Астрономия древней греции. Математика, астрономия, медицина

4. МАТЕМАТИКА, АСТРОНОМИЯ, ГЕОГРАФИЯ И ДЕЯТЕЛЬНОСТЬ АЛЕКСАНДРИЙСКИХ УЧЕНЫХ

Уровень знаний о природе вбирал в себя результаты предшествующего развития натурфилософии в классический и эллинистический периоды. Несмотря на развитие новых областей теоретического и прикладного знания в период Империи, в отношении метода, концепций, выбора проблем астрономия, математика и география исходили из научной традиции, накопленной предшествующими поколениями. В свою очередь, интерес к математике и астрономии был обусловлен еще и тем, что знания, приобретенные в этих областях науки, способствовали практическому развитию мореплавания (за пределами бассейна Средиземного моря), а также всякого рода землемерным работам.

Греческие математики V–IV вв. до н. э. уже использовали элементы высшей математики. Евдокс положил начало аксиоматическому направлению, отличному от методов южноиталийской и ионийской математических школ. Вместе с созданием «геометрической алгебры» аксиоматический стиль способствовал дальнейшему развитию греческой математической теории. «Начала» Евклида подытожили предшествующее развитие греческой математики. 13 книг его труда включали планиметрию, теорию чисел, учение о несоизмеримых величинах и стереометрию. Геометрия Евклида, использовавшая теоремы, аксиомы, определения, постулаты, до недавнего времени удовлетворяла требованиям школьного пособия.

Величайшим механиком, математиком и астрономом был Архимед (287–212), живший в южноиталийской греческой колонии Сиракузы в Сицилии при дворе своего родственника тирана Гиерона. Математические и механические занятия Архимеда поражали его современников, а о нем самом сохранилось много исторических и легендарных свидетельств, одно из которых сообщает Витрувий, механик и архитектор времени Августа: «Когда Гиерон, достигший царской власти в Сиракузах, после удачного завершения своих предприятий, решил по обету бессмертным богам поместить в одном из храмов золотой венец, он заказал сделать его за определенную плату и отвесил нужное количество золота подрядчику. В назначенный по договору срок тот доставил царю тонко исполненную работу, в точности, видимо, соответствовавшую весу отпущенного на нее золота. После же того, как был сделан донос, что часть золота была утаена и при изготовлении венца в него было примешано такое же количество серебра, Гиерон, негодуя на нанесенное ему оскорбление и не находя способа доказать эту пропажу, обратился к Архимеду с просьбой взять на себя разрешение этого вопроса. Случилось так, что, в то время как Архимед над этим думал, он пошел в баню и, садясь в ванну, заметил, что чем глубже он погружается в нее своим телом, тем больше через край вытекает воды. И как только это указало ему способ разрешения этого вопроса, он не медля, вне себя от радости выскочил из ванны и голым бросился к себе домой, громко крича, что нашел, что искал; ибо на бегу он то и дело восклицал по-гречески: «Эврика, эврика!» (IX, praef., 9-10). Так будто бы был открыт второй закон гидродинамики, на основании которого Архимед сумел доказать недобросовестность подрядчика, проделав опыт, который показал примесь в золотом венце серебра. Архимед впервые определил отношение окружности к диаметру, а также определил, что поверхность шара с радиусом г равна 4г2л. Значение л он определял как 3 10/70 > п > 3 10/71.

Величайшим математиком, астрономом и географом был и Эратосфен Киренский (270–194 до н. э.), глава Александрийской библиотеки. До нас дошло его письмо к Птолемею III Евергету об удвоении куба. В следующем веке жил крупнейший астроном и математик, основатель тригонометрии Гиппарх Тарентский (190–120 до н. э.), который предложил сферическую систему координат, в сильнейшей степени повлиявшую на геоцентрическую теорию Клавдия Птолемея. Ко времени Римской империи в математических теориях намечается тенденция к алгебраическим и арифметическим формам, обнаруживающаяся, в частности, в отсутствии строго аксиоматической структуры в геометрии Герона Александрийского и арифметико-алгебраическом направлении Диофанта Александрийского. В 13 книгах «Арифметики» «отца алгебры», из которых до нас дошло только шесть, даны решения уравнений второй степени, кубическое и биквадратные, уравнения (знаменитые «Диофантовы уравнения»).

В III в. до н. э. Аристарх Самосский предпринял попытку определить относительные размеры Земли, Луны и Солнца, а также расстояния между ними и выдвинул гелиоцентрическую концепцию движения планет. Большое влияние на последующие поколения астрономов и географов оказали наблюдения Эратосфена и Селевка (II в. до н. э.) о зависимости океанических приливов и отливов от годового вращения Земли вокруг своей оси и от положения Луны. Селевк высказал предположение о бесконечности Вселенной. Архимед также занимался вычислениями видимого диаметра Солнца и даже построил модель, воспроизводившую движение Луны, Солнца и пяти планет, собственно, первый известный планетарий, который видел Цицерон в Риме.

Основные астрономические и метеорологические представления Ранней империи изложил римский автор времени Августа Манилий в дидактической поэме «Астрономика». Лукреций, Витрувий, Плиний Старший, Сенека также затрагивали астрономические проблемы в своих энциклопедиях. В науке периода Империи общепринятой была точка зрения о том, что универсум вращается вокруг неподвижной Земли, занимающей центральное положение во Вселенной. Земля имеет форму шара и вращается вокруг своей оси, проходящей через центр Вселенной. Традиционного взгляда о неподвижной Земле в центре Вселенной придерживался и Клавдий Птолемей, обосновывавший это положение последовательным применением тригонометрии и всей предшествующей математики. Отвергал он и гипотезу о вращении Земли вокруг оси: многочисленные, тщательно отобранные и проанализированные им эмпирические данные в его построениях гораздо проще объяснялись геоцентрическим эпициклом, чем гелиоцентрической планетной системой.

В тесной связи с астрономическими теориями того времени была астрология, очень распространившаяся ко II в. н. э. Не только частные лица прибегали к астрологическим предсказаниям, начиная с раба и кончая императором. Воздействие астрологии испытывали философия, медицина. Минералогия, ботаника и другие науки о природе. Если Новая академия «читала основы этой науки несостоятельными, то стоики весьма ее поддерживали, не делая большой разницы между понятиями «астрология» и «астрономия». Эллинистическая персональная астрология, возникшая, вероятно, в III в. До н. э. в школе Бероса на острове Кос, не была прямым заимствованием или усовершенствованной формой вавилонской астрологии. В основе эллинистических астрологических теорий лежит идея о возможности предсказания будущих событий для определенного лица при помощи вычислений положения космических тел и знаков Зодиака в момент рождения человека. Ничего сверхъестественного в такой логике не видели, если принять во внимание, что в философски осмысляемой картине мира космос - единая замкнутая система, все части которой взаимосвязаны и взаимозависимы. Сенека, например, представлял универсум структурообразным целым уже совершившихся и еще скрытых в будущем событий (NQ, II, 3, 1). Среди восьми книг Секста Эмпирика против ученых на равных основаниях фигурирует и книга против астрологов. Астрологи нередко оказывались в одном статусе с философами, когда официальными декретами неоднократно изгонялись из Рима. Тот факт, что многие римские императоры держали при себе на официальной должности астрологов, объясняется естественным для политического деятеля стремлением правильно оценивать будущую расстановку сил, так что предсказания астролога в этом случае - своеобразная футурология на уровне знаний того времени. Массовое сознание зачастую смешивало астрологов с уличными гадателями, шарлатанами и магами, что было следствием чрезвычайного распространения религиозных и мистических верований среди низового населения империи.

Теоретическую астрономию и астрологию Клавдий Птолемей объединял с математикой, дающей более достоверное объяснение природных явлений благодаря тому, что она основывается не на непосредственном опыте, а на опыте, истолкованном с помощью математических построений, и оперирует методами арифметических и логических доказательств (Ptol. Almagest, I, 1). По Птолемею, существуют два способа предсказания посредством астрономии: первый основывается на положении о взаимообусловленной связи Солнца, Луны и других планет друг с другом и всех их с Землей (Tetrab., I, prooem.). Подробное описание этого метода и его применение Птолемей излагает в 13 книгах «Математического сборника», более известного в арабском варианте как «Альмагест». Второй способ прослеживает степень и характер влияний, оказываемых взаиморасположенными в соответствии с природной закономерностью планетами на зависимые от них явления природы. Подробному рассмотрению этой темы посвящен «Тетрабиблос» («Четверокиижие») Птолемея.

Первые две книги «Альмагеста» посвящены научному (математическому) обоснованию указанной выше темы и изложению учения о небесной сфере. В III книге излагается теория движения Солнца, и здесь Птолемей фактически следует за выводами Гиппарха, сделанными тремя столетиями ранее. Геоцентрическая теория Птолемея, привлекшая внимание ученых в более позднее время, не занимала того главенствующего положения в общей системе взглядов Птолемея, которое ей стали придавать в новое время. В IV и V книгах говорится о движении Луны, а в VI - о применении изложенных теорий для предсказаний затмений. VII и VIII книги содержат подробный перечень звезд, a последние пять книг посвящены рассмотрению движения планет.

«Тетрабиблос» представляет собой систематическое изложение астрологической науки. Академики, начиная с Карнеада, критиковали основы астрологии, и Птолемей, основываясь на Посидонии, защищавшем науку дивинаций, посвящает первую и вторую главы I книги обоснованию астрологии как науки, которая столь же близка к разысканию истины, как и философия, I и II книги рассматривают «всеобщую» астрологию, предмет которой заключается в выявлении характера влияний небесных светил - Солнца, Луны и др. - на человечество, материки и природу явлений в целом. Речь идет о причинах и закономерностях таких явлений, обусловленных влиянием планет, как ежегодные чередования климатов, смена направлений ветров, скорость движения рек, величина волн, приливы и отливы морей, ритмы жизнедеятельности животных и растений и т. и. Эти явления, пишет Птолемей, хорошо знакомы всем, кто по роду занятий связан с земледелием или мореплаванием и развил таким образом природную наблюдательность, отмечая, например, по определенному расположению Луны и звезд на небе признаки надвигающегося шторма или перемену ветра. Однако только природная наблюдательность не может гарантировать безошибочности выводов; лишь овладение научными методами астрологии обеспечивает точное знание о вещах, которые от природы изменчивы и случайны. Ошибочные результаты применения методов астрологии еще не доказывают ее несовершенство как науки, а являются следствием некорректного использования астрологии.

Предмет рассмотрения III и IV книг «Тетрабиблоса» - «генетлиалогическая», т. е. учитывающая прирожденные свойства человека, астрология, назначение которой состояло в выяснении зависимости судьбы отдельного конкретного человека от взаимного расположения небесных светил в момент его рождения и после. Птолемей отмечает, в частности, что для составления гороскопа, чрезвычайно важно знать точное время рождения человека (вплоть до минуты), однако на практике, сетует он, мы вынуждены прибегать к показаниям солнечных или водяных часов, которые, к сожалению, не обладают достаточной точностью показаний (Tetrab., III, 2).

Кроме астрономии и астрологии. Птолемей занимался еще теорией музыки, оптикой, хронографией и географией. В «Альмагесте» он описал расположение известной в его время суши на поверхности земного шара, a также привел сведения о семи «климатах», или параллелях, определяемых по тени на солнечных часах при солнцестояниях и равноденствиях. Эти вопросы он перенес в «Руководство по географии», или, как его определил Томсон (из-за отсутствия описательного и исторического материала) «Руководство по изготовлению карт». Действительно, у Птолемея почти отсутствуют физико-географические данные, составляющие основу 17 книг по географии его предшественника Страбона (I в. н. э.). Главной заботой Птолемея в «Руководстве по географии» было картографирование, основанное на астрономическом определении местонахождения данного пункта. Это было очень полезным начинанием, потому что в практике этого времени большинство населенных пунктов определялось весьма приблизительно, на основании свидетельств итинерариев (путеводителей) и сообщений путешественников, очень ненадежных из-за отсутствия компаса. К описанию методов картографирования, с помощью которых он указал около 8 тыс. населенных пунктов, Птолемей приложил 27 карт, которые дошли до нас в сильно испорченных средневековых копиях.

Наряду с математикой и астрономией ко времени Птолемея эллинистическая география имела большую традицию.

Название науки о характере поверхности земного шара принадлежит Эратосфену (276–194 гг. до н. э.). Обобщать огромный фактический материал, накопленный предыдущими поколениями мореплавателей, торговцев и путешественников, сообщив этим данным теоретические обоснования из физики, астрономии и метеорологики, стала отдельная область знания - география, или землеописание. Эратосфен написал «Географические записки», о содержании которых известно в основном из произведения Страбона. Эратосфен был автором первой карты Земли с учетом ее шарообразной формы, он сделал также первую попытку точно определить протяженность обитаемого мира с севера на юг и с запада на восток, выстроив сетку параллельных и перпендикулярных линий. Эратосфену принадлежит и определение окружности Земли, очень близкое к истинному, при помощи особого вида солнечных часов, «скафис» или «скиаферон». Эту процедуру он описал в работе «Об измерении земли», до нашего времени не сохранившейся. Ссылаясь на Эратосфена, античные авторы называют для величины окружности Земли цифру 252 тыс. стадиев, т. е. около 39 690 км (действительная длина меридиана - 40 000 км). Знаменитый стоик Посидоний (ок. 135-51 до н. э.) предпринял еще одну попытку измерения земной окружности, получив цифру 180 тыс. стадиев.

В период Римской империи сведения Эратосфена, Гиппарха и Посидония обобщил Страбон (63 до н. э. - 19 н. э.), выходец из греческой колонии Амасии на южном берегу Понта, в 17 книгах своей «Географии». Страбон много путешествовал, собрал огромный материал и дал описание всей известной тогда ойкумены. Страбон учитывал и новые данные, полученные римлянами в результате завоевания малоизвестных прежде территорий Галлии, Германии и Британии. Вместе с тем он попытался систематизировать географические сведения предшественников, сопоставив их с фактами, известными в его время. Страбон писал свою «Географию», ориентируясь, как теперь говорят, «на широкий круг читателей», но в то же время и не для невежд. Он подчеркивал, что «география не менее всякой другой науки входит в круг занятий философа» (1, 1). Страбон также был автором 43-томного труда по истории, почти полностью утерянного для современных исследователей.

Из римских авторов, писавших для римского читателя по-латыни, современниками Страбона были автор географического сочинения в трех книгах «Описание местностей» Помпоний Мела; географические сведения приводят также Витрувий, Лукреций, Плиний, Сенека, автор исторической поэмы «Фарсалия» Лукан, Манилий в «Астрономике» и другие римские авторы.

