Вселенная и темная материя сообщение. Методы поиска темной материи

Космос всем интересен, все что потрогать не представляется возможным таит некую загадку

Куда ни кинь взгляд по Вселенной, всюду бесконечность!

Многие хотели бы узнать есть ли край у Вселенной? Как далеко простираются космические закоулки? С большой вероятностью можно сказать, что познанию нет границ, как и нет границ у космоса и Вселенной!

Трудно рассуждать о том что ни разу ни при каких условиях не удавалось увидеть. Черная Дыра это массивное тело с очень сильной силой притяжения или проще гравитацией. Ни кто не может удрать от черной дыры даже потоки квантов и частиц. Как утверждают ученые более 90% нашей вселенной мы не видим, но это вовсе не только Черные дыры, это возможно что то иное, что ученые определяют как «Черная материя ». Эту материю ни как не удается фиксировать, она ни как не проявляет себя, кроме конечно сил гравитации. Как можно что то выдумывать про Вселенную если на общей картине практически 90% это «Квадрат Малевича» и ни что иное. В результате выводы про строение Вселенной могут быть ошибочными.
С большой долей вероятности можно предполагать, что черная материя все же играет роль и не малую в развитии Вселенной. Все было бы нам на много проще, если бы все было видимым во Вселенной.
Можно к примеру рассмотреть такую связь. В космосе существуют две звезды в зоне притяжения одна от другой. Каждая звезда влияет на другую и система вроде бы стабильная, но это так лишь на коротком участке времени. В конечном же итоге кто то кого тот притянет и произойдет слияние двух звезд с образованием сверхновой звезды. То что звезды не улетают друг от друга это все благодаря силе гравитации, которую мы не видим, но реально можем анализировать. Многие думают что черную материю видели в телескопы в виде туманностей темного цвета на значительной удаленности от нашей вселенной. Вовсе нет Это не черная материя , а скопления газа и космической пыли. Но черная материя там же рядом присутствует, она окружает видимую часть галактик и является как бы прослойкой между галактиками. Так что же такое черная материя ? Как дать ей определение? Одни думают, что это совершенно иные частицы вещества, другие полагают что это не что иное а просто скопления черных дыр. Пока ученые ответить на данную задачу точно не могут и что такое Черная Материя это величайшая тайна для физиков и астрономов. Пока ученые могут лишь по косвенным признакам определять и черные дыры и черную материю. Свет летящий от далекого квазара в нашу сторону по пути немного искривляется и это искривление может быть вызвано прохождением луча света очень близко с краем черной дыры. От того на сколько сильно отклонится луч света можно судить о величине общего объема черной материи. Черная материя может быть как линза если она расположена между исследуемым объектом и Землей и тогда мы увидим нечто совершенно необычное.
Для того чтоб понять суть вопроса и узнать побольше про черные дыры и черную материю мы предлагаем вам посмотреть ролик по данной теме. Все вроде бы после просмотра понятно, но на самом деле вопросов появляется еще больше.

комментарии (0)

Имя

Сообщение

В выпадающем списке выберите ответ на загадку .ЗАГАДКА : Зимой белый, а летом серый! Хрен его знает! Черт его знает! Мабуть НЛО Жена перед работой Теща, если че не так Подчиненные в цеху Заяц Незнакомка Любимая девушка
введите защитный код


Обновить
Если вы ищите информацию с тегом материя!? Выборка по тегам ==>> () ...

Судя по данным которые получены с помощью рентгеновского телескопа Chandra, то области на пределами нашей галактики вовсе не однородные. Есть места очень горячие, где даже есть ионы кислорода и очень холодные.

Титановский Нил впадает в своеобразное море, а по своей протяженности русло реки порядка 400 км. Этот снимок по своей сути первая фотография речной системы, которая существовала когда то за пределами Земли.

В Восточной Европе тоже падают метеориты и один из самых больших, что упал на землю в этом районе весит 300 кг

Что же нам собственно известно про магнитосферу нашего «Дома Земля»? Атмосфера и магнитная оболочка Земли это первый рубеж защитных функций Земли.

WGS-6 - это военный аппарат судя по сообщениям в прессе, а нужен он для того, чтоб обмениваться данными на большой скорости между кораблями, самолетами, и любыми группами военных в любой точке Земного Шара.

