Альтернативные формулировки второго закона термодинамики. Второй закон термодинамики


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • Второй закон термодинамики, как и первый, является постулатом, обоснованным многовековым опытом человечества. Открытию этого закона способствовало изучение тепловых машин. Французский ученый С. Карно первым показал (1824 г.), что любая тепловая машина должна содержать помимо источника теплоты (нагревателя) и рабочего тела (пар, идеальный газ и др.), совершающего термодинамический цикл, также и холодильник, имеющий температуру обязательно более низкую, чем температура нагревателя.

    Коэффициент полезного действия η такой тепловой машины, работающей по обратимому циклу (циклу Карно ), не зависит от природы рабочего тела, совершающего этот цикл, а определяется только температурами нагревателя Т 1 и холодильника Т 2:

    где Q 1 – количество теплоты, сообщенное рабочему телу при температуре Т 1 от нагревателя; Q 2 – количество теплоты, отданное рабочим телом при температуре Т 2 холодильнику.

    Второй закон термодинамики представляет собой обобщение вывода Карно на произвольные термодинамические процессы, протекающие в природе. Известно несколько формулировок этого закона.

    Клаузиус (1850 г.) сформулировалвторой закон термодинамики так: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более горячим.

    У. Томсон (Кельвин) (1851 г.) предложил следующую формулировку: невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к совершению механической работы и соответствующему охлаждению резервуара.

    Постулат Томсона может быть сформулирован и так: вечный двигатель второго рода невозможен. Вечным двигателем второго рода называют устройство, которое без компенсации полностью превращало бы периодически теплоту какого-либо тела в работу (В.Оствальд). Под компенсацией понимают изменение состояния рабочего тела или отдачу части теплоты рабочим телом другим телам и изменение термодинамического состояния этих тел при круговом процессе превращения теплоты в работу.

    Второй закон термодинамики устанавливает, что без компенсации в круговом процессе ни один джоуль теплоты нельзя превратить в работу. Работа же превращается в теплоту полностью без всякой компенсации . Последнее связано, как отмечалось ранее, с самопроизвольностью процесса рассеивания (обесценивания) энергии.

    Второй закон термодинамики вводит функцию состояния системы, которая количественно характеризует процесс рассеивания энергии . В этом смысле приведенные формулировки второго закона термодинамики равноценны, ибо из них следует существование функции состояния системы – энтропии.


    В настоящее время второй закон термодинамики формулируется следующим образом: существует аддитивная функция состояния системы S – энтропия, которая следующим образом связана с теплотой, поступающей в систему, и температурой системы :



    Для обратимых процессов; (3.2)

    Для необратимых процессов. (3.3)

    Таким образом, при обратимых процессах в адиабатически изолированной системе ее энтропия не изменяется (dS = 0), а при необратимых процессах увеличивается (dS > 0).

    В отличие от внутренней энергии значение энтропии изолированной системы зависит от характера происходящих в ней процессов: в ходе релаксации энтропия изолированной системы должна возрастать, достигая максимального значения при равновесии.

    В общем виде второй закон термодинамики для изолированной системы записывается так:

    Энтропия изолированной системы или увеличивается, если в ней протекают самопроизвольные необратимые процессы, или остается постоянной. Поэтому второй закон термодинамики определяют также как закон о неубывании энтропии в изолированных системах .

    Таким образом, второй закон термодинамики дает критерий самопроизвольности процессов в изолированной системе . Спонтанно в такой системе могут протекать только процессы, сопровождающиеся увеличением энтропии. Самопроизвольные процессы заканчиваются с установлением равновесия в системе. Значит, в состоянии равновесия энтропия изолированной системы максимальна. В соответствии с этим критерием равновесия в изолированной системе будет

    Если в процессе принимает участие неизолированная система , то для оценки необратимости (самопроизвольности) процесса необходимо знать изменение энтропии системы dS 1 и изменение энтропии окружающей среды dS 2 . Если принять, что система и окружающая среда (их часто называют «вселенной») образуют изолированную систему , то условием необратимости процесса будет

    то есть процесс будет необратим, если общее изменение энтропии системы и окружающей среды будет больше нуля .

    Окружающая среда – огромный резервуар; eе объем и температура не изменяются при теплообмене с системой . Поэтому можно для окружающей среды приравнять δQ = dU и не важно, обратимо или необратимо происходит переход теплоты, так как и δQ обр, и δQ необр точно равны dU окружающей среды. Таким образом, изменение энтропии окружающей среды всегда равно .

    Закономерность переноса тепла от одного объекта к другому рассматривается в утверждении о теплообмене. Весь процесс заключается во внутреннем обмене энергии между объектами, которая называется теплотой.

    Правильный процесс направлен только на получение равного состояния, будь оно термическое, механическое или какое-либо ещё. Это действие и содержится во втором законе термодинамики, который имеет совсем немаленькое значение для тепловых машин. Данный закон говорит о том, что тепло может само передвигаться исключительно от объекта с большой температурой к объекту наименьшей температурой. Что бы осуществить обратный цикл, будет затрачиваться некоторая работа. Из чего можно получить заключение второго закона термодинамики: Это действие во время которого теплота сама по себе передвигается от объекта с меньшей теплотой к объекту с наибольшей теплотой не может существовать.