В Римской империи занятия математикой, астрономией или географией не носили характера научной деятельности в современном понимании, поскольку античный «ученый» менее всего был «узким специалистом» в отдельной области знания. Науки о природе развивались в рамках познания природной закономерности методами, присущими античной науке, мировоззренческий характер которой выражался в том, что природа познавалась через философию, именно в той ее части, связанной с целой системой, которая называлась физикой, или натурфилософией. Естествоиспытатель в понимании Сенеки - тот, кто более всего разрабатывает именно эту часть философии (NQ, VI, 13, 2). Птолемей вслед за Аристотелем разделял теорию (умозрительную философскую концепцию универсума) на теологию (познание божества), физику, исследующую явления подлунного мира, и математику, включающую теоретическую астрономию (Almagest., I, 1). Научное знание было тесно связано с философией, поэтому ученый-теоретик спешил объявить о причастности любой области знания к философии, будь то математика, география, медицина или теория агрикультуры, потому что знание, оторванное от общей системы философии, не было наукой и относилось либо к ремеслу, либо к собранию сведений о природных аномалиях, как это случилось, например, с научной традицией парадоксографии ко времени Империи.

Следующая глава >

culture.wikireading.ru

МАТЕМАТИКА, АСТРОНОМИЯ, МЕДИЦИНА. История культуры древней Греции и Рима

МАТЕМАТИКА, АСТРОНОМИЯ, МЕДИЦИНА

И платоновская Академия, и Ликей оказали неоспоримое влияние на естественные науки того времени. Сам Платон считал математику одной из самых важных областей знания, и не удивительно, что из его Академии вышел Февдий из Магнесии, автор учебника математики. В Академии обучался и выдающийся астроном и географ Эвдокс с острова Книд, ранее получивший образование у поклонников чисел - пифагорейцев; к заслугам Эвдокса относятся разработка нового метода математического анализа, новое определение пропорциональности, а также признание шарообразности Земли и попытки, хотя и неудачные, вычислить длину ее окружности. Среди многих других известных тогда математиков упомянем еще одного ученика пифагорейцев Архита, которого сами древние считали создателем научной механики.

Об успехах медицины свидетельствует фрагмент сочинения крупнейшего врача IV в. до н. э. Диокла из Кариста. Здесь содержатся указания, как правильно построить свой день, чтобы сохранить здоровье, применительно к тому или иному времени года. Есть и предписания, касающиеся гигиены тела, диеты, предпочтительной организации досуга. Сочинение это заметно отличается своим рационалистическим духом от современных ему надписей, найденных в храме Асклепия в Эпидавре, где выздоровевшие люди описывают течение болезни и свое исцеление благодаря некоему чуду. Так, одна женщина рассказывает, как была беременной пять лет, после чего родила мальчика, а тот сразу же искупался в источнике и побежал вслед за матерью. И немало можно обнаружить там подобных историй, в которые современники математиков и врачей-рационалистов продолжали свято верить.

Следующая глава >

history.wikireading.ru

Древняя Греция и Древний Рим

Основная статья: Астрономия Древней Греции

В Древней Греции доэллинистического и раннего эллинистического периодов названия планет не имели отношения к божествам: Сатурн называли Файнон, ʼʼяркаяʼʼ, Юпитер - Фаэтон, Марс - Пироэйс, ʼʼпламеннаяʼʼ; Венера была известна как Фосфорос, ʼʼВестница Светаʼʼ (в период утренней видимости) и Гесперос (в период вечерней видимости), а наиболее быстро исчезающий Меркурий как Стилбон.

Но позже, по всœей видимости, греки переняли ʼʼбожественныеʼʼ названия планет у вавилонян, но переделали их под свой пантеон. Найдено достаточно соответствий между греческой и вавилонской традицией именования, чтобы предположить, что они не возникли отдельно друг от друга. Перевод не всœегда был точным. К примеру, вавилонский Нергал - бог войны, таким образом, греки связывали его с Аресом. Но в отличие от Ареса, Нергал был также богом мора, эпидемий и преисподней. Позже уже древние римляне вместе с культурой и представлениями об окружающем мире скопировали у древних греков и названия планет. Так появились привычные нам Юпитер, Сатурн, Меркурий, Венера и Марс.

Немало римлян стали последователями веры, вероятно, зародившейся в Месопотамии, но достигшей окончательной формы в эллинистическом Египте, - в то, что семь богов, в честь которых назвали планеты, взяли на себя заботу о почасовых изменениях на Земле. Порядок начинал Сатурн, Юпитер, Марс, Солнце, Венера, Меркурий, Луна (от самых дальних к самым близким). Следовательно, первый день начинался Сатурном (1-й час), второй день Солнцем (25-й час), следующий Луной (49-час), затем Марсом, Меркурием, Юпитером и Венерой. Так как каждый день именовался в честь бога, которым он начинался, данный порядок сохранился в римском календаре после отмены ʼʼРыночного циклаʼʼ - и всё ещё сохранился во многих современных языках.

Термин ʼʼпланетаʼʼ происходит от древнегреческого πλανήτης, что означало ʼʼстранникʼʼ, так называли объект изменивший своё положение относительно звёзд. Поскольку, в отличие от вавилонян, древние греки не придавали значения предсказаниям, планетами первоначально не особо интересовались. Пифагорейцы, в VI и V столетии до н. э. развили свою собственную независимую планетарную теорию, согласно которой Земля, Солнце, Луна и планеты обращаются вокруг ʼʼЦентрального Огняʼʼ который принимался за теоретический центр Вселœенной. Пифагор или Парменид первыми идентифицировали ʼʼвечернююʼʼ и ʼʼутреннюю звездуʼʼ (Венеру) как один и тот же объект.

В III веке до н. э, Аристарх Самосский предложил гелиоцентрическую систему, согласно которой Земля и другие планеты вращались вокруг Солнца. При этом, геоцентризм оставался доминирующим вплоть до Научной революции. Возможно, что антикитерский механизм был аналоговым компьютером, созданным для вычисления примерного положения Солнца, Луны, и планет на определённую дату.

К I веку до н. э, во время эллинистического периода, греки приступили к созданию своих сообственных математических схем по предсказанию положения планет. Древние вавилоняне использовали арифметику[источник не указан 259 дней], тогда как схема древних греков базировалась на геометрических решениях[источник не указан 259 дней]. Этот подход позволил далеко продвинуться в объяснении природы перемещения небесных тел, видимых невооружённым глазом с Земли. Наиболее полное отражение эти теории нашли в Альмагесте, написанным Птолемеем во II веке н. э. Доминирование птолемеевой модели было столь полным, что она затмила всœе предыдущие работы по астрономии и оставалась самым авторитетным астрономическим трудом в западном мире на протяжении 13 столетий. Комплекс законов Птолемея хорошо описывал характеристики орбит 7 планет, которые по мнению греков и римлян вращались вокруг Земли. В порядке увеличения расстояния от Земли, по мнению научного сообщества того времени, они располагались следующим образом: Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн.