Мир Твердого Вещества

Освоение космоса

Партнеры о космосе


Переходы на сайт


В общем то новость эта важная для тех, кто верит в то, что космос есть и Луна не кусок головки сыра прибитый на купол Земли и так же важная информация для тех, кто верит в то что Израиль супер держава:)) Израиль не нашел денег в лице правительства страны на какую либо лунную программу, но вот частные инвесторы по сусекам пошкребли и нашлось немного шекелей на свою лунную программу....



США в прошлом, да пожалуй и в нынешнем веке впереди планеты всей в освоении космоса, как не крути, а пока мало кто до Марса добрался и бороздит его поверхность. У России были попытки на орбиту сесть, но карма не позволила и аппарат рухнул так и не улетев к вожделенной цели. У Китая мечты грандиозны, но пока технологий нет, так что он позади планеты всей, ему Луну бы освоить, а потом уже дальше смотреть....



Если подходить к проблеме гибели человечества от каких то сторонних факторов более обстоятельно, то выходит так, что человек скорее сам себя убьет загадив среду обитания, нежели на планету упадет огромный болид. Так, что скорее всего такая программа ни чего кроме наблюдений не принесет. Нужно как минимум менять структуру и ответственность в обществе, а уже потом задумываться о безопасности социально стабильного общества....



Пока все не так уж и четко можно рассмотреть при нынешнем развитии космической техники, а вот если представить приборы и оборудования для наблюдения за далекими объектами лет этак через 22, то с большой вероятностью, эту черную дыру рассмотрят до мельчайших подробностей... В северном полушарии в прошлом году загорелась яркая звезда, ученые ее решили хорошо рассмотреть и выяснили кое что интересное....



Телескоп Кеплер уже своими достижениями все приборы наблюдения затмил, но и он не вечен и ушел в небытие. Но не долго музыка играла и вот на небосводе заалела новая космическая звезда от НАСА Transiting Exoplanet Survey Satellite, TESS. Этот спутник оснащен специальным оборудованием, которое позволит отслеживать пролетающие по диску далеких звезд крохотные экзопланеты. Спутник работает уже достаточное время....



В Америке параллельно с правительственными программами по изучению космоса работают и программы с частным финансированием. Частная космонавтика позволяет значительно упростить приложение научного потенциала к теме «Развитие космической отрасли». В этом поле работает и частная компания Илона Маска -SpaceX ....


Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

Вселенная состоит всего на 4,9% из обычного вещества - барионной материи, из которой состоит наш мир. Большая часть 74% всей Вселенной приходится на загадочную тёмную энергию, а 26,8% массы во Вселенной приходится на неподвластные физическим законам, трудно обнаруживаемые частицы, названные тёмной материей.

Эта странная и необычная концепция тёмной материи была предложена в попытке пояснения необъяснимых астрономических явлений. Так о существовании некой мощной энергии, настолько плотной и массивной - её в пять раз больше, чем обычного вещества материи, из которой состоит наш мир, состоим мы, учёные заговорили после обнаружения непонятных явлений в гравитации звезд и формирования Вселенной.

Откуда появилась концепция тёмной материи?

Так, звёзды в спиральных галактиках, подобных нашей, имеют довольно высокую скорость обращения и по всем законам при таком быстром движении должны бы просто вылетать в межгалактическое пространство, как апельсины из опрокинувшейся корзины, но они не делают это. Их удерживает некая сильнейшая гравитационная сила, которая не регистрируется и не улавливается никакими нашими способами.

Еще интересное подтверждение о существовании некой темной материи учёные получили из исследований космического микроволнового фона. Они показали, что после Большого взрыва материя в самом начале была однородна распространена в пространстве, но в некоторых местах её плотность была несколько выше, чем в среднем. Эти области обладали более сильной гравитацией, в отличие от тех, которые их окружали, и при этом, притягивая к себе материю, они становились ещё плотней и массивней. Весь этот процесс должен был быть слишком медленным, чтобы за всего 13,8 млрд лет, (а это возраст Вселенной), сформировать крупные галактики, в том числе наш Млечный путь.

Таким образом, остается предположить, что ускоряет темп развития галактик, наличие достаточного для этого количества темной материи с её дополнительной гравитацией, значительно ускоряющей этот процесс.

Какая она - тёмная материя?

Одна из центральных идей, что чёрная материя состоит из ещё не открытых субатомных частиц. Что это за частицы и кто претендует на эту роль, кандидатов много.

Предполагается, что у фундаментальных элементарных частиц из семейства фермионов имеются суперсимметричные партнеры из другого семейства - бозонов. Такие слабовзаимодействующие массивные частицы имеют название WIMP (или просто вимпы). Самый легкий и при этом стабильный суперпартнер - нейтралино. Вот он, то и является наиболее вероятным кандидатом на роль веществ темной материи.