    Заметка: Вы хотите обновить свои подоконники, но не знаете в какую компанию обратиться? Попробуйте подоконник меллер купить (http://hoffen.ru/podokonniki-moeller/), ценой и качеством Вы останетесь довольны!

    В свое время второй закон термодинамики дает оценку условиям в которых тепло сможет, на сколько хочет обращаться в работу. Любое разомкнутое термодинамическое действие во время нарастания объема, будет происходить работа со знаком плюс.

    Формула второго закона термодинамики

    В которой L- будет итоговой работой, v1 и v2- собственной изначальный и итоговый объем удельный.
    Так как действие расширения бесконечным быть не может, соответственно, и обращение тепла в работу будет этим ограничиваться. Непрерывным это действие будет в случае закрытого кругового движения.

    Любое действие происходящее в цикле, происходит с подводом либо отводом тепла dQ, с сопровождением затраты либо совершения работ, упадком или возрастанием энергии внутри тела, а обязательное условие dQ=dU+dL , dg=du+d1 должно выполняться. Ведь оно доказывает что без тепла (dg=0) все действия будут происходить благодаря внутренней энергии системы, а ввод тепла в систему можно определить термодинамикой.

    Интеграция в замкнутом контуре:

    в которой Qц, Lц - будет теплотой превращенной в работу, L1- L2 - работой совершенной данным телом. Q1 подведенная теплота, Q2- отведенная теплота. А значит, Lц= Qц= Q1-Q2
    Тепло можно подвести к телу Q1 только при наличии более горячего тела, а отвод Q2 только при наличии более холодного тела. В случае цикличности процесса понадобиться два источника с разной температурой.

    Как генерируется энергия, как она преобразуется из одной формы в другую и что происходит с энергией в замкнутой системе? На все эти вопросы помогут дать ответ законы термодинамики. Подробнее сегодня будет рассмотрен второй закон термодинамики.

    Законы в повседневной жизни

    Законы управляют повседневной жизнью. В дорожных законах говорится, что нужно остановиться на знаках остановки. Правительственные требуют предоставить часть своей зарплаты государству и федеральному правительству. Даже научные применимы к повседневной жизни. Например, закон силы тяжести предсказывает довольно плохой результат для тех, кто пытается летать. Другой набор научных законов, которые влияют на повседневную жизнь, - это законы термодинамики. Итак, можно привести ряд примеров, чтобы увидеть, как они влияют на повседневную жизнь.

    Первый закон термодинамики

    Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена, но можно преобразовать ее из одной формы в другую. Это также иногда называют законом сохранения энергии. Итак, как это относится к повседневной жизни? Ну, взять, к примеру, компьютер, который вы используете сейчас. Он питается энергией, но откуда эта энергия? Первый закон термодинамики говорит нам, что эта энергия не могла появиться из-под воздуха, поэтому она откуда-то появилась.

    Можно отследить эту энергию. Компьютер питается от электричества, но откуда это электричество? Правильно, с электростанции или гидроэлектростанции. Если рассматривать вторую, то она будет связана с плотиной, которая сдерживает реку. У реки есть связь с кинетической энергией, а это означает, что река течет. Плотина превращает эту кинетическую энергию в потенциальную энергию.

    Как работает гидроэлектростанция? Вода используется для вращения турбины. При вращении турбины приводится в действие генератор, который будет создавать электричество. Это электричество может быть проложено полностью в проводах от электростанции до вашего дома, чтобы при подключении шнура питания к электрической розетке электричество проникало в ваш компьютер, чтобы он мог работать.

    Что произошло здесь? Уже было определенное количество энергии, которая была связана с водой в реке как кинетическая энергия. Потом она превратилась в потенциальную энергию. Затем плотина приняла эту потенциальную энергию и превратила ее в электричество, которое затем смогло попасть в ваш дом и привести в действие компьютер.

    Второй закон термодинамики

    Изучив этот закон, можно понять, как работает энергия и почему все движется к возможному хаосу и беспорядку. Второй закон термодинамики еще называют законом энтропии. Вы когда-нибудь задумывались, как возникла Вселенная? Согласно Теории Большого Взрыва, до того, как зародилось все вокруг, вместе собралось огромное количество энергии. После Большого Взрыва появилась Вселенная. Все это хорошо, только что это была за энергия? В начале времени вся энергия во Вселенной содержалась в одном относительно небольшом месте. Эта интенсивная концентрация представляла собой огромное количество того, что называется потенциальной энергией. Со временем она распространилась по огромному пространству нашей Вселенной.

    В гораздо меньших масштабах резервуар воды, удерживаемый плотиной, содержит потенциальную энергию, так как ее расположение дает возможность протекать через плотину. В каждом случае запасенная энергия, однажды выпущенная, распространяется и делает это без каких-либо прилагаемых усилий. Другими словами, высвобождение потенциальной энергии является спонтанным процессом, который возникает без необходимости в дополнительных ресурсах. По мере того, как энергия распространяется, часть ее преобразуется в полезную и выполняет определенную работу. Остальная преобразуется в непригодную, просто называемую теплотой.