referatwork.ru

Астрономия древней Греции - страница 2

Но это был лишь первый успех замечательного астронома Аристарха Самосского. Ему выпало наблюдать полное солнечное затмение, когда диск Луны закрыл диск Солнца, т. е. видимые размеры обоих тел на небе были одинаковы. Аристарх перерыл старые архивы, где нашел много дополнительных сведений о затмениях. Оказалось, что в некоторых случаях солнечные затмения были кольцевыми, т. е. вокруг диска Луны оставался небольшой светящийся ободок от Солнца (наличие полных и кольцевых затмений связано с тем, что орбита Луны вокруг Земли является эллипсом). Но коли видимые диски Солнца и Луны на небе практически одинаковы, рассуждал Аристарх, а Солнце в 19 раз дальше от Земли, чем Луна, то и диаметр его должен быть в 19 раз больше. А как соотносятся диаметры Солнца и Земли? По многим данным о лунных затмениях Аристарх установил, что лунный диаметр составляет примерно одну треть земного и, следовательно, последний должен быть в 6,5 раз меньше солнечного. При этом объем Солнца должен в 300 раз превышать объем Земли. Все эти рассуждения выделяют Аристарха Самосского как выдающегося ученого своего времени. Он пошел и дальше в своих построениях, отталкиваясь от полученных результатов. Тогда было общеприняты, что вокруг неподвижной Земли (центра мира) вращается Луна, планеты, Солнца и звезды под действием «перводвигателя» Аристотеля. Но может ли огромное Солнце вращаться вокруг маленькой Земли? Или еще более огромная Вселенная? И Аристотель сказал – нет, не может. Солнце есть центр Вселенной, вокруг него вращаются Земля и планеты, а вокруг Земли вращается только Луна. А почему на Земле день сменяется ночью? И на этот вопрос Аристарх дал правильный ответ – Земля не только обращается вокруг Солнца, но и вращается вокруг своей оси. И еще на один вопрос он ответил совершенно правильно. Приведем пример с движущимся поездом, когда близкие для пассажира внешние предметы пробегают мимо окна быстрее, чем далёкие. Земля движется вокруг Солнца, но почему звездный узор остается неизменным? Аристотель ответил: «Потому что звезды невообразимо далеки от маленькой Земли». Объем сферы неподвижных звезд во столько раз больше объема сферы с радиусом Земля – Солнце во сколько раз объем последней больше объема земного шара. Эта новая теория получила название гелиоцентрической, и суть ее состояла в том, что неподвижное Солнце помещалось в центр Вселенной и сфера звезд также считалась неподвижной. Архимед в своей книге «Псамит», отрывок из которой приведен в качестве эпиграфа к данному реферату, точно передал все, что предложил Аристарх, но сам предпочел снова «вернуть» Землю на ее старое место. Другие ученые полностью отвергли теорию Аристарха как неправдоподобную, а философ – идеалист Клеант попросту обвинил его в богохульстве. Идеи великого астронома не нашли в то время почвы для дальнейшего развития, они определили развитие науки примерно на полторы тысячи лет и возродились затем лишь в трудах польского ученого Николая Коперника. Древние греки считали, что поэзии, музыке, живописи и науке покровительствуют девять муз, которые были дочерями Мнемосины и Зевса. Так, муза Урания покровительствовала астрономии и изображалась с венцом из звезд и свитком в руках. Музой истории считалась Клио, музой танцев – Терпсихора, музой трагедий – Мельпомена и т. д. Музы были спутницами бога Аполлона, а их храм носил название музейон – дом муз. Такие храмы строились и в метрополии, и в колониях, но Александрийский музейон стал выдающейся академией наук и искусств древнего мира. Птолемей Лаг, будучи человеком настойчивым и желая оставить о себе память в истории, не только укрепил государство, но и превратил столицу в торговый центр всего Средиземноморья, а Музейон – в научный центр эпохи эллинизма. В огромном здании находились библиотека, высшее училище, астрономическая обсерватория, медицинско–анатомическая школа и еще ряд научных подразделений. Музейон был государственным учреждением, и его расходы обеспечивались соответствующей статьей бюджета. Птолемей, как в свое время Ашшурбанипал в Вавилоне, разослал писарей по всей стране для сбора культурных ценностей. Кроме того, каждый корабль, заходящий в порт Александрии, обязан был передавать в библиотеку имеющиеся на борту литературные произведения. Ученые из других стран считали для себя честью работать в научных учреждениях Музейон и оставлять здесь свои труды. На продолжении четырех веков в Александрии трудились астрономы Аристарх Самосский и Гиппарх, физик и инженер Герон, математики Евклид и Архимед, врач Герофил, астроном и географ Клавдий Птолемей и Эратосфен, который с одинаковым успехом разбирался в математике, географии, астрономии, и философии. Но последний был уже скорее исключением, поскольку важной особенностью эллинской эпохи стала «дифференциация» научной деятельности. Здесь любопытно заметить, что подобное выделение отдельных наук, а в астрономии и специализация по отдельным направлениям, произошло в Древнем Китае значительно раньше. Другой особенностью эллинской науки было то, что она снова обратилась к природе, т.е. стала сама «добывать» факты. Энциклопедисты Древней Эллады опирались на сведения, полученные еще египтянами и вавилонянами, а поэтому занимались лишь поиском причин, вызывающих те или иные явления. Науке Демокрита, Анаксагора, Платона и Аристотеля в еще большей степени был присущ умозрительный характер, хотя их теории можно рассматривать как первые серьезные попытки человечества понять устройство природы и всей Вселенной. Александрийские астрономы внимательно следили за движением Луны, планет, Солнца и звезд. Сложность планетных движений и богатство звездного мира заставляли их искать отправные положения, от которых можно было бы начинать планомерные исследования. «Phaenomena» Евклида и основные элементы небесной сферы Как уже упоминалось выше, александрийские астрономы попытались определить «отправные» точки для дальнейших систематических исследований. В этом отношении особая заслуга принадлежит математику Евклиду (III в. до н. э.), который в своей книге «Phaenomena» впервые ввел в астрономию понятия, до тех пор в ней не использовавшиеся. Так, он дал определения горизонта – большой окружности, являющейся пересечение плоскости, перпендикулярной к линии отвеса в точке наблюдений, с небесной сферой, а также небесного экватора – окружности, получающейся при пересечении с этой сферой плоскости земного экватора. Кроме того, он определил зенит – точку небесной сферы над головой наблюдателя («зенит» – арабское слово) – и точку, противоположную точке зенита, - надир. И еще про одну окружность говорил Евклид. Это небесный меридиан - большая окружность, проходящая через Полюс мира и зенит. Она образуется при пересечении с небесной сферой плоскости, проходящей через ось мира (ось вращения) и отвесную линию (т. е. плоскости, перпендикулярной плоскости земного экватора). Относительно значения меридиана Евклид говорил, что, когда Солнце пересекает меридиан, в данном месте наступает полдень и тени предметов оказываются самыми короткими. К востоку от данного места полдень на земном шаре уже прошел, а к западу еще не наступил. Как мы помним, принцип измерения тени гномона на Земле в течение многих столетий лежал в основе конструкций солнечных часов. Самая яркая “звезда” александрийского неба Ранее мы уже познакомились с результатами деятельности многих астрономов, как известных, так и тех, имена которых канули в лету. Еще за тридцать столетий до новой эры гелиопольские астрономы в Египте с поразительной точностью установили продолжительность года. Кудрявобородые жрецы – астрономы, наблюдавшие небо с вершин вавилонских зиккуратов, смогли начертить путь Солнца среди созвездий – эклиптику, а также небесные пути Луны и звезд. В далеком и загадочном Китае с высокой точностью измерили наклон эклиптики к небесному экватору. Древнегреческие философы посеяли зерна сомнения относительно божественного происхождения мира. При Аристархе, Евклиде и Эратосфене астрономия, которая до того отдавала большую часть астрологии, начала систематизировать свои исследования, встав на твердую почву истинного познания. И все же то, что сделал об области астрономии Гиппарх, значительно превосходит достижения как его предшественников, так и ученых более позднего времени. С полным основанием Гиппарха называют отцом научной астрономии. Он был чрезвычайно пунктуален в своих исследованиях, многократно проверяя выводы новыми наблюдениями и стремясь к открытию сути явлений, происходящих во Вселенной. История науки не знает, где и когда родился Гиппарх; известно лишь, что наиболее плодотворный период его жизни приходится на время между 160 и 125 гг. до н. э. Большую часть своих исследований он провел на Александрийской обсерватории, а также на его собственной обсерватории, построенной на острове Самос. Еще до Гиппархатеории небесных сфер Евдокса и Аристотеля подверглись переосмыслению, в частности, великим александрийским математиком Аполлонием Пергским (III в. до н. э.), но Земля по-прежнему оставалась в центре орбит всех небесных тел. Гиппарх продолжил начатую Апполонием разработку теории круговых орбит, но внес в нее свои существенные дополнения, основанные на многолетних наблюдениях. Ранее Калипп, ученик Евдокса, обнаружил, что времена года имеют неодинаковую продолжительность. Гиппарх проверил это утверждение и уточнил, что астрономическая весна длится 94 и Ѕ сут, лето - 94 и Ѕ сут, осень – 88 суток и, наконец, зима продолжается 90 суток. Таким образом, интервал времени между весенним и осенним равноденствиями (включающий лето) равен 187 суток, а интервал от осеннего равноденствия до весеннего (включающий зиму) равен 88 + 90 =178 суток. Следовательно, Солнце движется по эклиптике неравномерно – летом медленнее, а зимой быстрее. Возможно и другое объяснение причины различия, если предположить, что орбита не круг, а “вытянутая” замкнутая кривая (Апполоний Пергский назвал ее эллипсом). Однако принять неравномерность движения Солнца и отличие орбиты от круговой – это означало перевернуть вверх ногами все представления, устоявшиеся еще с времен Платона. Поэтому Гиппарх ввел систему эксцентрических окружностей, предположив, что Солнце обращается вокруг Земли по круговой орбите, но сама Земля не находится в ее центре. Неравномерность в таком случае лишь кажущаяся, ибо если Солнце находится ближе, то возникает впечатление более быстрого его движения, и наоборот. Однако, для Гиппарха остались загадкой прямые и попятные движения планет, т.е. происхождение петель, которые планеты описывали на небе. Изменения видимого блеска планет (особенно для Марса и Венеры) свидетельствовали, что и они движутся по эксцентрическим орбитам, то приближаясь к Земле, то удаляясь от нее и соответственно этому меняя блеск. Но в чем причина прямых и попятных движений? Гиппарх пришел к выводу, что размещение Земли в стороне от центра орбит планет недостаточно для объяснения этой загадки. Спустя три столетия последний из великих александрийцев Клавдий Птолемей отметил, что Гиппарх отказался от поисков этом направлении и ограничился лишь систематизацией собственных наблюдений и наблюдений своих предшественников. Любопытно, что во времена Гиппарха в астрономии уже существовало понятие эпицикла, введение которого приписывают Аполлонию Пергскому. Но, так или иначе, Гиппарх не стал заниматься теорией движения планет. Зато он успешно модифицировал метод Аристарха, позволяющий определить расстояние до Луны и Солнца. Пространственное расположение Солнца, Земли и Луны во время лунного затмения, когда проводились наблюдения. Гиппарх прославился также своими работами в области исследования звезд. Он, как и его предшественники, считал, что сфера неподвижных звезд реально существует, т.е. расположенные на ней объекты находятся на одинаковом расстоянии от Земли. Но почему тогда одни из них ярче других? Потому, считал Гиппарх, что их истинные размеры неодинаковы – чем больше звезда, тем она ярче. Он разделил диапазон блеска на шесть величин, от первой – для самых ярких звезд до шестой – для самых слабых, еще видимых невооруженным глазом (естественно, телескопов тогда не было). В современной шкале звездных величин различие в одну величину соответствует различию в интенсивности излучения в 2,5 раза. В 134 году до н. э. в созвездии Скорпиона засияла новая звезда (теперь установлено, что новые звезды представляют собой двойные системы, в которых происходит взрыв вещества на поверхности одного из компонентов, сопровождаемый быстрым увеличением блеска объекта, с последующим затуханием). Ранее на этом месте ничего не было, и поэтому Гиппарх пришел к выводу о необходимости создания точного звездного каталога. С необычайной тщательностью великий астроном измерил эклиптические координаты около 1000 звезд, а также оценил их величины по своей шкале. Занимаясь этой работой, он решил проверить и мнение о том, что звезды неподвижны. Точнее говоря, это должны были сделать потомки. Гиппарх составил список звезд, расположенных на одной прямой линии, в надежде, что следующие поколения астрономов проверят, останется ли эта линия прямой. Занимаясь составление каталога, Гиппарх сделал замечательное открытие. Он сравнил свои результаты с координатами ряда звезд, измеренными до него Аристилом и Тимохарисом (современники Аристарха Самосского), и обнаружил, что эклиптические долготы объектов за 150 лет увеличились примерно на 2є. При этом эклиптические широты не изменились. Стало ясно, что причина не в собственных движениях звезд, иначе изменились бы обе координаты, а в перемещении точки весеннего равноденствия, от которой отсчитывается эклиптическая долгота, причем в направлении, противоположном движению Солнца по эклиптике. Как известно, точка весеннего равноденствия – это место пересечения эклиптики с небесным экватором. Поскольку эклиптическая широта не меняется со временем, Гиппарх сделал вывод, что причина смещения этой точки состоит в движении экватора. Таким образом, мы вправе удивиться необычайной логичности и строгости в научных исследованиях Гиппарха, а также их высокой точности. Французкий ученый Деламбр, известный исследователь древней астрономии, так охарактеризовал его деятельность: ”Когда окинешь взглядом все открытия и усовершенствования Гиппарха, поразмыслишь над числом его трудов и множеством приведенных там вычислений, волей-неволей отнесешь его к самым выдающимся людям древности и, более того, назовешь самым великим среди них. Все достигнутое им относится к области науки, где требуется геометрические познания в сочетании с пониманием сущности явлений, которые поддаются наблюдениям лишь при условии тщательного изготовления инструментов…” Календарь и звезды В древней Греции, как и в странах Востока, в качестве религиозного и гражданского использовался лунно–солнечный календарь. В нем начало каждого календарного месяца должно было располагаться как можно ближе к новолунию, а средняя продолжительность календарного года – по возможности соответствовать промежутку времени между весенними равноденствиями (“тропический год”, как его сейчас называют). При этом месяцы по 30 и 29 дней чередовались. Но 12 лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнить второе требование, время от времени приходилось прибегать к интеркаляциям – добавлять в отдельные годы дополнительный, тринадцатый, месяц. Вставки делались нерегулярно правительством каждого полиса – города-государства. Для этого назначались специальные лица, которые следили за величиной отставания календарного года от солнечного. В разделенной на мелкие государства Греции календари имели местное значение – одних названий месяцев в греческом мире существовало около 400. Математик и музыковед Аристоксен (354-300 до н.э.) писал о календарном беспорядке: ”Десятый день месяца у коринфян – это пятый день у афинян и восьмой у кого-нибудь еще” Простой и точный, 19-летний цикл, использовавшийся еще в Вавилоне, предложил в 433 г. до н.э. афинский астроном Метон. Этот цикл предусматривал вставку семи дополнительных месяцев за 19 лет; его ошибка не превышала двух часов за один цикл. Земледельцы, связанные с сезонными работами, издревле пользовались еще и звездным календарем, который не зависел от сложных движений Солнца и Луны. Гесиод в поеме “Труды и дни”, указывая своему брату Персу время проведения сельскохозяйственных работ, отмечает их не по лунно-солнечному календарю, а по звездам: Лишь на востоке начнут восходить Атлантиды Плеяды, Жать поспешай, а начнут Заходить - за сев принимайся… Вот высоко средь неба уж Сириус Встал с Орионом, Уж начинает Заря розоперстая Видеть Артура, Режь, о Перс, и домой уноси Виноградные гроздья… Таким образом, хорошее знание звездного неба, которым в современном мире мало кто может похвастаться, древним грекам было необходимо и, очевидно, широко распространено. По-видимому, этой науке детей учили в семьях с раннего возраста. Лунно-солнечный календарь использовался и в Риме. Но здесь царил еще больший “календарный произвол”. Длина и начало года зависели от понтификов (от лат. Pontifices), римских жрецов, которые нередко пользовались своим правом в корыстных целях. Такое положение не могло удовлетворить огромную империю, в которую стремительно превращалось Римское государство. В 46 г. до н.э. Юлий Цезарь (100-44 до н.э.), исполнявший обязанности не только главы государства, но и верховного жреца, провел календарную реформу. Новый календарь по его поручению разработал александрийский математик и астроном Созиген, по происхождению грек. За основу он взял египетский, чисто солнечный, календарь. Отказ от учета лунных фаз позволил сделать календарь достаточно простым и точным. Этот календарь, названный юлианским, использовался в христианском мире до введения в католических странах в XVI веке уточненного григорианского календаря. Летоисчисление по юлианскому календарю началось в 45 году до н.э. На 1 января перенесли начало года (раньше первым месяцем был март). В благодарность за введение календаря сенат постановил переименовать месяц квинтилис (пятый), в котором родился Цезарь, в юлиус – наш июль. В 8 году до н.э. честь следующего императора, Октивиана Августа, месяц секстилис(шестой), был переименован в август. Когда Тиберию, третьему принцепсу (императору), сенаторы предложили назвать его именем месяц септембр (седьмой), он будто бы отказался, ответив:”А что будет делать тринадцатый принцепс?” Новый календарь оказался чисто гражданским, религиозные праздники в силу традиции по-прежнему справлялись в соответствии с фазами Луны. И в настоящее время праздник Пасхи согласовывается с лунным календарем, причем для расчета его даты используется цикл, предложенный еще Метоном.

Заключение В далеком средневековье Бернард Шартрский говорил ученикам золотые слова: ”Мы подобно карликам, усевшимся на плечах великанов; мы видим больше и дальше, чем они, не потому, что обладаем лучшим зрением, и не потому, что мы выше их, но потому, что они нас подняли и увеличили наш рост своим величием. Астрономы любых эпох всегда опирались на плечи предшествующих великанов. Античная астрономия занимает в истории науки особое место. Именно в древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные ученые прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами. В 1922 Международный Астрономический Съезд утвердил 88 международных названий созвездий, тем самым увековечил память о древнегреческих мифах, в честь которых были названы созвездия: Персей, Андромеда, Геркулес и т. д. (около 50-ти созвездий). Значение древнегреческой науки подчеркивают слова: планета, комета, галактика и само слово Астрономия.

Список использованной литературы 1. “Энциклопедия для детей”. Астрономия. (М. Аксенова, В. Цветков, А. Засов, 1997) 2. “Звездочеты древности”. (Н. Николов, В. Харалампиев, 1991) 3. “Открытие Вселенной-прошлое, настоящее, будущее”. (А. Потупа, 1991) 4. “Горизонты Ойкумены”. (Ю. Гладкий, Ал. Григорьев, В. Ягья, 1990) 5. Астрономия, 11 класс. (Е. Левитан, 1994)

www.coolreferat.com

Античная астрономия | Архимед и измерение неба | Эратосфен и измерение Земли

ИСТОРИЧЕСКИЕ СТАТЬИ Античная астрономия (часть 5): Архимед - Измерение неба, Эратосфен - Измерение Земли, Эпоха Рима

АРХИМЕД. ИЗМЕРЕНИЕ НЕБА

Архимеда из Сиракуз (около 287-212 до н. э.) обычно не причисляют к астрономам. Выдающий-ся математик, основоположник статики и гидростатики, оптик, инженер и изобретатель, он уже в античное время завоевал громкую славу. Кстати, слова учёного о том, что он сделал механическое открытие, которое позволило бы ему сдвинуть Землю, относятся не к закону рычага (ко временам Архимеда он уже был известен), а к принципу построения механических редукторов. Именно с помощью редуктора Архимед "силой одного человека" сдвинул с места вытащенный на берег корабль.

В молодости Архимед учился в Александрии у математика Конона. Вполне вероятно, что там он познакомился с немолодым уже Аристархом. Вернувшись в Сиракузы, учёный стал, как сказали бы теперь, "главным военным инженером" города. Его система обороны и военные машины, включая "жгущие зеркала" и "железные лапы" (манипуляторы, топившие десантные суда римлян), сделали город неприступным. Под старость ему пришлось участвовать в обороне Сиракуз, которые во время 2-й Пунической войны были осаждены римским полководцем Марком Марцеллом. Город держался больше года и был захвачен лишь в результате предательства. Во время разграбления Сиракуз Архимед был убит римским солдатом.

Об общих взглядах учёного на мир можно судить по его сочинению "О плавающих телах". Архимед, с одной стороны, признавал существование атомов, с другой - следовал идее тяготения Аристотеля. В одной из своих работ Архимед описал измерение углового поперечника Солнца. Для этого учёный использовал горизонтальную линейку с поставленным на неё цилиндриком. Линейка наводилась на светило при его восходе, "когда на Солнце можно смотреть". Глядя вдоль линейки, Архимед двигал по ней цилиндрик и отмечал те его положения, когда он почти закрывал солнечный диск и когда перекрывал его полностью. Так получалась "вилка", в пределах которой лежала измеряемая величина. Результат Архимеда - 27" и 32,5" - охватывал действительное значение углового диаметра Солнца - 32".

Римский историк Тит Ливии, рассказывая об осаде Сиракуз, называет Архимеда "единственным в своём роде наблюдателем неба и звёзд". Возможно, эта характеристика связана со знаменитым техническим творением учёного - механическим небесным глобусом, привезённым в Рим в качестве трофея. В отличие от обычного Архимедов глобус показывал не только вращение неба, но и движения других светил. Видимо, вдоль пояса зодиакальных созвездий в нём имелся ряд окошек, за которыми перемещались макеты светил, приводимые в движение зубчатыми передачами и воздушными турбинками.

Архимед даже написал книгу "Об устройстве небесного глобуса", которая, увы, до нас не дошла. С этой книгой связывают перечень вычисленных учёным космических расстояний между Землёй, Солнцем, планетами. Расстояния даны в стадиях (одна стадия равна 150-190 м). Числа не сходятся между собой (из суммы интервалов не получаются расстояния) и выглядят загадочно. Но недавно было обнаружено, что они приобретают смысл, если отнести некоторые из них к гелиоцентрической системе. Учёный верно определил относительное расстояние до Луны и размеры орбит Меркурия, Венеры и Марса, если считать их гелиоцентрическими.

