Великобритании и, в особенности, в США.

Градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 5/9 °С.


Шкала Реомюра (ºR)

В 1731 году французский учёный Рене Антуан де Реомюр предложил температурную шкалу, основанную на использовании спирта, обладающего свойством расширяться (вместе с описанием изобретённым им спиртовым термометром). За нижнюю реперную точку была принята точка замерзания воды. Градус Реомюр произвольно определил как одну тысячную от объёма, который занимает спирт в резервуаре и трубке термометра при нулевой точке. При нормальных условиях точка кипения воды по этой шкале составляет 80º. Шкала Реомюра ныне повсеместно вышла из употребления.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Шкала Ранкина (ºRa)

Была предложена шотландским инженером и физиком Уильямом Ранкином (Уильям Джон Макуорн Ранкин (Ренкин)) . Нуль её совпадает с нулём термодинамической температуры, а по размеру 1ºRa равен 5/9 К. Т. е. принцип тот же, что и в шкале Кельвина, только по размерности шкала Ранкина совпадает не со шкалой Цельсия, а со шкалой Фаренгейта. Данная система измерения температуры распространения не получила.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32


Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр
Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

100

212

Температура поверхности Солнца

5800

5526

9980

1823

4421


¹ Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.


Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

Температурные шкалы

системы сопоставимых числовых значений температуры (См. Температура). температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества (см. Термометрия). Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы температуры - градуса. Таким образом определяют эмпирические Т. ш. В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определённую долю основного интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству х. Если принять, что связь между х и температурой t линейна, то температура t x = n (x t - х 0) / (x n - x 0), где x t , x 0 и x n - числовые значения свойства х при температуре t в начальной и конечной точках основного интервала, (x n - x 0) / n - размер градуса, п - число делений основного интервала.

В Цельсия шкале (См. Цельсия шкала), например, за начало отсчёта принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделён на 100 равных частей (n = 100).

Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твёрдое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчёта температуры из одной шкалы в другую:

n °C = 0,8n °R = (1,8n +32) °F.

Непосредственный пересчёт для Т. ш., различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Т. ш., так как все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и вещественную температуру, измеренную по эмпирической Т. ш., называют условной («ртутная», «платиновая» температура и т. д.), её единицу - условным градусом. Среди эмпирических Т. ш. особое место занимают газовые шкалы, в которых термометрическим веществом служат газы («азотная», «водородная», «гелиевая» Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Т. ш. Авогадро, справедливой для идеального газа (см. Газовый термометр). Абсолютной эмпирической Т. ш. называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства х = 0 (например, в газовой Т. ш. Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). температуры t (x ) (по эмпирической Т. ш.) и Т (Х ) (по абсолютной эмпирической Т. ш.) связаны соотношением T (X ) =t (x ) +T 0 (x ) , где T 0 (x - абсолютный нуль эмпирической Т. ш. (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирической Т. ш. - их зависимость от термометрического вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики (См. Второе начало термодинамики). При определении абсолютной термодинамической Т. ш. (шкала Кельвина) исходят из Карно цикл а. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Q 1 при температуре T 1 и отдаёт теплоту Q 2 при температуре Т 2 , то отношение T 1 / T 2 = Q 1 / Q 2 не зависит от свойств рабочего тела и позволяет по доступным для измерений величинам Q 1 и Q 2 определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала Генеральные конференции по мерам и весам) установила термодинамическую Т. ш. с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °С. температура Т в абсолютной термодинамической Т. ш. измеряется в Кельвин ах (К). Термодинамическая Т. ш., в которой для точки таяния льда принята температура t = 0 °С, называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Т. ш.:

TK = t °C + 273,15K, n K = n °C,

так что размер единиц в этих шкалах одинаков. В США и некоторых др. странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Т. ш. Ранкина. Соотношение между кельвином и градусом Ранкина: n K = 1,8n °Ra, по шкале Ранкина точка таяния льда соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra.

Любая эмпирическая Т. ш. приводится к термодинамической Т. ш. введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой. Термодинамическая Т. ш. осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Т. ш. совпадают с Т. ш. Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая Т. ш. осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков (см. Низкие температуры), при более высоких - по измерениям интенсивности излучения абсолютно чёрного тела (см. Пирометрия). Осуществить термодинамическую Т. ш. даже с помощью Т. ш. Авогадро очень сложно, поэтому в 1927 была принята Международная практическая температурная шкала (МПТШ), которая совпадает с термодинамической Т. ш. с той степенью точности, которая экспериментально достижима. Все приборы для измерения температуры градуированы в МПТШ.

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Гордов А. Н., Температурные шкалы, М., 1966; Бурдун Г. Д., Справочник по Международной системе единиц, М., 1971; ГОСТ 8.157-75. Шкалы температурные практические.

Д. И. Шаревская.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

  • Температурные напряжения
  • Температурный напор

Смотреть что такое "Температурные шкалы" в других словарях:

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры… … Большой Энциклопедический словарь

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - ТЕМПЕРАТУРНЫЕ ШКАЛЫ, системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы, в основе которых лежит какое либо свойство вещества, зависящее от температуры (тепловое расширение,… … Современная энциклопедия

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых значений темп ры. Темп ру невозможно измерить непосредственно; её значение определяют по температурному изменению к. л. удобного для измерений физ. св ва в ва (см. ТЕРМОМЕТРИЯ). Термометрич. св вом х могут быть давление газа … Физическая энциклопедия - системы сопоставимых числовых значений температуры. Для построения Т. ш. необходимо выбрать начало отсчета температуры и размер единицы температуры (градуса). Существует абсолютная термодинамическая Т. ш. (шкала Кельвина) и различные эмпирические … Астрономический словарь

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - системы сопоставимых числовых значений темп ры. Существуют абс. термодинамич. Т. ш. (шкала Кельвина) и разл. эмпирич. Т. ш., реализуемые при помощи свойств в в, зависящих от темп ры (тепловое расширение, изменение электрич. сопротивления с темп… … Естествознание. Энциклопедический словарь

    Температурные шкалы - по следовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрических веществ и имеет одну реперную точку тройную… … Энциклопедический словарь по металлургии

    ТЕМПЕРАТУРНЫЕ ШКАЛЫ - последовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрического вещества и имеет одну реперную точку тройную… … Металлургический словарь

    Градус Цельсия - (обозначение: °C) широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином … Википедия

Похожие публикации