    Поскольку Вселенная продолжает распространяться, она содержит все менее и менее полезную энергию. Если менее полезная доступна, меньше работы может быть сделано. Так как вода течет через плотину, она также содержит менее полезную энергию. Это уменьшение полезной энергии с течением времени называется энтропией, где энтропия - это количество неиспользуемой энергии в системе, а система - это просто совокупность объектов, составляющих целое.

    Энтропия также может упоминаться как количество случайностей или хаоса в организации без организации. По мере того как полезная энергия уменьшается с течением времени, дезорганизация и хаос увеличиваются. Таким образом, по мере освобождения накопленной потенциальной энергии не все это преобразуется в полезную. Все системы испытывают это увеличение энтропии с течением времени. Это очень важно понять, и это явление называют вторым законом термодинамики.

    Энтропия: случайность или дефект

    Как вы, возможно, догадались, второй закон следует за первым, который обычно называют законом сохранения энергии, и он утверждает, что энергия не может быть создана и ее нельзя уничтожить. Другими словами, количество энергии во Вселенной или любой системе является постоянным. Второй закон термодинамики обычно называют законом энтропии, и он считает, что с течением времени энергия становится менее полезной, а качество ее уменьшается со временем. Энтропия - это степень случайности или дефектов, которые имеет система. Если система очень неупорядоченная, то она обладает большой энтропией. Если в системе много неисправностей, то энтропия низкая.

    Говоря простыми словами, второй закон термодинамики гласит, что энтропия системы не может со временем уменьшаться. Это означает, что в природе вещи переходят от состояния порядка к состоянию беспорядка. И это необратимо. Система никогда не станет более упорядоченной сама по себе. Другими словами, в природе энтропия системы всегда увеличивается. Один из способов подумать об этом - это ваш дом. Если вы его никогда не будете убирать и пылесосить, то довольно скоро у вас будет ужасный бардак. Энтропия увеличилась! Чтобы уменьшить ее, необходимо применять энергию для использования пылесоса и швабры, чтобы очистить от пыли поверхность. Дом сам себя не уберет.

    Что представляет собой второй закон термодинамики? Формулировка простыми словами гласит, что при изменении энергии из одной формы в другую форму, материя либо движется свободно, либо энтропия (беспорядок) в замкнутой системе увеличивается. Различия в температуре, давлении и плотности имеют тенденцию выравниваться горизонтально через некоторое время. Из-за силы тяжести плотность и давление не выравниваются вертикально. Плотность и давление на дне будут больше, чем сверху. Энтропия - это мера распространения материи и энергии везде, где у нее есть доступ. Наиболее распространенная формулировка второго закона термодинамики в основном связана с Рудольфом Клаузиусом, который говорил:

    Невозможно построить устройство, которое не производит другого эффекта, чем перенос тепла из тела с более низкой температурой в тело с более высокой температурой.

    Другими словами, все пытается поддерживать ту же температуру с течением времени. Существует много формулировок второго закона термодинамики, в которых используются разные термины, но все они означают одно и то же. Другое заявление Клаузиуса:

    Тепло само по себе не происходит от холодного до более горячего тела.

    Второй закон применим только к крупным системам. Он касается вероятного поведения системы, в которой нет энергии или материи. Чем больше система, тем более вероятен второй закон.

    Еще одна формулировка закона:

    Полная энтропия всегда увеличивается в самопроизвольном процессе.

    Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передается.

    Термодинамическая система

    В общем смысле формулировка второго закона термодинамики простыми словами гласит, что температурные различия между системами, находящимися в контакте друг с другом, имеют тенденцию к выравниванию и что работа может быть получена из этих неравновесных различий. Но при этом происходит потеря тепловой энергии, а энтропия увеличивается. Различия давления, плотности и температуры в имеют тенденцию выравниваться, если им предоставляется возможность; плотность и давление, но не температура, зависят от силы тяжести. Тепловой двигатель представляет собой механическое устройство, которое обеспечивает полезную работу из-за разницы в температуре двух тел.

    Термодинамическая система - это та, которая взаимодействует и обменивается энергией с областью вокруг нее. Обмен и передача должны произойти, по крайней мере, двумя способами. Один путь должен быть передачей тепла. Если термодинамическая система «находится в равновесии», она не может изменять свое состояние или статус без взаимодействия с окружающей средой. Проще говоря, если вы находитесь в равновесии, вы «счастливая система», вы ничего не можете сделать. Если вы что-то захотите сделать, вы должны взаимодействовать с окружающим миром.

    Второй закон термодинамики: необратимость процессов

    Невозможно иметь циклический (повторяющийся) процесс, который полностью преобразует тепло в работу. Также невозможно иметь процесс, который переносит тепло от холодных объектов на теплые объекты без использования работы. Некоторое количество энергии в реакции всегда теряется для нагревания. Кроме того, система не может преобразовать всю свою энергию в рабочую энергию. Вторая часть закона более очевидна.