О смешанной системе мира (геоцентрической, но с обращением Меркурия и Венеры вокруг Солнца) римский архитектор Витрувий, например, упоминает как об общеизвестной. Вероятно, Архимед был её автором. Сделанное учёным первое правильное определение расстояний до планет оказалось в античности и последним. Геоцентрическая система не давала таких возможностей.

ЭРАТОСФЕН. ИЗМЕРЕНИЕ ЗЕМЛИ

Архимед переписывался с учёными Александрии. После смерти своего учителя Конона он посылал математические сочинения Эратосфену, который в это время возглавлял Мусейон, научный центр в Александрии. Эратосфен Киренский (около 276-194 до н. э.) был разносторонним учёным - математиком, филологом, географом. К его важнейшим научным достижениям относится измерение окружности земного шара.

Живя в Египте, учёный знал, что Сиена (теперешний Асуан) лежит на Северном тропике. Такой вывод следовал из того, что в полдень дня летнего солнцестояния светило там освещает дно глубоких колодцев, т. е. стоит в зените. С помощью особого прибора, который он называл "ска-фис", учёный установил, что в то же время в Александрии Солнце отстоит от вертикали на 1/50 долю окружности. Сиена находится на том же меридиане, что и Александрия; расстояние между городами было тогда известно - около 5 тыс. египетских стадий (расстояния тогда измеряли шагами специалисты-землемеры - гарпеданапты). Зная длину дуги и угол, который она стягивает, Эратосфен умножил расстояние до Сиены на 50 и получил длину земной окружности в 252 тыс. стадий. По нашим меркам это составляет 39 690 км. Учитывая грубость измерительных приборов той эпохи и ненадёжность исходных данных, великолепное совпадение результатов Эратосфена с действительными (40 тыс. километров) можно считать большой удачей.

ЭПОХА РИМА

В 2б4 г. до н. э. римляне овладели Южной Италией с расположенными там греческими городами Тарентом, Кротоном и другими, составлявшими некогда область, которую называли Великой Грецией. Через полвека Риму подчинились греческие колонии Сицилии, включая знаменитые Сиракузы, а в 146 г. до н. э. и сама Греция превратилась в римскую провинцию Ахайю. Спустя 100 лет Юлий Цезарь присоединил к Римской империи Египет с Александрией - тогдашней столицей эллинской науки.

Овладев эллинским миром, римляне не стали подавлять его культуру, а во многом восприняли её. Знание греческого языка было обязательным для образованных римлян. Часто они учились в Греции. Здесь получили образование многие видные деятели Рима, например Тиберий Гракх, Помпеи, Цицерон, Цезарь. Со временем сложилась своеобразная греко-римская культура, в русле которой развилась блестящая латинская литература. Рим дал миру великолепных поэтов, историков, драматургов, но в его шкалу ценностей не входили математика и астрономия.

Занятия теоретической наукой в отличие от литературных не считались престижными. Их приравнивали к ремеслу и считали недостойными свободного гражданина. Многие римские политики, например Цицерон и Цезарь, были выдающимися литераторами. Плиний Старший написал обширный труд "Естественная история", в котором собрал массу естественнонаучных сведений, не затронув, однако, математической стороны астрономии.

Нельзя сказать, чтобы римляне совсем не интересовались астрономией. К примеру, полководец Цезарь Германик перевёл с греческого на латинский язык астрономическую поэму Арата "Явления".

Витрувий в трактате "Об архитектуре" уделил много внимания перечислению типов солнечных часов и в связи с этим коснулся движений светил. Одну за другой он описал две системы мира: сначала упомянул об обращении Меркурия и Венеры вокруг Солнца, потом нарисовал чисто геоцентрическую систему, где они обращаются вокруг Земли. Ещё более загадочным кажется его оброненное тут же и мало связанное с текстом упоминание о "круговой орбите Земли", которое может служить намёком на знакомство автора с гипотезой Аристарха. Очевидно, что этот знающий и начитанный человек тем не менее не желает разбираться в тонкостях астрономических теорий.

В Римской империи работали замечательные астрономы, но сами римляне этой наукой пренебрегали. Когда Юлию Цезарю понадобилось реформировать календарь, он пригласил из Александрии греческого астронома Созигена..

starbolls.narod.ru

Астрономия Древней Греции

Астрономия Древней Греции - астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада , эллинизированные монархии Востока, Рим или ранняя Византия . Охватывает период с VI века до н. з. по V век н. э. Древнегреческая астрономия является одним из важнейших этапов развития не только астрономии как таковой, но и науки вообще. В трудах древнегреческих учёных находятся истоки многих идей, лежащих в основании науки Нового времени. Между современной и древнегреческой астрономией существует отношение прямой преемственности, в то время как наука других древних цивилизаций оказала влияние на современную только при посредничестве греков.

Введение

Историография древнегреческой астрономии

За небольшими исключениями , до нас не дошли специальные труды античных астрономов, и мы можем восстанавливать их достижения в основном на основании сочинений философов, не всегда имевших адекватное представление о тонкостях научных теорий и к тому же далеко не всегда являвшихся современниками научных достижений, о которых они пишут в своих книгах. Часто при реконструкции истории античной астрономии используются труды астрономов средневековой Индии , поскольку, как полагает большинство современных исследователей, индийская средневековая астрономия в значительной мере базируется на греческой астрономии доптолемеева (и даже догиппархова) периода . Тем не менее, у современных историков пока ещё нет однозначного представления о том, как происходило развитие древнегреческой астрономии.

Традиционная версия античной астрономии делает основной упор на объяснение иррегулярности планетных движений в рамках геоцентрической системы мира . Считается, что большую роль в развитии астрономии сыграли досократики , сформулировавшие представление о природе как о самостоятельном бытии и тем самым давшие философское обоснование поискам внутренних закономерностей жизни природы. Однако ключевой фигурой при этом оказывается Платон (V-IV вв. до н. э.), который поставил перед математиками задачу выразить видимые сложные движения планет (включая попятные движения) как результат сложения нескольких простых движений, в качестве которых представлялись равномерные движения по кругу. В обосновании этой программы большую роль сыграло учение Аристотеля . Первой попыткой решить «задачу Платона» стала теория гомоцентрических сфер Евдокса , за которой последовала теория эпициклов Аполлония Пергского . При этом ученые не столько стремились объяснять небесные явления, сколько рассматривали их как повод для абстрактных геометрических задач и философских спекуляций . Соответственно, астрономы практически не занимались развитием методики наблюдений и созданием теорий, способных предсказывать те или иные небесные явления. В этом, как считают, греки сильно уступали вавилонянам , которые с давних пор изучали закономерности движения небесных тел. Согласно этой точке зрения, решительный перелом в античной астрономии произошёл только после того, как в их руки попали результаты наблюдений вавилонских астрономов (что случилось благодаря завоеваниям Александра Македонского). Только тогда греки почувствовали вкус к пристальному наблюдению звёздного неба и применению геометрии к вычислению положений светил. Первым на этот путь, как считается, вступил Гиппарх (вторая половина II в. до н. э.), построивший первые модели движения Солнца и Луны, не только удовлетворяющие требованиям философов, но и объясняющие данные наблюдений. С этой целью он разработал новый математический аппарат - тригонометрию . Кульминацией античной астрономии явилось создание птолемеевой теории движения планет (II в. н. э.).

Согласно альтернативной точке зрения, проблема построения планетной теории вообще не входила в число основных задач древнегреческих астрономов. По мнению сторонников этого подхода, в течение длительного времени греки либо вообще не знали о попятных движениях планет, либо не придавали этому особого значения . Главной задачей астрономов была разработка календаря и методов определения времени по звёздам . Основополагающая роль при этом приписывается Евдоксу , но не столько как создателю теории гомоцентрических сфер, сколько как разработчику концепции небесной сферы . По сравнению со сторонниками предыдущей точки зрения, ещё более фундаментальной оказывается роль Гиппарха и особенно Птолемея , поскольку задача построения теории видимых движений светил на основании наблюдательных данных связывается именно с этими астрономами.

Наконец, существует и третья точка зрения, являющаяся, в некотором смысле, противоположной второй. Развитие математической астрономии её сторонники связывают с пифагорейцами , которым приписывается и создание концепции небесной сферы, и постановка задачи построения теории попятных движений, и даже первая теория эпициклов . Сторонники этой точки зрения оспаривают тезис о неэмпирическом характере астрономии догиппархова периода, указывая на высокую точность астрономических наблюдений астрономов III века до н. э. и использование этих данных Гиппархом для построения своих теорий движения Солнца и Луны , широкое использование в космологии спекуляций о ненаблюдаемости параллаксов планет и звёзд ; некоторые результаты наблюдений греческих астрономов оказались доступными их вавилонским коллегам . Основы тригонометрии как математического фундамента астрономии также были заложены астрономами III века до н. э. Значительным стимулом для развития античной астрономии явилось создание в III веке до н. э. Аристархом Самосским гелиоцентрической системы мира и её последующая разработка , в том числе с точки зрения динамики движения планет . Гелиоцентризм при этом считается хорошо укоренённым в античной науке, а отказ от него связывается с вненаучными, в частности религиозными и политическими, факторами.

Научный метод древнегреческой астрономии

Главным достижением астрономии древних греков следует считать геометризацию Вселенной, что включает в себя не только систематическое использование геометрических конструкций для представления небесных явлений, но и строгое логическое доказательство утверждений по образцу евклидовой геометрии.

Доминирующей методологией в античной астрономии была идеология «спасения явлений»: необходимо найти такую комбинацию равномерных круговых движений, с помощью которых может быть смоделирована любая неравномерность видимого движения светил. «Спасение явлений» мыслилось греками как чисто математическая задача, и не предполагалось, что найденная комбинация равномерных круговых движений имеет какое-либо отношение к физической реальности. Задачей физики считался поиск ответа на вопрос «Почему?», то есть установление истинной природы небесных объектов и причин их движений исходя из рассмотрения их субстанции и действующих во Вселенной сил; применение математики при этом не считалось необходимым .

Периодизация

Историю древнегреческой астрономии можно условно разделить на четыре периода, ассоциируемых с различными этапами развития античного общества :

  • Архаический (донаучный) период (до VI века до н. э.): становление полисной структуры в Элладе;
  • Классический период (VI-IV века до н. э.): расцвет древнегреческого полиса ;
  • Эллинистический период (III-II века до н. э.): расцвет крупных монархических держав, возникших на обломках империи Александра Македонского ; с точки зрения науки особую роль играет птолемеевский Египет со столицей в Александрии ;
  • Период упадка (I век до н. э. - I век н. э.), ассоциируемый с постепенным угасанием эллинистических держав и усилением влияния Рима ;
  • Имперский период (II-V века н. э.): объединение всего Средиземноморья, включая Грецию и Египет, под властью Римской империи .

Эта периодизация является достаточно схематичной. В ряде случаев трудно установить принадлежность того или иного достижения к тому или иному периоду. Так, хотя общий характер астрономии и науки вообще в классический и эллинистический период выглядит достаточно различным, в целом развитие в VI-II веках до н. э. представляется более-менее непрерывным. С другой стороны, ряд достижений науки последнего, имперского периода (особенно в области астрономического приборостроения и, возможно, теории) являются ни чем иным, как повторением успехов, достигнутых астрономами эллинистической эпохи.

Донаучный период (до VI века до н. э.)

Представление об астрономических познаниях греков этого периода дают поэмы Гомера и Гесиода : там упоминается ряд звёзд и созвездий, приводятся практические советы по использованию небесных светил для навигации и для определения сезонов года. Космологические представления этого периода целиком заимствовались из мифов : Земля считается плоской, а небосвод - твёрдой чашей, опирающейся на Землю .

Вместе с тем, согласно мнению некоторых историков науки, членам одного из эллинских религиозно-философских союзов того времени (орфикам) были известны и некоторые специальные астрономические понятия (например, представления о некоторых небесных кругах) . С этим мнением, однако, не согласно большинство исследователей.

Классический период (с VI - по IV век до н. э.)

Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли. Вместе с тем, связь между астрономическим наблюдениями и теорией ещё недостаточно прочна, слишком велика доля спекуляций, основанных на сугубо эстетических соображениях.

Источники

До нас дошли только два специализированных астрономических труда этого периода, трактаты О вращающейся сфере и О восходе и заходе звёзд Автолика из Питаны - учебники по геометрии небесной сферы , написанные в самом конце этого периода, около 310 года до н. э. К ним примыкает также поэма Феномены Арата из Сол (написанная, впрочем, в первой половине III века до н. э.), где содержится описание древнегреческих созвездий (поэтическое переложение не дошедших до нас трудов Евдокса Книдского , IV век до н. э.) .

Вопросы астрономического характера часто затрагиваются в трудах древнегреческих философов: некоторых диалогах Платона (особенно Тимей , а также Государство , Федон , Законы , Послезаконие ), трактатах Аристотеля (особенно О Небе , а также Метеорологика , Физика , Метафизика ). Труды философов более раннего времени (досократиков) до нас дошли только в очень отрывочном виде через вторые, а то и третьи руки.

Досократики, Платон

В этот период выработались два принципиально различных философских подхода в науке вообще и астрономии в частности. Первый из них зародился в Ионии и поэтому может быть назван ионийским. Для него характерны попытки найти материальную первооснову бытия, изменением которой философы надеялись объяснить всё многообразие природы . В движении небесных тел эти философы пытались увидеть проявления тех же сил, что действуют и на Земле. Первоначально ионийское направление было представлено философами города Милета Фалесом , Анаксимандром и Анаксименом . Этот подход нашёл своих сторонников и в других частях Эллады. К числу ионийцев относится Анаксагор из Клазомен , значительную часть жизни проведший в Афинах , в значительной мере уроженец Сицилии Эмпедокл из Акраганта . Своей вершины ионийский подход достиг в трудах античных атомистов: Левкиппа (родом, возможно, также из Милета) и Демокрита из Абдер, явившихся предтечами механистической философии.

Стремление дать причинное объяснение явлений природы было сильной стороной ионийцев. В настоящем состоянии мира они увидели результат действия физических сил, а не мифических богов и чудовищ . Ионийцы полагали небесные светила объектами, в принципе, той же природы, что и земные камни, движением которых управляют те же силы, что действуют на Земле. Cуточное вращение небосвода они считали реликтом изначального вихревого движения, охватывавшего всю материю Вселенной. Философы-ионийцы были первыми, кого назвали физиками. Однако недостатком учений ионийских натурфилософов была попытка создать физику без математики. Ионийцы не увидели геометрическую основу Космоса .