На данный момент попытки получить нейтралино или хотя бы схожую или вовсе другую частицу тёмной материи к успеху не привели. Пробы получения нейтралино предпринимались на сверхвысокоэнергичных столкновениях на получившем известность и разную оценку Большом адронном коллайдере. В будущем эксперименты будут проводиться с ещё большими энергиями столкновений, но и это не гарантирует, что будет обнаружены хоть какие-то модели тёмной материи.

Как говорит Мэттью Маккалоу (из Центра теоретической физики Массачусетского технологического института) - "Наш обычный мир устроен сложно, он не построен из однотипных частиц, а если тёмная материя тоже сложная?". По его теории, гипотетически тёмная материя может взаимодействовать сама с собой, но при этом игнорировать обычную материю. Именно поэтому мы и не можем заметить и как-то зарегистрировать её присутствие.

(Карта космического микроволнового фонового излучения (CMB), сделанному Wilkinson Microwave Anisotropy Probe (WMAP) )

Наша галактика Млечный путь состоит из огромных масштабов сферического вращающегося облака тёмной материи, в нём подмешано небольшое количество обычной материи, которая сжимается под действием гравитации. Быстрее это происходит между полюсами, не так, как в области экватора. Как результат, наша галактика приобретает вид сплющенного спирального диска из звёзд и погружается в сфероидальное облако тёмной материи.

Теории существования тёмной материи

Для объяснения природы недостающей массы во Вселенной выдвигались различные теории, так или иначе, говорящие о существовании тёмной материи. Вот некоторые из них:

  • Гравитационное притяжение обычной регистрируемой материи во Вселенной не может объяснить странное движение звезд в галактиках, там где во внешних областях спиральных галактик звёзды обращаются настолько быстро, что должны были бы просто вылететь в межзвездное пространство. Что же их удерживает, если это невозможно зафиксировать.
  • Существующая тёмная материя превосходит обычную материю Вселенной в 5,5 раз и только её дополнительная гравитация может объяснить нехарактерные движения звезд в спиральных галактиках.
  • Возможные частицы тёмной материи вимпы (WIMP), они слабовзаимодействющие массивные частицы при этом сверрхтяжёлые суперсимметричные партнеры субатомных частиц. В теории существует свыше трёх пространственных измерений, недоступных для нас. Сложность в том, так как же их зарегистрировать, когда дополнительные измерения по теории Калуцы - Клейна оказываются для нас недоступными.

Возможно, ли зарегистрировать тёмную материю?

Сквозь Землю пролетают огромные количества частиц тёмной материи, но так как тёмная материя не взаимодействует, а если и есть взаимодействие то крайне слабое, практически нулевое, с обычной материей, то в большинстве экспериментов значительных результатов получено не было.

Тем не менее попытки зарегистрировать присутствие темной материи пробуются в экспериментах столкновения различных атомных ядер (кремния, ксенона, фтора, иода и других) в надежде увидеть отдачу от частицы тёмной материи.

В нейтринной астрономической обсерватории на станции Амундсена - Скотта с интересным названием IceCube проводятся исследования по обнаружению высокоэнергетичных нейтрино, рожденных за пределами Солнечной системы.

Здесь на Южном полюсе, где температура за бортом до -80 °C, на глубине 2,4 км подо льдом установлена высокоточная электроника, обеспечивающая непрерывный процесс наблюдения за загадочными процессами Вселенной, происходящими за гранью обычной материи. Пока это только попытки приблизится к отгадке глубочайших тайн Вселенной, но некоторые успехи уже есть, такие, как историческое открытие 28 нейтрино.

Итак. Невероятно интересно что, Вселенная, состоящая из тёмной материи, недоступной для видимого изучения нами, может оказаться во много раз сложнее устройства нашей Вселенной. А быть может, Вселенная из тёмной материи значительно превосходит нашу и именно там происходят все важные дела, отголоски которых мы пытаемся видеть в нашей обыкновенной материи, но это уже переходит в область научной фантастики.

Теоретическая конструкция в физике, называемая Стандартной моделью, описывает взаимодействия всех известных науке элементарных частиц. Но это всего 5% существующего во Вселенной вещества, остальные же 95% имеют совершенно неизвестную природу. Что представляет из себя эта гипотетическая темная материя и как ученые пытаются ее обнаружить? Об этом в рамках спецпроекта рассказывает Айк Акопян, студент МФТИ и сотрудник кафедры физики и астрофизики.