    Холодное тело не может нагревать теплое тело. Тепло естественным образом стремится течь от более теплых до более прохладных областей. Если тепло перейдет от более прохладного к более теплым, это противоречит тому, что является «естественным», поэтому система должна выполнить некоторую работу, чтобы это произошло. в природе - второй закон термодинамики. Это, пожалуй, самый известный (по крайней мере, среди ученых) и важный закон всей науки. Одна из его формулировок:

    Энтропия Вселенной стремится к максимуму.

    Другими словами, энтропия либо остается неизменной, либо становится больше, энтропия Вселенной никогда не может снизиться. Проблема в том, что это всегда верно. Если взять флакон духов и распылить его в комнате, то скоро ароматные атомы заполнят все пространство, и этот процесс является необратимым.

    Взаимосвязи в термодинамике

    В законах термодинамики описываются взаимосвязи между тепловой энергией или теплом и другими формами энергии, и как энергия влияет на материю. Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена; общее количество энергии во Вселенной остается неизменным. Второй закон термодинамики посвящен качеству энергии. В нем говорится, что по мере передачи или преобразования энергии все больше и больше теряется полезной энергии. Второй закон также гласит, что существует естественная тенденция превращения любой изолированной системы в более неупорядоченное состояние.

    Даже когда порядок увеличивается в определенном месте, когда вы принимаете во внимание всю систему, включая окружающую среду, всегда наблюдается увеличение энтропии. В другом примере кристаллы могут образовываться из раствора соли, когда вода выпаривается. Кристаллы более упорядочены, чем молекулы соли в растворе; однако испаренная вода гораздо более беспорядочна, чем жидкая вода. Процесс, взятый в целом, приводит к чистому увеличению беспорядка.

    Работа и энергия

    Во втором законе объясняется, что невозможно преобразовать тепловую энергию в механическую энергию со 100-процентной эффективностью. Можно привести пример с автомобилем. После процесса нагрева газа, чтобы увеличить его давление для привода поршня, в газе всегда остается некоторое количество тепла, которое нельзя использовать для выполнения каких-либо дополнительных работ. Это отработанное тепло должно быть отброшено путем его передачи в радиатор. В случае с автомобильным двигателем это делается путем извлечения отработанного топлива и воздушной смеси в атмосферу.

    Кроме того, любое устройство с подвижными частями создает трение, которое преобразует механическую энергию в тепло, которое обычно непригодно и должно быть удалено из системы путем переноса его в радиатор. Когда горячее и холодное тело контактируют друг с другом, тепловая энергия будет поступать из горячего тела в холодное тело до тех пор, пока они не достигнут теплового равновесия. Тем не менее, тепло никогда не вернется в другую сторону; разница температур двух тел никогда не будет спонтанно увеличиваться. Перемещение тепла от холодного тела к горячему телу требует работы, которую должен выполнять внешний источник энергии, такой как тепловой насос.

    Судьба Вселенной

    Второй закон также предсказывает конец Вселенной. Это конечный уровень беспорядка, если везде будет постоянное тепловое равновесие, никакая работа не может быть выполнена, и вся энергия будет заканчиваться как случайное движение атомов и молекул. По современным данным, Метагалактика - это расширяющаяся нестационарная система, о тепловой смерти Вселенной и речи быть не может. Тепловая смерть - это состояние теплового равновесия, при котором прекращаются все процессы.

    Это положение ошибочно, так как второй закон термодинамики применяется только к замкнутым системам. А Вселенная, как известно, безгранична. Однако сам термин «тепловая смерть Вселенной» иногда используется для обозначения сценария будущего развития Вселенной, согласно которому она так и будет расширяться до бесконечности во тьму пространства, пока не обратится в рассеянный холодный прах.

    Основу термодинамики составляют фундаментальные законы природы, сформулированые на основании обобщения результатов множества опытных исследований и открытий. Из этих законов, принимаемых за аксиомы; логическим путем получены все главнейшие следствия, касающиеся различных термодинамических систем, которые именуются н а ч а л а м и или з а к о- н а м и термодинамики.

    1.2.1. Первый закон термодинамики

    Абсолютный по своему существу, один из наиболее общих законов природы – закон сохранения и превращения энергии . Согласно этому закону, энергия закрытой системы при любых процессах, происходящих в системе, остается неизменной. При этом энергия может только превращаться из одной формы в другую.

    Первый закон термодинамики является частным случаем этого всеобщего закона и представляет собой его приложение к процессам в термодинамических системах. Он устанавливает возможность превращения различных форм энергии друг в друга и определяет, в каких количественных соотношениях эти взаимные превращения осуществляются.

    Изменение энергии произвольной неизолированной системы может происходить в общем случае только за счет двух форм энергообмена – теплоты и работы:

    E = Q L , (1.12)

    где ∆ E – изменение энергии системы;

    Q – теплота, подведенная к системе;

    L – работа, совершенная над системой.