Второе направление ранней греческой философии можно назвать италийским, поскольку оно получило первоначальное развитие в греческих колониях италийского полуострова. Его основоположник Пифагор основал знаменитый религиозно-философский союз, представители которого, в отличие от ионийцев, видели основу мира в математической гармонии, точнее, в гармонии чисел, стремясь при этом к единению науки и религии. Небесные светила они считали богами. Это обосновывалось следующим образом: боги - это совершенный разум, для них характерен наиболее совершенный вид движения; таковым является движение по окружности, поскольку оно вечное, не имеет ни начала, ни конца и все время переходит само в себя. Как показывают астрономические наблюдения, небесные тела движутся по окружностям, следовательно, они являются богами . Наследником пифагорейцев был великий афинский философ Платон , который полагал весь Космос созданным идеальным божеством по своему образу и подобию. Хотя пифагорейцы и Платон верили в божественность небесных светил, для них не была характерна вера в астрологию : известен крайне скептический отзыв о ней Евдокса , ученика Платона и последователя философии пифагорейцев .

Стремление поисков математических закономерностей в природе было сильной стороной италийцев. Характерная для италийцев страсть к идеальным геометрическим фигурам позволила им первыми предположить, что Земля и небесные тела имеют форму шара и открыть дорогу к приложению математических методов к познанию природы. Однако полагая небесные тела божествами, они практически полностью изгнали с небес физические силы.

Аристотель

Сильные стороны этих двух исследовательских программ, ионийской и пифагорейской, дополняли друг друга. Попыткой их синтеза может рассматриваться учение Аристотеля из Стагира . Аристотель разделил Вселенную на две радикально различные части, нижнюю и верхнюю (подлунную и надлунную области, соответственно). Подлунная (т.е. более близкая к центру Вселенной) область напоминает построения философов-ионийцев доатомистического периода: она состоит из четырех элементов - земли, воды, воздуха, огня. Это область изменчивого, непостоянного, преходящего - того, что не может быть описано на языке математики. Напротив, надлунная область - это область вечного и неизменного, в целом соответствующая пифагорейско-платоновскому идеалу совершенной гармонии. Её составляет эфир - особый вид материи, не встречающейся на Земле.

Хотя Аристотель не называл небесные светила богами, он полагал их имеющими божественную природу, поскольку для составляющего их элемента, эфира , характерно равномерное движение по окружности вокруг центра мира; это движение является вечным, поскольку на окружности нет никаких граничных точек .

Практическая астрономия

До нас дошла только фрагментарная информация о методах и результатах наблюдений астрономов классического периода. Исходя из доступных источников, можно предположить, что одним из основных объектов их внимания являлись восходы звёзд, поскольку результаты таких наблюдений можно было использовать для определения времени ночью. Трактат с данными таких наблюдений составил Евдокс Книдский (вторая половина IV века до н. э.); поэт Арат из Сол облёк трактат Евдокса в поэтическую форму.

Об астрономических инструментах греков классического периода практически ничего неизвестно. Про Анаксимандра Милетского сообщали, что для распознавания равноденствий и солнцестояний он использовал гномон - древнейший астрономический инструмент, представляющий собой вертикально расположенный стержень. Евдоксу приписывают и изобретение «паука» - основного конструктивного элемента астролябии .

Сферические солнечные часы

Для исчисления времени днём, по всей видимости, часто использовались солнечные часы . Сначала были изобретены сферические солнечные часы (скафэ), как наиболее простые. Усовершенствований конструкции солнечных часов также приписывалось Евдоксу . Вероятно, это было изобретение одной из разновидностей плоских солнечных часов.

Философы-ионийцы полагали, что движением небесных светил управляют силы, аналогичные тем, что действуют в земном масштабе. Так, Эмпедокл , Анаксагор , Демокрит полагали, что небесные тела не падают на Землю, поскольку их удерживает центробежная сила . Италийцы (пифагорейцы и Платон) считали, что светила, будучи богами, движутся сами по себе, как живые существа.

Среди философов были значительные разногласия насчёт того, что находится вне Космоса. Некоторые философы считали, что там располагается бесконечное пустое пространство; по мнению Аристотеля , вне Космоса нет ничего, даже пространства; атомисты Левкипп , Демокрит и их сторонники полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Наиболее близкими к современным были взгляды Гераклида Понтийского , согласно которому неподвижные звёзды - это и есть другие миры, располагающиеся в бесконечном пространстве.

Объяснение астрономических явлений и природы небесных тел

Классический период характеризуется широким распространением спекуляций о природе небесных тел. Анаксагор из Клазомен (V век до н. э.) первым предположил, что Луна светит отражённым светом Солнца и на этой основе впервые в истории дал правильное объяснение природы лунных фаз и солнечных и лунных затмений. Солнце Анаксагор считал гигантским камнем (величиной с Пелопоннес), раскалённым за счёт трения о воздух (за что философ чуть было не подвергся смертной казни, поскольку эта гипотеза была сочтена противоречащей государственной религии). Эмпедокл полагал Солнце не самостоятельным объектом, а отражением на небосводе Земли, освещённой небесным огнём. Пифагореец Филолай полагал, что Солнце является прозрачным сферическим телом, светящимся потому, что преломляет свет небесного огня; то, что мы видим в качестве дневного светила, это изображение, получающееся в атмосфере Земли. Некоторые философы (Парменид , Эмпедокл) полагали, что яркость дневного неба обусловлена тем, что небосвод состоит из двух полусфер, светлой и тёмной, период обращений которых вокруг Земли составляет сутки, как и период обращения Солнца. Аристотель полагал, что принимаемое нами излучение небесных тел порождается не ими самими, а нагреваемым ими воздухом (частью подлунного мира) .

Большое внимание греческих учёных привлекали кометы . Пифагорейцы считали их разновидностью планет. Такого же мнения придерживался и Гиппократ Хиосский , полагавший также, что хвост принадлежит не самой комете, а иногда приобретается в её блужданиях в пространстве. Эти мнения были отвергнуты Аристотелем , который считал кометы (как и метеоры) воспламенением воздуха в верхней части подлунного мира. Причина этих воспламенений заключается в неоднородности окружающего Землю воздуха, наличия в нём легко воспламеняющихся включений, которые вспыхивают из-за передачи тепла от вращающегося над подлунным миром эфира .

По мнению Аристотеля, ту же природу имеет и Млечный Путь ; вся разница в том, что в случае комет и метеоров свечение возникает из-за нагрева воздуха одной конкретной звездой, в то время как Млечный Путь возникает из-за нагрева воздуха всей надлунной областью . Некоторые пифагорейцы вместе с Энопидом Хиосским считали Млечный Путь выжженной траекторией, по которому некогда обращалось Солнце. Анаксагор полагал Млечный Путь кажущимся скоплением звёзд, находящимся в том месте, где на небосвод падает земная тень. Совершенно правильную точку зрения высказал Демокрит , который полагал, что Млечный Путь - это совместное свечение многих расположенных рядом звёзд.

Математическая астрономия

Главным достижением математической астрономии рассматриваемого периода является концепция небесной сферы . Вероятно, изначально это было чисто умозрительное представление, основанное на соображениях эстетики. Однако позднее было осознано, что явления восхода и захода светил, их кульминации действительно происходят таким образом, будто бы звезды были жёстко скреплены со сферическим небосводом, вращающимся вокруг наклонённой к земной поверхности оси. Таким образом естественно объяснялись основные особенности движений звёзд: каждая звезда всегда восходит в одной и той же точке горизонта, разные звезды за одно и то же время проходят по небу разные дуги, причём чем ближе звезда к полюсу мира, тем меньшую дугу она проходит за одно и то же время. Необходимым этапом работы по созданию этой теории должно было стать осознание того, что размер Земли неизмеримо мал по сравнению с размером небесной сферы, что давало возможность пренебрегать суточными параллаксами звёзд. До нас не дошли имена людей, совершивших эту важнейшую интеллектуальную революцию; скорее всего, они принадлежали к пифагорейской школе. Наиболее раннее дошедшие до нас руководство по сферической астрономии принадлежат Автолику из Питаны (около 310 г. до н. э.). Там доказано, в частности, что точки вращающейся сферы, не лежащие на её оси, при равномерном вращении описывают параллельные круги, перпендикулярные оси, причём за равное время все точки поверхности описывают подобные дуги .

Другим важнейшим достижением математической астрономии классической Греции является введение представления об эклиптике - большом круге, наклонённом по отношению к небесному экватору, по которому совершает своё движение среди звёзд Солнце. Вероятно, это представление было введено знаменитым геометром Энопидом Хиосским , который также сделал и первую попытку измерения наклона эклиптики к экватору (24°) .

Система из четырёх концентрических сфер, использовавшаяся для моделирования движения планет в теории Евдокса. Цифрами обозначены сферы, отвечавшие за суточное вращение небосвода (1), за движение вдоль эклиптики (2), за попятные движения планеты (3 и 4). T - Земля, пунктирная линия изображает эклиптику (экватор второй сферы).

В основу геометрических теорий движения небесных тел древнегреческие астрономы положили следующий принцип: движение каждой планеты, Солнца и Луны является комбинацией равномерных круговых движений. Этот принцип, предложенный Платоном или ещё пифагорейцами , исходит из представления о небесных телах как о божествах, которым может быть присущ только самый совершенный вид движения - равномерное движение по окружности . Как считается, первую теорию движения небесных тел, основанную на этом принципе, предложил Евдокс Книдский . Это была теория гомоцентрических сфер - разновидность геоцентрической системы мира, в которой небесные тела считаются жёстко прикреплёнными к комбинации скреплённых между собой жёстких сфер с общим центром. Усовершенствованием этой теории занимался Каллипп из Кизика , а Аристотель положил её в основу своей космологической системы. Теория гомоцентрических сфер была впоследствии оставлена, так как предполагает неизменность расстояний от светил до Земли (каждое из светил движется по сфере, центр которой совпадает с центром Земли). Однако к концу классического периода уже было накоплено значительное количество свидетельств, что расстояния небесных тел от Земли на самом деле меняются: значительные изменения блеска некоторых планет, непостоянство углового диаметра Луны, наличие наряду с полными и кольцеобразных солнечных затмений.

Эллинистический период (III-II века до н. э.)

Важнейшую организующую роль в науке этого периода играет Александрийская библиотека и Мусейон . Хотя в начале эллинистического периода возникли две новые философские школы, стоиков и эпикурейцев , научная астрономия уже достигла уровня, который позволил ей развиваться практически не испытывая влияния со стороны тех или иных философских доктрин (не исключено, однако, что религиозные предрассудки, увязанные с философией стоицизма, оказали негативное влияние на распространение гелиоцентрической системы: см. ниже пример Клеанфа).

Астрономия становится точной наукой. Важнейшими задачами астрономов становятся: (1) установление масштабов мира исходя из теорем геометрии и данных астрономических наблюдений, а также (2) построение обладающих предсказательной силой геометрических теорий движения небесных тел. Высокого уровня достигает методика астрономических наблюдений. Объединение античного мира Александром Македонским делает возможным обогащение астрономии Греции за счёт достижений вавилонских астрономов. Вместе с тем, углубляется разрыв между целями астрономии и физики, не столь очевидный в предыдущем периоде.

В течение большей части эллинистического периода у греков не прослеживается влияние астрологии на развитие астрономии .

Источники

До нас дошло шесть трудов астрономов этого периода:

Достижения этого периода положены в основу двух элементарных учебников астрономии, Гемина (I век до н. э.) и Клеомедa (время жизни неизвестно, скорее всего между I веком до н. э. и II веком н. э.), известных под названием Введение в явления . О работах Гиппарха рассказывает Клавдий Птолемей в своём фундаментальном труде - Альмагесте (2-я половина II века н. э.). Кроме того, различные аспекты астрономии и космологии эллинистического периода освещаются в ряде комментаторских работ более поздних периодов.

Философский фундамент астрономии

Эллинистический период отмечен возникновенем новых философских школ, две из которых (эпикурейцев и стоиков) сыграли заметную роль в развитии космологии.

С целью усовершенствования календаря учёные эллинистической эпохи производили наблюдения солнцестояний и равноденствий: длина тропического года равна промежутку времени между двумя солнцестояниями или равноденствиями, делённому на полное число лет. Они понимали, что точность вычисления тем выше, чем больше промежуток между используемыми событиями. Наблюдениями такого рода занимались, в частности, Аристарх Самосский , Архимед Сиракузский , Гиппарх Никейский и ряд других астрономов, имена которых неизвестны.

Однако обычно открытие прецессии приписывается Гиппарху , который показал перемещение точек равноденствия среди звёзд в результате сопоставления координат некоторых звёзд, измеренных Тимохарисом и им самим. По Гиппарху, угловая скорость движения точек равноденствия составляет 1° в столетие. Такое же значение следует из величин звёздного и тропического года по Аристарху , восстановленного из Ватиканских манускриптов (на самом деле, величина прецессии составляет 1° за 72 года).

Во второй половине III века до н. э. александрийские астрономы также производили наблюдения положений планет. В их числе были Тимохарис а также астрономы, чьи имена нам неизвестны (все что мы о них знаем, это то, что для датировки своих наблюдений они использовали зодиакальный календарь Дионисия). Побудительные мотивы александрийских наблюдений не вполне ясны .

С целью определения географической широты в различных городах проводились наблюдения высоты Солнца во время солнцестояний. При этом достигалась точность порядка нескольких угловых минут, максимально достижимая невооружённым глазом . Для определения долготы использовались наблюдения лунных затмений (разность долгот между двумя пунктами равна разности местного времени, когда произошло затмение).

Экваториальное кольцо.

Астрономические инструменты. Вероятно, для наблюдения положения ночных светил использовалась диоптра , а для наблюдения Солнца - полуденный круг; весьма вероятно также использование астролябии (изобретение которой иногда приписывается Гиппарху ) и армиллярной сферы . По словам Птолемея , для определения моментов равноденствий Гиппарх использовал экваториальное кольцо.

Космология

Получив поддержку со стороны стоиков , геоцентрическая система мира продолжала оставаться основной космологической системой в эллинистический период. Сочинение по сферической астрономии, написанное Евклидом в начале III веке до н. э., также основано на геоцентрической точке зрения. Однако в первой половине этого столетия Аристарх Самосский предложил альтернативную, гелиоцентрическую систему мира , согласно которой

  • Солнце и звезды неподвижны,
  • Солнце расположено в центре мира,
  • Земля обращается вокруг Солнца за год и вокруг оси за сутки.

Исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд, Аристарх сделал пионерский вывод, что расстояние от Земли до Солнца пренебрежимо мало по сравнению с расстоянием от Солнца до звёзд. Этот вывод с достаточной долей симпатии приводит Архимед в своём сочинении Исчисление песчинок (одном из основных источников нашей информации о гипотезе Аристарха), что можно считать косвенным признанием гелиоцентрической космологии сиракузским учёным . Возможно, в других своих трудах Архимед развивал иную модель устройства Вселенной, в которой Меркурий и Венера, а также Марс обращаются вокруг Солнца, которое, в свою очередь, движется вокруг Земли (при этом путь Марса вокруг Солнца охватывает Землю) .