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Современная наука, особенно космология, работает по дедуктивному методу Шерлока Холмса

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить. В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы. Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке - это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.

Рано или поздно наш мир прекратит свое существование. Точно так же, как когда-то он появился из одной-единственной частицы размером меньше атома. В этом у ученых уже давно нет никаких сомнений. Однако если раньше господствовавшей являлась теория, согласно которой гибель Вселенной наступит в результате её стремительно набирающего скорость расширения и, как следствие, - неминуемой «тепловой смерти», то с открытием темной материи это мнение поменялось.

ТЕМНЫЕ СИЛЫ ВСЕЛЕННОЙ

Специалисты говорят, что весь необъятный космос может погибнуть в результате его свертывания, засосавшись в некую гигантскую черную дыру, являющуюся частью таинственной «темной материи».

В холодных глубинах космоса от сотворения мира враждуют две непримиримые силы - темная энергия и темная материя. Если первая обеспечивает разбегание Вселенной, то вторая, напротив, стремится втянуть ее внутрь себя, сжать до небытия. Противостояние это идет с переменным успехом. Победа одной из сил над другой, нарушение космического равновесия одинаково гибельно для всего сущего.

Еще Эйнштейн предположил, что в космосе находится гораздо больше материи, чем мы можем увидеть. В истории науки встречались ситуации, когда движение небесных тел не подчинялось законам небесной механики. Как правило, это загадочное отклонение от траектории находило объяснение в существовании неизвестного материального тела (или нескольких тел). Именно так были открыты планета Нептун и звезда Сириус В.

КОСМИЧЕСКИЕ СКРЕПЫ

В 1922 году астрономы Джеймс Джиме и Якобус Каптейн исследовали движение звезд в нашей Галактике и пришли к выводу, что большая часть вещества в Галактике невидима; в этих работах впервые появился термин «темная материя» (англ. dark matter), однако он не вполне соответствует нынешнему смыслу этого понятия.

Астрономам уже давно известен феномен ускоряющегося расширения Вселенной. Наблюдая за удалением галактик друг от друга, они установили, что скорость эта все увеличивается. Энергия, которая распирает космос во все стороны, подобно воздуху в надувном шарике, была названа «темной». Энергия эта отодвигает галактики друг от друга, она действует против силы гравитации.

Но, как выяснилось, силы ее не безграничны. Существует и некий космический «клей», удерживающий галактики от расползания. И масса этого «клея» значительно превышает массу видимой Вселенной. Эта огромная, неизвестного происхождения сила была названа темной материей. Несмотря на угрожающее название, последняя не является абсолютным злом. Все дело в хрупком равновесии космических сил, на котором держится существование нашего, казалось бы, незыблемого мира.

Вывод о существовании таинственной материи, которую не видно, не регистрирует ни один из приборов, но существование которой можно считать доказанным, был сделан на основе нарушения гравитационных законов Вселенной. По крайней мере в том виде, как мы их знаем. Было замечено, что звезды в спиральных галактиках, подобных нашей, имеют довольно высокую скорость обращения и по всем законам при таком быстром движении они должны бы просто вылетать в межгалактическое пространство под действием центробежной силы, но они не делают этого. Их удерживает некая сильнейшая гравитационная сила, которая не регистрируется и не улавливается никакими известными современной науке способами. Это заставило ученых задуматься.

ВЕЧНАЯ БОРЬБА

Если бы не существовало этих неуловимых, но превосходящих по силе гравитации все видимые космические объекты темных «скреп», то через некоторое продолжительное время скорость расширения Вселенной под действием темной энергии приблизилась бы к пределу, в котором произойдет разрыв пространственно-временного континуума. Пространство аннигилирует, и Вселенная прекратит свое существование. Однако пока этого не происходит.

Астрофизики выяснили, что около 7 миллиардов лет назад гравитация (преобладающей частью которой является темная материя) и темная энергия находились в равновесии. Но Вселенная расширялась, плотность уменьшалась, сила темной энергии увеличивалась. С тех пор она доминирует в нашей Вселенной. Теперь ученые пытаются понять, закончится ли когда-нибудь этот процесс.

На сегодняшний день уже известно, что Вселенная состоит всего на 4,9% из обычного вещества - барионной материи, из которой состоит наш мир. Большая часть (74%) всей Вселенной приходится на загадочную темную энергию, а 26,8% массы во Вселенной приходится на неподвластные физическим законам, трудно обнаруживаемые частицы, названные темной материей.