    Согласно уравнению (1.12), изменение энергии термодинамической системы возможно за счет подведенной к системе теплоты и совершенной над системой работой.

    Уравнение (1.12) представляет собой общее аналитическое выражение первого закона термодинамики. Выразим его через параметры состояния системы. Изменение энергии ∆E получим из выражения (1.7):

    E = ∆ I + m ( ).

    Для термодинамической системы, в которой разностью кинетической энергии можно пренебречь, изменение энергии системы будет равно изменению энтальпии, т.е. ∆E = ∆ I . Тогда с учетом выражений (1.11) и (1.12) получим уравнение первого закона термодинамики в виде:

    Q = ∆I + L тех (1.13)

    Теплота, подведенная к системе, идет на изменение энтальпии системы и совершение системой технической работы.

    Заменим в уравнении (1.13) изменение энтальпии ∆I изменением внутренней энергии DU и, используя выражение (1. 6), получим:

    Q = ∆ U + L расш. (1.14)

    Уравнения (1.13) и (1.14) представляют собой интегральную форму записи первого закона термодинамики.

    Из выражения (1.13) следует, что техническая работа может быть совершена термодинамической системой за счет уменьшения энтальпии и подведенной теплоты. Если процесс круговой, то ∆I = 0, следовательно, в постоянно действующих машинах (в них процессы изменения состояния круговые) для получения технической работы необходимым условием является подведение теплоты.

    Аналогичное рассуждение можно провести и по уравнению (1.14).

    Термодинамическая система может совершить работу расширения только за счет уменьшения своей внутренней энергии или за счет подведенной теплоты. Если в результате процесса внутренняя энергия системы не изменяется (например, в системе не изменяется температура), то вся теплота, полученная системой от окружающей среды, идет на совершение работы:

    Q = L расш.

    Это выражение позволяет дать следующие формулировки первого закона термодинамики.

    При неизменной внутренней энергии системы теплота и работа эквивалентны.

    Вечный двигатель первого рода невозможен.

    Предполагалось, что вечный двигатель первого рода должен только совершать работу над окружающей средой, ничего не получая от нее.

    До сих пор рассматривались системы произвольной массы. Для анализа удобнее пользоваться величинами, приведенными к единице массы вещества. Запишем уравнения (1.13) и (1.14) для 1 кг массы:

    q = ∆ i + l тех ; (1.15)

    q = ∆ u + l рас. (1.16)

    Используя выражения (1.9) и (1.11), запишем полученные уравнения в дифференциальной форме:

    dq = di - vdp (1.17)

    dq = du + pdv (1.18)

    Уравнения (1.17) и (1.18) представляют собой разновидность математической записи первого закона термодинамики в дифференциальной форме..

    Значение первого закона:

    во-первых, он формирует принцип устройства теплоэнергетических установок и систем;

    во-вторых, он объясняет физическую сущность процессов, происходящих в тепловых машинах;

    в-третьих, он используется при расчетах термодинамических процессов и позволяет оценить энергетический баланс тепловых машин.

    1.2.2. Второй закон термодинамики

    Первый закон термодинамики, являясь частным случаем закона сохранения и превращения энергии, рассматривает только его количественную сторону, заключающуюся в том, что при известном изменении энергии системы соотношение между теплотой и работой строго определенно. Этот закон не устанавливает направлений и полноты передачи энергии между телами, не определяет условий, при которых возможно преобразование теплоты в работу, не делает различий между их прямыми и обратными превращениями. Если исходить лишь из первого закона термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе. Ответ на поставленные вопросы дает второй закон термодинамики, который представляет собой совокупность положений, обобщающих опытные данные о качественной стороне закона сохранения и превращения энергии.

    Многообразие особенностей взаимного превращения теплоты и работы, а также различные аспекты, в которых эти превращения рассматриваются, объясняют наличие нескольких, по сути эквивалентных, формулировок второго закона термодинамики.

    Основные положения этого закона были высказаны французским инженером С. Карно (1824 г.). Карно пришел к выводу, что для преобразования теплоты в работу необходимы два источника теплоты с разной температурой. Само же название “Второй закон термодинамики” и исторически первая его формулировка (1850 г.) принадлежат немецкому физику Р. Клаузиусу:

    “Теплота может переходить сама собой только от горячего тела к холодному; для обратного перехода надо затратить работу”,

    Из этого утверждения следует, что для перехода теплоты от тела с меньшей температурой к телу с большей температурой обязательно необходим подвод энергии от внешнего источника в какой-либо форме, например, в форме работы. В противоположность этому теплота от тела с большей температурой самопроизвольно, без затрат каких-либо видов энергии, переходит к телам с меньшей температурой. Это означает, в частности, что теплообмен при конечной разности температур представляет собой строго односторонний, необратимый процесс, и направлен он в сторону тел с меньшей температурой.

    Второй закон термодинамики лежит в основе теории тепловых двигателей. Тепловой двигатель представляет собой непрерывно действующее устройство, результатом действия которого является превращение теплоты в работу. Так, чтобы создать тепловой двигатель, непрерывно производящий работу, необходимо, прежде всего, иметь тело, являющееся поставщиком энергии в форме теплоты. Назовем его и с т о ч н и к о м т е п л о т ы.