Большинство историков науки полагает, что гелиоцентрическая гипотеза не получила сколько-нибудь значительной поддержки со стороны современников Аристарха и астрономов более позднего времени. Некоторые исследователи, однако, приводят ряд косвенных свидетельств о широкой поддержке гелиоцентризма античными астрономами . Тем не менее, известно имя только одного сторонника гелиоцентрической системы: вавилонянин Селевк , 1-я половина II века до н. э.

Есть основания полагать, что оценки расстояний до небесных тел исходя из ненаблюдаемости их суточных параллаксов делали и другие астрономы ; следует напомнить также вывод Аристарха о громадной удалённости звёзд, сделанный исходя из гелиоцентрической системы и ненаблюдаемости годичных параллаксов звёзд.

Определением расстояний до небесных светил занимались также Аполлоний Пергский и Архимед , однако об использованных ими методах ничего не известно. В одной из недавних попыток реконструкций работы Архимеда сделан вывод, что полученное им расстояние до Луны составляет около 62 радиусов Земли и довольно точно измерил относительные расстояния от Солнца до планет Меркурия, Венеры и Марса (основываясь при этом на модели, в которой эти планеты обращаются вокруг Солнца и вместе с ним - вокруг Земли) .

К этому следует добавить определение радиуса Земли Эратосфеном . С этой целью он измерил зенитное расстояние Солнца в полдень дня летнего солнцестояния в Александрии , получив результат 1/50 полного круга. Далее, Эратосфену было известно, что в городе Сиене в этот день Солнце находится точно в зените, то есть Сиен находится на тропике. Полагая эти города лежащими точно на одном меридиане и принимая расстояние между ними равными 5000 стадиев , а также считая лучи Солнца параллельными, Эратосфен получил длину земной окружности равной 250000 стадиев. Впоследствии Эратосфен увеличил эту величину до значения 252000 стадиев, более удобного для практических расчётов. Точность результата Эратосфена трудно оценить, поскольку величина использованного им стадия неизвестна. В большинстве современных работ стадий Эратосфена принимается равным 157,5 метров или 185 метров . Тогда его результат для длины земной окружности, в переводе на современные единицы измерения, окажется равным, соответственно, 39690 км (всего на 0,7 % меньше истинного значения), или 46620 км (на 17 % больше истинного значения).

Теории движения небесных тел

В рассматриваемый период были созданы новые геометрические теории движения Солнца, Луны и планет, в основу которых был положен принцип, согласно которому движение всех небесных тел является комбинацией равномерных круговых движений. Однако этот принцип выступал не в виде теории гомоцентрических сфер , как в науке предшествующего периода, а в виде теории эпициклов , согласно которому само светило совершает равномерное движение по малому кругу (эпициклу), центр которого равномерно перемещается вокруг Земли по большому кругу (деференту). Основы этой теории, как считается, заложил Аполлоний Пергский , живший в конце III - начале II века до н. э.

Ряд теорий движения Солнца и Луны построил Гиппарх . Согласно его теории Солнца, периоды движений по эпициклу и деференту одинаковы и равны одному году, их направления противоположны, в результате чего Солнце равномерно описывает в пространстве окружность (эксцентр), центр которой не совпадает с центром Земли. Это позволило объяснить неравномерность видимого движения Солнца по эклиптике. Параметры теории (отношение расстояний между центрами Земли и эксцентра, направление линии апсид) были определены из наблюдений. Аналогичная теория была создана для Луны, однако в предположении, что скорости движения Луны по деференту и эпициклу не совпадают. Эти теории позволили осуществлять предсказания затмений с точностью, недоступной более ранним астрономам.

Другие астрономы занимались созданием теорий движения планет. Трудность заключалась в том, что в движении планет имелись неравномерности двух видов:

  • неравенство относительно Солнца: у внешних планет - наличие попятных движений, когда планета наблюдается вблизи противостояния с Солнцем; у внутренних планет - попятные движения и «привязанность» этих планет к Солнцу;
  • зодиакальное неравенство: зависимость величины дуг попятных движений и расстояний между дугами от знака зодиака.

Для объяснения этих неравенств астрономы эпохи эллинизма привлекали сочетание движений по эксцентрическим кругам и эпициклам. Эти попытки были раскритикованы Гиппархом , который, однако, не предложил никакой альтернативы, ограничившись систематизацией доступных в его время данных наблюдений .

Прямоугольный треугольник Аристарха: взаимное расположение Солнца, Луны и Земли во время квадратуры

Главные успехи в развитии математического аппарата эллинистической астрономии были связаны с развитием тригонометрии . Необходимостью в развитии тригонометрии на плоскости была связана с потребностью в решении астрономических задач двух видов:

  • Определение расстояний до небесных тел (начиная по меньшей мере с Аристарха Самосского , занимавшегося проблемой определения расстояний и размеров Солнца и Луны),
  • Определение параметров системы эпициклов и/или эксцентров, представляющих движение светила в пространстве (согласно широко распространённому мнению, эта проблема впервые была сформулирована и решена Гиппархом при определении элементов орбит Солнца и Луны; возможно, аналогичными задачами занимались и астрономы более раннего времени, но результаты их трудов до нас не дошли).

В обоих случаях астрономам требовалось вычислять стороны прямоугольных треугольников при известных значениях двух его сторон и одного из улов (определённого исходя из данных астрономических наблюдений на земной поверхности). Первым дошедшим до нас сочинением, где ставилась и решалась эта математическая задача, был трактат Аристарха Самосского О величинах и расстояниях Солнца и Луны . В прямоугольном треугольнике, образованном Солнцем, Луной и Землёй во время квадратуры, требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin 3°. По оценке Аристарха , эта величина лежит в промежутке от 1/20 до 1/18. Попутно он доказал, в современных терминах, неравенство (содержащееся также в Исчислении песчинок Архимеда).

Историки не пришли к консенсусу насчет степени развития у астрономов эллинистического периода геометрии небесной сферы . Некоторые исследователи приводят доводы, что по меньшей мере во времена Гиппарха для записи результатов астрономических наблюдений использовалась эклиптическая или экваториальная система координат . Возможно, тогда были известны и некоторые теоремы сферической тригонометрии , которые могли использоваться для составления звёздных каталогов и в геодезии .

В работе Гиппарха содержится также признаки знакомства со стереографической проекцией , используемой при конструировании астролябий . Открытие стереографической проекции приписывается Аполлонию Пергскому ; во всяком случае, он доказал важную теорему, лежащую в её основе .

Период упадка (I век до н. э. - I век н. э.)

В этот период активность в области астрономической науки близка к нулю, зато вовсю цветёт пришедшая из Вавилона астрология . Как свидетельствуют многочисленные папирусы эллинистического Египта того периода, гороскопы составлялись не на основе геометрических теорий, разработанных греческими астрономами предшествующего периода, а на основе гораздо более примитивных арифметических схем вавилонских астрономов . Во II в. до н.э. возникло синтетическое учение, включавшее в себя вавилонскую астрологию, физику Аристотеля и учение стоиков о симпатической связи всего сущего, развитое Посидонием Апамейским . Его частью было представление об обусловленности земных явлений вращением небесных сфер: поскольку «подлунный» мир постоянно находится в состоянии вечного становления, в то время как «надлунный» мир находится в неизменном состоянии, второй является источником всех изменений, происходящих в первом .

Несмотря на отсутствие развития науки, существенной деградации также не происходит, свидетельством чего является дошедшие до нас добротных учебника Введение в явления Гемина (I век до н. э.) и Сферика Феодосия Вифинского (II или I век до н. э.). Последний является промежуточным по уровню между аналогичными трудами ранних авторов (Автолика и Евклида) и более поздним трактатом "Сферика" Менелая (I в. н.э.). Также до нас дошли ещё два небольших сочинения Феодосия: О жилищах , где приведено описание звёздного неба с точки зрения наблюдателей, находящихся на разных географических широтах, и О днях и ночах , где рассматривается движение Солнца вдоль эклиптики. Сохранялась и связанная с астрономией технология, на основе которой был создан механизм из Антикиферы - калькулятор астрономических явлений, созданный в I веке до н. э.

Имперский период (II-V века н. э.)

Астрономия постепенно возрождается, но с заметной примесью астрологии. В этот период создаются ряд обобщающих астрономических трудов. Однако новый расцвет стремительно сменяется застоем и затем новым кризисом, на этот раз ещё более глубоким, связанным с общим упадком культуры в период крушения Римской империи, а также с радикальным пересмотром ценностей античной цивилизации, произведённым ранним христианством.

Источники

Вопросы астрономии рассматриваются также в ряде трудов комментаторского характера, написанных в этот период (авторы: Теон Смирнский , II век н. э., Симпликий , V век н. э., Цензорин , III век н. э. , Папп Александрийский , III или IV век н. э., Теон Александрийский , IV век н. э., Прокл , V век н. э. и др.). Некоторые астрономические вопросы рассматриваются также в трудах энциклопедиста Плиния Старшего , философов Цицерона , Сенеки , Лукреция , архитектора Витрувия , географа Страбона , астрологов Манилия и Веттия Валента , механика Герона Александрийского , богослова Синезия Киренского .

Практическая астрономия

Трикветрум Клавдия Птолемея (из книги 1544 г.)

Задачей планетных наблюдений рассматриваемого периода является обеспечение численным материалом теорий движения планет, Солнца и Луны. С этой целью производили свои наблюдения Менелай Александрийский , Клавдий Птолемей и другие астрономы (по вопросу подлинности наблюдений Птолемея ведётся напряжённая дискуссия ). В случае Солнца, основные усилия астрономов по прежнему были направлены на точную фиксацию моментов равноденствий и солнцестояний. В случае Луны, наблюдались затмения (фиксировался точный момент наибольшей фазы и положение Луны среди звёзд), а также моменты квадратур. Для внутренних планет (Меркурия и Венеры), основной интерес представляли наибольшие элонгации, когда эти планеты находятся на наибольшем угловом расстоянии от Солнца. У внешних планет особый упор делался на фиксировании моментов противостояний с Солнцем и их наблюдении в промежуточные моменты времени, а также на изучении их попятных движений. Большое внимание астрономов привлекали также такие редкие явления, как соединения планет с Луной, звёздами и друг с другом.

Производились также наблюдения координат звёзд. Птолемей приводит в Альмагесте звёздный каталог, где, по его утверждению, каждую звезду он наблюдал самостоятельно. Не исключено, однако, что этот каталог почти целиком является каталогом Гиппарха с пересчитанными за счёт прецессии координатами звёзд.

Последние астрономические наблюдения в античности были произведены в конце V века Проклом и его учениками Гелиодором и Аммонием .

Математический аппарат астрономии

Продолжалось развитие тригонометрии. Менелай Александрийский (около 100 года н. э.) написал монографию Сферика в трёх книгах. В первой книге он изложил теорию сферических треугольников , аналогичную теории Евклида о плоских треугольниках, изложенную в I книге Начал . Кроме того, Менелай доказал теорему, для которой нет евклидового аналога: два сферических треугольника конгруэнтны (совместимы), если соответствующие углы равны. Другая его теорема утверждает, что сумма углов сферического треугольника всегда больше 180°. Вторая книга Сферики излагает применение сферической геометрии к астрономии. Третья книга содержит «теорему Менелая », известную также как «правило шести величин».

Самой значимой тригонометрической работой античности является птолемеев Альмагест . Книга содержит новые таблицы хорд. Для их вычислении хорд использовал (в главе X) теорему Птолемея (известную, впрочем, ещё Архимеду), которая утверждает: сумма произведений длин противоположных сторон выпуклого вписанного в круг четырёхугольника равна произведению длин его диагоналей. Из этой теоремы нетрудно вывести две формулы для синуса и косинуса суммы углов и ещё две для синуса и косинуса разности углов. Позднее Птолемей приводит аналог формулы синуса половинного угла для хорд.

Параметры движения планет по эпициклам и деферентам были определены из наблюдений (хотя до сих пор неясно, не были ли эти наблюдения сфальцифицированы). Точность птолемеевской модели составляет : для Сатурна - около 1/2°, Юпитера - около 10", Марса - более 1°, Венеры и особенно Меркурия - до нескольких градусов.

Космология и физика неба

В теории Птолемея предполагался следующий порядок следования светил с увеличением расстояния от Земли: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, неподвижные звезды. При этом среднее расстояние от Земли росло с ростом периода обращения среди звёзд; по прежнему оставалась нерешённой проблема Меркурия и Венеры, у которых этот период равен солнечному (Птолемей не приводит достаточно убедительных аргументов, почему он помещает эти проблемы «ниже» Солнца, просто ссылаясь на мнение учёных более раннего периода). Все звезды считались находящимися на одной и той же сфере - сфере неподвижных звёзд. Для объяснения прецессии он был вынужден добавить ещё одну сферу, которая находится выше сферы неподвижных звёзд.

Эпицикл и деферент согласно теории вложенных сфер.

В теории эпициклов, в том числе у Птолемея , расстояние от планет до Земли менялось. Физическую картину, которая может стоять за этой теорией, описал Теон Смирнский (конец I - начало II века н. э.) в дошедшем до нас сочинении Математические понятия, полезные для чтения Платона . Это теория вложенных сфер, основные положения которой сводится к следующему. Представим себе две сделанные из твёрдого материала концентрические сферы, между которыми помещена маленькая сфера. Среднее арифметическое радиусов больших сфер является радиусом деферента, а радиус малой сферы - радиусом эпицикла. Вращение двух больших сфер заставит маленькую сферу вращаться между ними. Если поместить на экватор малой сферы планету, то её движение будет в точности таким, как в теории эпициклов; таким образом, эпицикл является экватором малой сферы.

Этой теории, с некоторыми модификациями, придерживался и Птолемей . Она описана в его труде Планетные гипотезы . Там отмечается, в частности, что максимальное расстояние до каждой из планет равно минимальному расстоянию до планеты, следующей за ней, то есть максимальное расстояние до Луны равно минимальному расстоянию до Меркурия и т. д. Максимальное расстояние до Луны Птолемей смог оценить с помощью метода, аналогичного методу Аристарха : 64 радиуса Земли. Это дало ему масштаб всей Вселенной. В результате вышло, что звезды расположены на расстоянии около 20 тысяч радиусов Земли. Птолемей также сделал попытку оценить размеры планет. В результате случайной компенсации ряда ошибок Земля у него оказалась средним по размерам телом Вселенной, а звезды имеющими примерно тот же размер, что и Солнце.