Пока что в непримиримой извечной борьбе темной материи с темной энергией побеждает последняя. Они похожи на двух борцов разных весовых категорий. Но это не значит, что схватка предрешена. Галактики продолжат разбегаться. Но долго ли будет протекать этот процесс? Согласно последней гипотезе, темная материя - это лишь одно из проявлений физики черных дыр.

ЧЕРНЫЕ ДЫРЫ — СГУСТКИ ТЕМНОЙ МАТЕРИИ?

Черные дыры - это самые массивные и мощные объекты в известной нам Вселенной. Они настолько сильно искривляют пространство-время, что даже свет не может покинуть их пределы. Поэтому, так же как и темную материю, мы их не можем видеть. Черные дыры являются своего рода центрами притяжения огромных пространств космоса. Можно предположить, что это структурированная темная материя. Ярким примером этого являются сверхмассивные черные дыры, которые живут в центре галактик. Глядя на центр, к примеру, нашей Галактики, мы видим, как ускоряются звезды вокруг него.

Энн Мартин из Корнелльского университета отмечает, что единственное, что объяснит это ускорение, это сверхмассивная черная дыра. О существовании темной материи, так же как и черных дыр, мы можем судить лишь на основе их взаимодействия с окружающими объектами. Поэтому мы наблюдаем ее эффекты в движении галактик и звезд, но не видим ее напрямую; она не излучает и не поглощает свет. Логично предположить, что черные дыры являются лишь сгустками темной материи.

Может ли одна из гигантских черных дыр, которая со временем проглотит не только окружающий космос, но и своих менее мощных «дырчатых» сородичей, поглотить всю Вселенную? Вопрос об этом остается открытым. Согласно оценкам ученых, если это и произойдет, то не раньше чем через 22 млрд лет. Так что на наш век хватит. А пока что окружающий мир продолжает свое плавание между Сциллой темной энергии и Харибдой темной материи. Судьба Вселенной будет зависеть от исхода борьбы между этими двумя господствующими в космосе силами.

ПРОРОЧЕСТВО ТЕСЛЫ

Существует, однако, и альтернативный взгляд на проблему темной материи. Определенные параллели можно найти между таинственной субстанцией и теорией вселенского эфира Николы Теслы. Согласно Эйнштейну, эфир не является реальной категорией, а существует как результат ошибочных научных воззрений. Для Теслы эфир - реальность.

Несколько лет назад на уличной распродаже в Нью-Йорке один любитель антиквариата купил себе истершийся от времени пожарный шлем. Внутри него, под подкладкой, лежала старая тетрадь. Тетрадь была тонкой, с обгоревшей обложкой, от нее пахло плесенью. Пожелтевшие от времени листы были исписаны выцветшими от времени чернилами. Как выяснилось, рукопись принадлежала известному изобретателю Николе Тесле, жившему и работавшему в США. В записи разъясняется теория эфира, в которой можно найти несомненные указания на открытую десятилетия спустя после его смерти неуловимую темную материю.

«Что представляет из себя эфир, и почему его так трудно обнаружить? - пишет изобретатель в манускрипте. - Я долго думал над этим вопросом и вот к каким выводам пришел. Известно, что чем плотнее вещество, тем выше скорость распространения в нем волн. Сравнивая скорость звука в воздухе со скоростью света, я пришел к выводу, что плотность эфира в несколько тысяч раз больше плотности воздуха. Но эфир электрически нейтрален и поэтому он очень слабо взаимодействует с нашим материальным миром, к тому же плотность вещества материального мира ничтожна по сравнению с плотностью эфира».

По мнению ученого, это не эфир бесплотен - это наш материальный мир является бесплотным для эфира. Таким образом, он предлагает куда более позитивный взгляд на темную материю, видя в ней некое первовещество, колыбель Вселенной. Но не только. По мнению Теслы, при умелом подходе из темной материи эфира можно получать неиссякаемые источники энергии, проникать в параллельные миры и даже устанавливать контакты с разумными обитателями других галактик. «Я думаю, что звезды, планеты и весь наш мир возникли из эфира, когда по каким-то причинам часть его стала менее плотной. Сжимая наш мир со всех сторон, эфир пытается вернуться в первоначальное состояние, а внутренний электрический заряд в веществе материального мира препятствует этому. Со временем, потеряв внутренний электрический заряд, наш мир будет сжат эфиром и превратится в эфир. Из эфира вышел эфир и уйдет», - утверждал Тесла.

2749
Похожие публикации