    Обязательно наличие и другого тела, которое воспринимает от первого

    э
    нергию в форме теплоты, а отдает ее в форме работы. Это так называемое р а б о ч е е т е л о. Его роль выполняет какая-либо упругая среда (газ, пар). Подвод тепла и преобразование его в работу сопровождается изменением состояния рабочего тела. На рис. 1.6 покажем это изменение условно кривой процесса 1-а-2. Здесь изменяются параметры состояния и, прежде всего, объем рабочего тела, что приводит к совершению работы расширения. Для получения непрерывной работы требуется рабочее тело вернуть в первоначальное состояние по процессу 2-б-1. Таким образом

    Рис. 1.6 для непрерывного преобразования теплоты в работу надо постоянно осуществлять этот замкнутый к р у г о в о й п р о ц е с с или ц и к л.

    Круговым процессом, или циклом, называют совокупность термодинамических процессов, в результате осуществления которых рабочее тело возвращается в свое первоначальное состояние.

    Чтобы замкнуть цикл, требуется затратить некоторое количество энергии, в данном случае в форме работы сжатия. Эта работа сжатия должна быть компенсирована путем отвода от рабочего тела эквивалентного ей количества теплоты. Следовательно, необходимо третье тело, которое воспринимает эту компенсацию. Назовем его т е п л о п р и е м н и к о м. Чтобы теплоприемник воспринял некоторое количество теплоты, его температура должна быть ниже температуры теплоисточника.

    В результате выполненного таким способом цикла 1-а-2-б-1, изображенного на рис. 1.6, только часть теплоты Q 1 , полученной рабочим телом от теплоисточника, преобразовывается в работу, другая же часть этой теплоты Q 2 обязательно отдается теплоприемнику.

    Начало формы

    В рассмотренной схеме непрерывно действующего теплового двигателя одно и то же рабочее тело постоянно участвует в круговом процессе. В циклах реальных двигателей рабочее вещество периодически обновляется, т.е. заменяет равным количеством “свежего” вещества. С термодинамической точки зрения замена рабочего вещества может рассматриваться как возращение рабочего тела в исходное состояние.

    Конец формы

    Таким образом, для непрерывного преобразования теплоты в работу нужны: источник теплоты; рабочее тело и теплоприемник, имеющий более низкую температуру, чем теплоисточник. Отвод некоторой части теплоты в теплоприемник является обязательным условием функционирования тепловых двигателей. Это условие изложено в следующих формулировках второго закона термодинамики:

    “Невозможно построить периодически действующую машину, кото- рая не производит ничего другого, кроме работы и охлаждения источника теплоты” (В. Томсон).

    “ Все естественные процессы являются переходом от менее вероятных к более вероятным состояниям” (Л. Больцман).

    “Осуществление вечного двигателя второго рода невозможно”

    (В. Освальд).

    Под “вечным” двигателем второго рода подразумевается такой тепловой двигатель, который мог бы совершать непрерывную работу, имеятолько один источник теплоты. Из второго закона термодинамики следует, что какой бы по величине тепловой энергией ни обладала система, при равенстве температур тел системы эту энергию нельзя преобразовать в работу. По этой причине оказались бесплодными попытки тысяч изобретателей “вечных” двигателей к совершению работы расширения.

    Распределение энергии, полученной от теплоисточника, в тепловых двигателях схематично показано на рис. 1.7. Полезная работа, совершаемая 1 кг массы рабочего тела за цикл, равна разности работ расширения l расш и сжатия l сж, т.е.

    l ц = l расш - l сж. (1.19)

    Количественную связь между теплотой и работой для 1 кг рабочего тела в процессах расширения 1-а-2 и сжатия 2-б-1

    (см. рис. 1.6) на основании первого закона термодинамики запишем уравнениями:

    q 1 = ∆ u 1- a 2 + l расш и q 2 = ∆ u 2-б-1 + l c ж ,

    где q 1 – количество теплоты, подведенного к 1 кг рабочего тела от теплоисточника;

    q 2 – количество теплоты, отведенного от

    1 кг рабочего тела к теплоприемнику;

    ∆u 1- а -2 и ∆u 2-б-1 – изменение внутрен-

    ней энергии 1 кг рабочего тела в процессахРис. 1.7

    1-а-2 и 2-б-1, соответственно.

    Вычтем второе уравнение из первого и получим:

    q 1 q 2 = ∆ u 1-а-2-б-1 + (l расш l сж ).

    Так как рабочее тело возвращается в исходное состояние, то изменение внутренней энергии за цикл будет равно нулю, т.е. ∆u 1-а-2-б-1 = 0. В итоге с учетом выражения (1.19) получим:

    l ц = q 1 q 2 (1.20)

    Из (1.20) следует, что, во-первых, работа цикла совершается только за счет теплоты и, во-вторых, работа цикла равна теплоте, подведенной от теплоисточника, за вычетом теплоты, отведенной к теплоприемнику.