По мнению Птолемея, совокупность эфирных сфер, принадлежащих каждой из планет - это разумное одушевленное существо, где сама планета выполняет роль мозгового центра; исходящие от него импульсы (эманации) приводят в движение сферы, которые, в свою очередь, переносят планету. Птолемей приводит следующую аналогию: мозг птицы посылает в её тело сигналы, заставляющие двигаться крылья, несущие птицу по воздуху. При этом Птолемей отвергает точку зрения зрения Аристотеля о Перводвигателе как причине движения планет: небесные сферы совершают движения по своей воле, и только самая внешняя из них приводится в движение Перводвигателем .

В позднюю античность (начиная со II века н. э.) отмечается существенный рост влияния физики Аристотеля . Был составлен ряд комментариев к произведениям Аристотеля (Созиген , II в. н. э., Александр Афродисийский , конец II - начало III века н. э., Симпликий , VI в.). Наблюдается возрождение интереса к теории гомоцентрических сфер и попытки согласовать теорию эпициклов с физикой Аристотеля . Вместе с тем, некоторые философы выражали достаточно критическое отношение к тем или иным постулатам Аристотеля, особенно к его мнению о существовании пятого элемента - эфира (Ксенарх , I в. н. э., Прокл Диадох , V в., Иоанн Филопон , VI в.). Проклу принадлежат также и ряд критических замечания в адрес теории эпициклов.

Развивались также взгляды, выходящие за рамки геоцентризма. Так, Птолемей дискутирует с некоторыми учёными (не называя их по имени), которые предполагают суточное вращение Земли. Латинский автор V в. н. э. Марциан Капелла в сочинении Брак Меркурия и филологии описывает систему, в которой Солнце обращается по окружности вокруг Земли, а Меркурий и Венера - вокруг Солнца.

Наконец, в сочинениях ряда авторов той эпохи описаны представления, которые предвосхитили идеи учёных Нового времени. Так, один из участников диалога Плутарха О лике, видимом на диске Луны утверждает, что Луна не падает на Землю из-за действия центробежной силы (подобно предметам, вложенным в пращу), «ведь каждый предмет увлекается естественным ему движением, если его не отклоняет в сторону какая иная сила». В том же диалоге отмечается, что тяготение свойственно не только Земле, но и небесным телам, включая Солнце. Мотивом могла быть аналогия между формой небесных тел и Земли: все эти объекты имеют форму шара, а раз шарообразность Земли связана с её собственной гравитацией, то логично предположить, что и шарообразность других тел во Вселенной связана с той же причиной.

Астрономия Древней Греции - астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает период с VI века до н. з. по V век н. э. Древнегреческая астрономия является одним из важнейших этапов развития не только астрономии как таковой, но и науки вообще. В трудах древнегреческих учёных находятся истоки многих идей, лежащих в основании науки Нового времени. Между современной и древнегреческой астрономией существует отношение прямой преемственности, в то время как наука других древних цивилизаций оказала влияние на современную только при посредничестве греков.

Эллины, судя по всему, ещё в гомеровские времена интересовались астрономией, их карта неба и многие названия остались в современной науке. Первоначально знания были неглубоки - например, утренняя и вечерняя Венера считались разными светилами (Фосфор и Геспер); уже шумеры знали, что это одно и то же светило. Исправление ошибки «раздвоения Венеры» приписывают Пифагору и Пармениду.

Полюс мира в это время уже ушёл от Альфы Дракона, но ещё не придвинулся к Полярной; может быть, поэтому в Одиссее ни разу не упоминается направление на север.

Пифагорейцы предложили пироцентрическую модель Вселенной, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня (Гестии). Чтобы всего получилось священное число - десять - сфер, шестой планетой объявили Противоземлю (Антихтон). Как Солнце, так и Луна, по этой теории, светили отражённым светом Гестии. Это была первая математическая система мира - у остальных древних космогонистов работало скорее воображение, чем логика.

Расстояния между сферами светил у пифагорейцев соответствовали музыкальным интервалам в гамме; при вращении их звучит «музыка сфер», неслышимая нами. Пифагорейцы считали Землю шарообразной и вращающейся, отчего и происходит смена дня и ночи. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) придерживались гелиоцентрической системы. У пифагорейцев возникло впервые и понятие эфира, но чаще всего этим словом обозначался воздух. Только Платон обособил эфир как отдельную стихию.

Платон, ученик Сократа, уже не сомневался в шарообразности Земли (даже Демокрит считал её диском). По Платону, Космос не вечен, так как всё, что ощущается, есть вещь, а вещи старятся и умирают. Более того, само Время родилось вместе с Космосом. Далеко идущие последствия имел призыв Платона к астрономам разложить неравномерные движения светил на «совершенные» движения по окружностям.

На этот призыв откликнулся Евдокс Книдский, учитель Архимеда и сам ученик египетских жрецов. В своих (не сохранившихся) сочинениях он изложил кинематическую схему движения планет с несколькими наложенными круговыми движениями, всего по 27 сферам. Правда, согласие с наблюдениями для Марса было плохим. Дело в том, что орбита Марса заметно отличается от круговой, так что траектория и скорость движения планеты по небу меняются в широких пределах. Евдокс также составил звёздный каталог.

Аристотель, автор «Физики», тоже был учеником Платона. В его сочинениях было немало рациональных мыслей; он убедительно доказал, что Земля - шар, опираясь на форму тени Земли при лунных затмениях, оценил окружность Земли в 400 000 стадиев, или около 70 000 км - завышено почти вдвое, но для того времени точность неплохая. Но встречаются и множество ошибочных утверждений: разделение земных и небесных законов мира, отрицание пустоты и атомизма, четыре стихии как первоосновы материи плюс небесный эфир, противоречивая механика: «стрелу в полёте подталкивает воздух» - даже в Средневековье это нелепое положение высмеивалось (Филопон, Буридан). Метеоры он считал атмосферными явлениями, родственными молнии.

Концепции Аристотеля часть философов канонизировала ещё при его жизни, и в дальнейшем многие противоречащие им здравые идеи встречались враждебно - например, гелиоцентризм Аристарха Самосского. Аристарх впервые пытался также измерить расстояние до Солнца и Луны и их диаметры; для Солнца он ошибся на порядок (получилось, что диаметр Солнца в 250 раз больше земного), но до Аристарха все полагали, что Солнце меньше Земли. Именно поэтому он и решил, что в центре мира находится Солнце. Более точные измерения углового диаметра Солнца выполнил Архимед, в его пересказе нам и известны взгляды Аристарха, сочинения которого утрачены.

Эратосфен в 240 г. до н. э. довольно точно измерил длину земной окружности и наклон эклиптики к экватору (т.е наклон земной оси); он также предложил систему високосов, позже названную юлианским календарём.

С III века до н. э. греческая наука усвоила достижения вавилонян, в том числе - в астрономии и математике. Но греки пошли значительно дальше. Около 230 года до н. э. Аполлоний Пергский разработал новый метод представления неравномерного периодического движения через базовую окружность - деферент - и кружащуюся вокруг деферента вторичную окружность - эпицикл; само светило движется по эпициклу. В астрономию этот метод ввёл выдающийся астроном Гиппарх, работавший на Родосе.

Гиппарх открыл отличие тропического и сидерического годов, уточнил длину года (365,25 - 1/300 дней). Методика Аполлония позволила ему построить математическую теорию движения Солнца и Луны. Гиппарх ввёл понятия эксцентриситета орбиты, апогея и перигея, уточнил длительность синодического и сидерического лунных месяцев (с точностью до секунды), средние периоды обращения планет. По таблицам Гиппарха можно было предсказывать солнечные и лунные затмения с неслыханной для того времени точностью - до 1-2 часов. Кстати, именно он ввёл географические координаты - широту и долготу. Но главным результатом Гиппарха стало открытие смещения небесных координат - «предварения равноденствий». Изучив данные наблюдений за 169 лет, он нашёл, что положение Солнца в момент равноденствия сместилось на 2°, или на 47" в год (на самом деле - на 50,3").

В 134 году до н. э. в созвездии Скорпиона появилась новая яркая звезда. Чтобы облегчить слежение за изменениями на небе, Гиппарх составил каталог для 850 звёзд, разбив их на 6 классов по яркости.

46 год до н. э.: введён юлианский календарь, разработанный александрийским астрономом Созигеном по образцу египетского гражданского. Летоисчисление Рима велось от легендарного основания Рима - с 21 апреля 753 года до н. э.

Систему Гиппарха завершил великий александрийский астроном, математик, оптик и географ Клавдий Птолемей. Он значительно усовершенствовал сферическую тригонометрию, составил таблицу синусов (через 0,5°). Но главное его достижение - «Мегале синтаксис» (Большое построение); арабы превратили это название в «Аль Маджисти», отсюда позднейшее «Альмагест». Труд содержит фундаментальное изложение геоцентрической системы мира.

Будучи принципиально неверной, система Птолемея, тем не менее, позволяла с достаточной для того времени точностью предвычислять положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение многих веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии.

Распространение христианства и развитие феодализма в Средние века привели к потере интереса к естественным наукам, и развитие астрономии в Европе затормозилось на многие столетия.

Следующий период развития астрономии связан с деятельностью учёных стран ислама - ал-Баттани, ал-Бируни, Абу-л-Хасана ибн Юниса, Насир ад-Дина ат-Туси, Улугбека и многих других.

Историю древнегреческой астрономии можно условно разделить на четыре периода, ассоциируемых с различными этапами развития античного общества:
Архаический (донаучный) период (до VI века до н. э.): становление полисной структуры в Элладе;
Классический период (VI-IV века до н. э.): расцвет древнегреческого полиса;
Эллинистический период (III-II века до н. э.): расцвет крупных монархических держав, возникших на обломках империи Александра Македонского; с точки зрения науки особую роль играет птолемеевский Египет со столицей в Александрии;
Период упадка (I век до н. э. - I век н. э.), ассоциируемый с постепенным угасанием эллинистических держав и усилением влияния Рима;
Имперский период (II-V века н. э.): объединение всего Средиземноморья, включая Грецию и Египет, под властью Римской империи.

Эта периодизация является достаточно схематичной. В ряде случаев трудно установить принадлежность того или иного достижения к тому или иному периоду. Так, хотя общий характер астрономии и науки вообще в классический и эллинистический период выглядит достаточно различным, в целом развитие в VI-II веках до н. э. представляется более-менее непрерывным. С другой стороны, ряд достижений науки последнего, имперского периода (особенно в области астрономического приборостроения и, возможно, теории) являются ни чем иным, как повторением успехов, достигнутых астрономами эллинистической эпохи.

«Отец философии» Фалес Милетский в качестве этой опоры видел естественный объект - мировой океан. Анаксимандр Милетский предположил, что Вселенная является центрально-симметричной и в ней отсутствует какое-либо выделенное направление. Поэтому у находящейся в центре Космоса Земли отсутствует основание двигаться в каком-либо направлении, то есть она свободно покоится в центре Вселенной без опоры. Ученик Анаксимандра Анаксимен не последовал за учителем, полагая, что Земля удерживается от падения сжатым воздухом. Такого же мнения придерживался и Анаксагор. Точку зрения Анаксимандра разделяли пифагорейцы, Парменид и Птолемей. Не ясна позиция Демокрита: согласно разным свидетельствам, он последовал Анаксимандру или Анаксимену.

Анаксимандр считал Землю имеющей форму низкого цилиндра с высотой в три раза меньше диаметра основания. Анаксимен, Анаксагор, Левкипп считали Землю плоской, наподобие крышки стола. Принципиально новый шаг сделал Пифагор, который предположил, что Земля имеет форму шара. В этом ему последовали не только пифагорейцы, но также Парменид, Платон, Аристотель. Так возникла каноническая форма геоцентрической системы, впоследствии активно разрабатываемая древнегреческими астрономами: шарообразная Земля находится в центре сферической Вселенной; видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси.

Что касается порядка следования светил, то Анаксимандр считал звёзды расположенными ближе всего к Земле, далее следовали Луна и Солнце. Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. В этом ему следовали все последующие учёные (за исключением Эмпедокла, поддержавшего Анаксимандра). Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что чем больше период обращения светила по небесной сфере, тем оно выше. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что у греков были разногласия на их счёт: Аристотель и Платон помещали их сразу за Солнцем, Птолемей - между Луной и Солнцем. Аристотель считал, что выше сферы неподвижных звёзд нет ничего, даже пространства, в то время как стоики считали, что наш мир погружен в бесконечное пустое пространство; атомисты вслед за Демокритом полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Это мнение поддерживали эпикурейцы, его ярко изложил Лукреций в поэме «О природе вещей».

Древнегреческие учёные по-разному, однако, обосновывали центральное положение и неподвижность Земли. Анаксимандр, как уже указывалось, в качестве причины указывал сферическую симметрию Космоса. Его не поддерживал Аристотель, выдвигая контрдовод, приписанный впоследствии Буридану: в таком случае человек, находящийся в центре комнаты, в которой у стен находится еда, должен умереть с голоду (см. Буриданов осёл). Сам Аристотель обосновывал геоцентризм следующим образом: Земля является тяжёлым телом, а естественным местом для тяжёлых тел является центр Вселенной; как показывает опыт, все тяжёлые тела падают отвесно, а поскольку они движутся к центру мира, Земля находится в центре. Кроме того, орбитальное движение Земли (которое предполагал пифагореец Филолай) Аристотель отвергал на том основании, что оно должно приводить к параллактическому смещению звёзд, которое не наблюдается.

Ряд авторов приводит и другие эмпирические доводы. Плиний Старший в своей энциклопедии «Естественная история» обосновывает центральное положение Земли равенством дня и ночи во время равноденствий и тем, что во время равноденствия восход и заход наблюдается на одной и той же линии, а восход солнца в день летнего солнцестояния находится на той же линии, что и заход в день зимнего солнцестояния. С астрономической точки зрения, все эти доводы, конечно, являются недоразумением. Немногим лучше и доводы, приводимые Клеомедом в учебнике «Лекции по астрономии», где он обосновывает центральность Земли от противного. По его мнению, если бы Земля находилась к востоку от центра Вселенной, то тени на рассвете были бы короче, чем на закате, небесные тела при восходе казались бы больше, чем при заходе, а продолжительность от рассвета до полудня была бы меньше, чем от полудня до заката. Поскольку всего этого не наблюдается, Земля не может быть смещена к востоку от центра мира. Аналогично доказывается, что Земля не может быть смещена к западу. Далее, если бы Земля располагалась севернее или южнее центра, тени на восходе Солнца простирались бы в северном или южном направлении, соответственно. Более того, на рассвете в дни равноденствий тени направлены точно в направлении захода Солнца в эти дни, а на восходе в день летнего солнцестояния тени указывают на точку захода Солнца в день зимнего солнцестояния. Это также указывает на то, что Земля не смещена к северу или югу от центра. Если бы Земля была выше центра, то можно было бы наблюдать меньше половины небосвода, в том числе менее шести знаков зодиака; как следствие, ночь всегда была бы длиннее дня. Аналогично доказывается, что Земля не может быть расположена ниже центра мира. Таким образом, она может находиться только в центре. Примерно такие же доводы в пользу центральности Земли приводит и Птолемей в Альмагесте, книга I. Разумеется, доводы Клеомеда и Птолемея доказывают только, что Вселенная гораздо больше Земли, и поэтому также являются несостоятельными.