    Долю полезно используемой теплоты оценивают т е р м и ч е с к и м

    КПД цикла, который обозначают η t .

    Под термическим КПД понимают отношение теплоты, преобразо-

    ванной в полезную работу цикла, ко всей подведенной теплоте:

    η t =
    или η t = 1 - . (1.21)

    Из данных выражений следует, что чем меньше теплоы передается теплоприемнику, тем больше значение η t . Это означает, что происходит более полное преобразование теплоты в работу.

    Ввиду необходимости передавать часть энергии в форме теплоты теплоприемнику термический КПД любого цикла не может быть равен единице.

    Таким образом, второй закон термодинамики устанавливает полноту преобразования теплоты в работу.

    Кроме того, он указывает на качественное различие между теплотой и работой. Если работа может вся без остатка преобразовываться в теплоту, то теплота никогда полностью не может быть преобразована в работу.

    Уникальным научным достижением явилось выражение этого качественного различия количественной величиной – э н т р о п и е й.

    1.2.3. Энтропия. Математическое выражение второго закона

    термодинамики.

    Энтропия ” в переводе с греческого означает “поворот” или “превращение”. Сначала понятие энтропии было введено в науку формально. Р.Клаузиус (1854г.) показал, что для термодинамической системы существует некая функция S , приращение которой определяется выражением

    (1.22)

    Он назвал эту функцию энтропией. Позже, при рассмотрении большого числа задач, было выявлено физическое содержание энтропии.

    Так как энтропия не поддается простому интуитивному представлению, попытаемся уточнить ее смысл путем сравнения с аналогичными величинами, более доступными для нашего понимания. Запишем выражение работы расширения в дифференциальной форме:

    dL расш = p dV .

    Здесь давление p является величиной необходимой, но не достаточной для совершения работы. Изменение же объема приведет к работе расширения. Объем в приведенном уравнении выполняет свойство достаточного параметра. Таким образом, судить о том, что совершена работа расширения или сжатия можно лишь по изменению объема.

    Теперь запишем выражение (1.22) в виде:

    dQ = T dS .

    Здесь температура является величиной необходимой, но еще не достаточной для того, что бы говорить о том, подводится тепло к системе или отводится от неё. Так, в адиабатном процессе система не обменивается теплотой с окружающей средой, а температура изменяется существенно. Остается один параметр, который должен обладать свойством достаточности , и этот параметр – энтропия. Только по изменению энтропии можно судить о теплообмене системы с окружающей средой. Отсюда

    Энтропия есть калорический параметр состояния термодинамичес-

    кой системы, характеризующий направление протекания процесса

    теплообмена между системой и внешней средой.

    Можно сказать, что энтропия – это единственная физическая величина, изменение которой в процессе однозначно указывает на наличие энергообмена в форме теплоты.

    Выражение (1.22) устанавливает как качественную, так и количественную связь между теплотой и энтропией: если изменяется энтропия тела или системы, то в том и другом случае подводится энергия в форме теплоты; если энтропия неизменна, то процесс протекает без энергообмена в форме теплоты. Равенство (1.22) является аналитическим выражением второго закона термодинамики для элементарного равновесного процесса.

    Выражение (1.22) дает возможность установить единицу энтропии, которая равна Дж/К.

    Абсолютное значение энтропии определяется с точностью до некоторой постоянной S 0 . Численное значение постоянной S 0 на основе только первого и второго законов термодинамики не может быть определено. Однако это не накладывает ограничений на использование энтропии в расчетах. В практике, как правило, интерес представляет не абсолютная величина энтропии, а ее изменение, для которого численное значение постоянной S 0 особой роли не играет. Поэтому часто величине придают произвольное значение для условно принятого, так называемого с т а н д а р т н о г о состояния тела. Если это стандартное состояние считать исходным и приписать ему значение энтропии S 0 , то для вычисления энтропии в состоянии а будет выражение:

    Приведенное значение энтропии обозначают через s = S / m c единицей измерения Дж/(кг×К).

    Выражение (1.22), записанное через приведенные значения, будет иметь вид:

    . (1.23)

    Энтропия, являясь калорическим параметром, обладает рядом свойств.

    1. Энтропия является однозначной функцией состояния системы.

    2. Энтропия, подобно внутренней энергии, является аддитивной величиной.

    .

    3.Для обратимых и необратимых процессов в термодинамической сис

    теме изменение энтропии определяется уравнением:

    , (1.24)

    в котором знак равенства относится к обратимым процессам, знак ²больше² – к необратимым.

    Из выражений (1.24) следует, что энтропия изолированной системы может оставаться без изменения или возрастать, но не уменьшаться.

    1.2.4. Эксергия

    Введение понятия ‘энтропия’ дает возможность количественно оценить качественное различие между теплотой и работой. Для системы массой 1 кг получим уравнения, объединяющие аналитические выражения первого и второго законов термодинамики. Так, из выражений (1.23) и (1.19) следует:

    ds =
    . (1.25)

    Из равенств (1.23) и (1.18) получим:

    ds =
    . (1.26)

    Уравнения в виде (1.25) и (1.26) именуют т е р м о д и н а м и ч е с к и- м и т о ж д е с т в а м и. С их помощью в термодинамике устанавливается ряд особенностей систем, полнее раскрываются связи между физическими величинами в процессах.

    Используя уравнение (1.25), установим максимально возможное количество технической работы, которую может совершить данная термодинамическая система, находящаяся в заданном начальном состоянии, если все совершаемые системой процессы обратимы и осуществляются до конечного состояния, равновесного с окружающей средой.

    В термодинамике максимально возможную техническую работу системы называют э к с е р г и е й.

    Обозначают эксэргию системы через E x . За единицу эксэргии в СИ принят джоуль. Ее приведенное значение (e x = Е x / m ) имеет единицу измерения Дж/кг.

    В закрытой термодинамической системе при преобразовании теплоты в работу по циклу Карно можно принять e x = l ц . Тогда, при отводе тепла от источника с температурой T 1 в окружающую среду с температурой T 0 вправе записать e x = q · t = q (1 - ). Определим условия, при которых эти преобразования дадут максимально возможную работу в других циклах.

    Пусть начальное состояние системы характеризуется точкой а , рис.1.8. При взаимо-действии с окружающей средой состояние с истемы стремится к равновесному, обозначенному точкойо. Процесс а-о не что иное, как переход системы из начального в равновесное состояние. Будем иметь в виду, что температура окружающей среды, несмотря н а ее взаимодействие с системой, остается постоянной и равнойT 0 . Используя уравнение первого закона термодинамики вида (1.15) и Рис. 1.8

    и заменяя техническую работу эксэргией, получим:

    e x = q a - o +(i 0 i а ). (1.27)

    Изменение энтальпии не зависит от характера процесса. Поэтому, если известны начальное и конечное состояние системы, всегда можно определить разность энтальпий. Количество тепла является функцией процесс а-о . Для определения q a - o воспользуемся вторым законом термодинамики. Очевидно, что количество тепла, полученное окружающей средой q ср , равно количеству тепла, переданному системой среде, q а-о , т.е.

    q ср = - q a - o (1.28)

    Количество тепла q a - o пропорционально площади под кривой процесса (рис.1.8, пл.s o - o - a - s a ). Окружающая среда воспринимает теплоту в изотермическом процессе при T = T o . Начальное состояние этого процесса характеризуется точкой о , а конечное (точка о ) должно быть таким, чтобы пл. s o - o - o " - s o / , согласно (1.28), была равна пл. s o - o - a - s a .

    Так как по второму закону термодинамики

    dq ср = T o ds ср ,

    то после интегрирования этого выражения от состояния о до состояния а будет иметь:

    q cp = T 0 (s 0" -s a ) = T 0 (s a –s 0 ) + T 0 (s 0 - s a ). (1.29)

    Тогда с учетом (1.28) выражение (1.27) запишется:

    e x = (i a i o ) – T o (s a s o ) – T o (s o / - s a ). (1.30)

    Из уравнения (1.30) следует ряд важных выводов:

    1. В системе при обратимых процессах эксэргия больше, чем в той-же системе с необратимыми процессами, т.к. T 0 (s 0/ - s a ) ≥ 0.

    2. Чем больше значение начальной энтропии системы s a , тем меньшую работу может она совершить при неизменной разности энтальпий (i a i 0 ). Следовательно, энтропия характеризует энергию системы.

    – пределяет условия, необходимые для взаимного преобразования таких форм энергообмена, как теплота и работа;

    – устанавливает полноту преобразования теплоты в работу.

    1.2.5 Понятие о третьем законе термодинамики

    При изучении свойств различных веществ в условиях низких температур, близких к абсолютному нулю = 0), обнаруживается важная закономерность в поведении реальных тел: в области абсолютного нуля энтропия тела в любом равновесном состоянии не зависит от температуры, объема и других параметров, характеризующих состояние тела.

    Этот результат, являющийся обобщением ряда опытных данных и не вытекающий непосредственно из первого или второго законов термодинамики, составляет содержание тепловой теоремы Нернста .

    Из теоремы следует, что в каком бы состоянии - жидком или твердом, в виде чистого вещества или химического соединения - ни существовало вещество, его энтропия при Т→ 0 имеет одно и то же значение. Постоянство энтропии при Т→ 0 означает, что в области абсолютного нуля dq всегда равно нулю. Следовательно, нельзя достигнуть абсолютного нуля с помощью отвода теплоты от тела, поскольку при T→ 0 каждое из тел при любом процессе изменения состояния сохраняет неизменное значение энтропии, т.е. перестает отдавать теплоту окружающей среде.

    В. Нернст, используя квантовую теорию М. Планка, пришел к выводу, что lim ∆s T → 0 = 0. (1.31)

    Отсюда и формулировка третьего закона термодинамики.

    При температуре абсолютного нуля энтропия всех веществ в состоянии равновесия независимо от давления, плотности и фазы обращается в нуль.

    Аналитическим выражением третьего закона термодинамики является равенство (1.31).

    Похожие публикации