Птолемей пытается также обосновать и неподвижность Земли (Альмагест, книга I). Во-первых, если бы Земля смещалась от центра, то наблюдались бы только что описанные эффекты, а раз их нет, Земля всегда находится в центре. Другим доводом является вертикальность траекторий падающих тел. Отсутствие осевого вращения Земли Птолемей обосновывает следующим образом: если бы Земля вращалась, то «…все предметы, не опирающиеся на Землю, должны казаться совершающими такое же движение в обратном направлении; ни облака, ни другие летающие или парящие объекты никогда не будут видимы движущимися на восток, поскольку движение Земли к востоку будет всегда отбрасывать их, так что эти объекты будут казаться движущимися на запад, в обратном направлении». Несостоятельность этого довода стала ясна только после открытия основ механики.

Схема геоцентрической системы мира (из книги Давида Ганса «Нехмад венаим», XVI век). Подписаны сферы: воздух, Луна, Меркурий, Венера, Солнце, сфера неподвижных звёзд, сфера, отвечавшая за предварение равноденствий.

Классический период (с VI - по IV век до н. э.)

Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли. Вместе с тем, связь между астрономическим наблюдениями и теорией ещё недостаточно прочна, слишком велика доля спекуляций, основанных на сугубо эстетических соображениях.

Источники

До нас дошли только два специализированных астрономических труда этого периода, трактаты О вращающейся сфере и О восходе и заходе звёзд Автолика из Питаны - учебники по геометрии небесной сферы, написанные в самом конце этого периода, около 310 года до н. э. К ним примыкает также поэма Феномены Арата из Сол (написанная, впрочем, в первой половине III века до н. э.), где содержится описание древнегреческих созвездий (поэтическое переложение не дошедших до нас трудов Евдокса Книдского, IV век до н. э.).

Вопросы астрономического характера часто затрагиваются в трудах древнегреческих философов: некоторых диалогах Платона (особенно Тимей, а также Государство, Федон, Законы, Послезаконие), трактатах Аристотеля (особенно О Небе, а также Метеорологика, Физика, Метафизика). Труды философов более раннего времени (досократиков) до нас дошли только в очень отрывочном виде через вторые, а то и третьи руки.

Философский фундамент астрономии

Досократики, Платон

В этот период выработались два принципиально различных философских подхода в науке вообще и астрономии в частности. Первый из них зародился в Ионии и поэтому может быть назван ионийским. Для него характерны попытки найти материальную первооснову бытия, изменением которой философы надеялись объяснить всё многообразие природы. В движении небесных тел эти философы пытались увидеть проявления тех же сил, что действуют и на Земле. Первоначально ионийское направление было представлено философами города Милета Фалесом, Анаксимандром и Анаксименом. Этот подход нашёл своих сторонников и в других частях Эллады. К числу ионийцев относится Анаксагор из Клазомен, значительную часть жизни проведший в Афинах, в значительной мере уроженец Сицилии Эмпедокл из Акраганта. Своей вершины ионийский подход достиг в трудах античных атомистов: Левкиппа (родом, возможно, также из Милета) и Демокрита из Абдер, явившихся предтечами механистической философии.

Стремление дать причинное объяснение явлений природы было сильной стороной ионийцев. В настоящем состоянии мира они увидели результат действия физических сил, а не мифических богов и чудовищ. Ионийцы полагали небесные светила объектами, в принципе, той же природы, что и земные камни, движением которых управляют те же силы, что действуют на Земле. Cуточное вращение небосвода они считали реликтом изначального вихревого движения, охватывавшего всю материю Вселенной. Философы-ионийцы были первыми, кого назвали физиками. Однако недостатком учений ионийских натурфилософов была попытка создать физику без математики. Ионийцы не увидели геометрическую основу Космоса.

Второе направление ранней греческой философии можно назвать италийским, поскольку оно получило первоначальное развитие в греческих колониях италийского полуострова. Его основоположник Пифагор основал знаменитый религиозно-философский союз, представители которого, в отличие от ионийцев, видели основу мира в математической гармонии, точнее, в гармонии чисел, стремясь при этом к единению науки и религии. Небесные светила они считали богами. Это обосновывалось следующим образом: боги - это совершенный разум, для них характерен наиболее совершенный вид движения; таковым является движение по окружности, поскольку оно вечное, не имеет ни начала, ни конца и все время переходит само в себя. Как показывают астрономические наблюдения, небесные тела движутся по окружностям, следовательно, они являются богами. Наследником пифагорейцев был великий афинский философ Платон, который полагал весь Космос созданным идеальным божеством по своему образу и подобию. Хотя пифагорейцы и Платон верили в божественность небесных светил, для них не была характерна вера в астрологию: известен крайне скептический отзыв о ней Евдокса, ученика Платона и последователя философии пифагорейцев

Начиная с Фалеса Милетского интенсивно наблюдались также явления, связанные с Солнцем: солнцестояния и равноденствия. Согласно дошедшим до нас свидетельствам, астроном Клеострат Тенедосский (около 500 г. до н. э.) первым в Греции установил, что созвездия Овна, Стрельца и Скорпиона являются зодиакальными, то есть через них проходит Солнце в своём движении по небесной сфере. Самым ранним свидетельством знания греками всех зодиакальных созвездий является календарь, составленный афинским астрономом Эвктемоном в середине V века до н. э. Тот же Эвктемон впервые установил неравенство времён года, связанное с неравномерностью движения Солнца по эклиптике. По его измерениям, длина астрономической весны, лета, осени и зимы составляет, соответственно, 93, 90, 90 и 92 дней (на самом деле, соответственно, 94,1 день, 92,2 дня, 88,6 дней, 90,4 дня). Гораздо более высокая точность характеризует измерения Каллиппа из Кизика, жившего столетие спустя: по его данным, весна длится 94 дня, лето 92 дня, осень 89 дней, зима 90 дней.

Древнегреческие учёные фиксировали также появления комет, покрытия планет Луной.

Об астрономических инструментах греков классического периода практически ничего неизвестно. Про Анаксимандра Милетского сообщали, что для распознавания равноденствий и солнцестояний он использовал гномон - древнейший астрономический инструмент, представляющий собой вертикально расположенный стержень. Евдоксу приписывают и изобретение «паука» - основного конструктивного элемента астролябии.

Сферические солнечные часы

Для исчисления времени днём, по всей видимости, часто использовались солнечные часы. Сначала были изобретены сферические солнечные часы (скафэ), как наиболее простые. Усовершенствований конструкции солнечных часов также приписывалось Евдоксу. Вероятно, это было изобретение одной из разновидностей плоских солнечных часов.

Календарь греков был лунно-солнечным. Среди авторов календарей (так называемых парапегм) были такие знаменитые учёные, как Демокрит, Метон, Эвктемон. Парепегмы часто выбивались на каменных стелах и колоннах, установленных в общественных местах. В Афинах был в ходу календарь, основанный на 8-летнем цикле (согласно некоторым сведениям, введённый знаменитым законодателем Солоном). Значительное усовершенствование лунно-солнечного календаря принадлежит афинскому астроному Метону, который открыл 19-летний календарный цикл:
19 лет = 235 синодических месяцев = 6940 дней.

В течение этого периода времени даты солнцестояний и равноденствий постепенно меняются и одна и та же лунная фаза каждый раз приходится на другую календарную дату, однако по окончании цикла солнцестояние и равноденствие приходятся на ту же дату, и в этот день имеет место та же фаза Луны, что и в начале цикла. Однако метонов цикл так и не был положен в основу афинского гражданского календаря (а его первооткрыватель удостоился насмешек в одной из комедий Аристофана).

Уточнение метонова цикла произвёл Каллипп, живший примерно через столетие после Метона: он объединил четыре цикла, опустив при этом 1 день. Таким образом, продолжительность каллиппова цикла составила
76 лет = 940 месяцев = 27759 дней.

Год в цикле Каллиппа равен 365,25 суток (такое же значение принято в юлианском календаре). Продолжительность месяца составляет 29,5309 суток, что всего на 22 секунды длиннее его истинного значения. На основе этих данных Каллипп составил собственный календарь.
[править]
Космология

Изображение геоцентрической системы (из книги Петра Апиана Космография, 1524 г.)

В классическую эпоху возникла геоцентрическая система мира, согласно которой в центре сферической Вселенной находится неподвижная шарообразная Земля и видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси. Её предтечей является Анаксимандр Милетский. В его системе мира содержались три революционных момента: плоская Земля расположена без какой-либо опоры, пути небесных тел являются целыми кругами, небесные тела находятся на различных расстояниях от Земли. Ещё дальше пошёл Пифагор, предположивший, что Земля имеет форму шара. Эта гипотеза поначалу вызвала большое сопротивление; так, среди её противников были знаменитые философы ионийского направления Анаксагор, Эмпедокл, Левкипп, Демокрит. Однако после её поддержки Парменидом, Платоном, Евдоксом и Аристотелем она стала основой всей математической астрономии и географии.

Если Анаксимандр считал звёзды расположенными ближе всего к Земле (далее следовали Луна и Солнце), то его ученик Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что период обращения светила по небесной сфере растёт с увеличением его расстояния от Земли. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что период их обращения по небесной сфере равен одному году, как и у Солнца. Аристотель и Платон помещали эти планеты между Солнцем и Марсом. Аристотель обосновывал это тем, что никакая из планет никогда не заслоняла собою Солнце и Луну, хотя обратное (покрытие планет Луной) наблюдалось неоднократно.

Начиная с Анаксимандра, предпринимались многочисленные попытки установить расстояния от Земли до небесных тел. Эти попытки были основаны на спекулятивных пифагорейских соображениях о гармонии мира. Они нашли отражение, в частности, у Платона.

Философы-ионийцы полагали, что движением небесных светил управляют силы, аналогичные тем, что действуют в земном масштабе. Так, Эмпедокл, Анаксагор, Демокрит полагали, что небесные тела не падают на Землю, поскольку их удерживает центробежная сила. Италийцы (пифагорейцы и Платон) считали, что светила, будучи богами, движутся сами по себе, как живые существа.

Аристотель полагал, что небесные тела переносятся в своём движении твёрдыми небесными сферами, к которым они прикреплены. В трактате О Небе он утверждал, что небесные тела совершают равномерные круговые движения просто потому, что такова природа составляющего их эфира. В трактате Метафизика он высказывет иное мнение: всё, что движется, приводится в движение чем-нибудь внешним, которое, в свою очередь, также чем-то движется, и так далее, пока мы не дойдем до двигателя, который сам по себе неподвижен. Таким образом, если небесные светила движутся посредством сфер, к которым они прикреплены, то эти сферы приводятся в движение двигателями, которые сами по себе неподвижны. За каждое небесное тело ответственно несколько «неподвижных двигателей», по числу сфер, которые его несут. Находящаяся на границе мира сфера неподвижных звезд должна иметь только один двигатель, поскольку она совершает лишь одно движение - суточное вращение вокруг оси. Поскольку эта сфера охватывает весь мир, соответствующий двигатель (Перводвигатель) и является в конечном итоге источником всех движений во Вселенной. Все неподвижные двигатели разделяют те же качества, что и Перводвигатель: они являются нематериальными бестелесными образованиями и представляют собой чистый разум (латинские средневековые учёные называли их интеллигенциями и обычно отождествляли с ангелами).

Геоцентрическая система мира стала основной космологической моделью вплоть до XVII века н. э. Однако учёные классического периода развивали и другие взгляды. Так, среди пифагорейцев было довольно широко распространено мнение (обнародованное Филолаем Кротонским в конце V века до н. э.), что в середине мира располагается некий Центральный огонь, вокруг которого, наряду с планетами, вращается и Земля, делая полный оборот за сутки; Центральный огонь невидим, поскольку между ним и Землёй движется ещё одно небесное тело - Противоземля. Несмотря на искусственность этой системы мира, она имела важнейшее значение для развития науки, поскольку впервые в истории Земля была названа одной из планет. Пифагорейцы выдвинули также мнение, что суточное вращение небосвода объясняется вращением Земли вокруг оси. Это мнение было поддержано и обосновано Гераклидом Понтийским (2-я половина IV века до н. э.). Кроме того, на основании дошедших до нас скудных сведений можно предположить, что Гераклид считал Венеру и Меркурий обращающимися вокруг Солнца, которое, в свою очередь, обращается вокруг Земли. Существует и другая реконструкция система мира Гераклида: и Солнце, и Венера, и Земля вращаются по окружностям вокруг единого центра, причём период одного оборота Земли равен году. В таком случае теория Гераклида являлась органическим развитием системы мира Филолая и непосредственным предшественником гелиоцентрической системы мира Аристарха.

Среди философов были значительные разногласия насчёт того, что находится вне Космоса. Некоторые философы считали, что там располагается бесконечное пустое пространство; по мнению Аристотеля, вне Космоса нет ничего, даже пространства; атомисты Левкипп, Демокрит и их сторонники полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Наиболее близкими к современным были взгляды Гераклида Понтийского, согласно которому неподвижные звёзды - это и есть другие миры, располагающиеся в бесконечном пространстве.

Объяснение астрономических явлений с позиций геоцентризма

Наибольшей трудностью для древнегреческой астрономии являлось неравномерность движения небесных светил (особенно попятные движения планет), поскольку в пифагорейско-платоновской традиции (которой в значительной степени следовал и Аристотель), они считались божествами, которым надлежит совершать только равномерные движения. Для преодоления этой трудности создавались модели, в которых сложные видимые движения планет объяснялись как результат сложений нескольких равномерных движений по окружностям. Конкретным воплощением этого принципа являлись поддержанная Аристотелем теория гомоцентрических сфер Евдокса-Каллиппа и теория эпициклов Аполлония Пергского, Гиппарха и Птолемея. Впрочем, последний был вынужден частично отказаться от принципа равномерных движений, введя модель экванта.

Уже одна из первых идей, оппозиционных геоцентризму (гелиоцентрическая гипотеза Аристарха Самосского) привела к реакции со стороны представителей религиозной философии: стоик Клеанф призвал привлечь Аристарха к суду за то, что он двигает с места «Очаг мира», имея в виду Землю; неизвестно, впрочем, увенчались ли старания Клеанфа успехом. В Средневековье, поскольку христианская церковь учила, что весь мир создан Богом ради человека (см. Антропоцентризм), геоцентризм также успешно адаптировался к христианству. Этому способствовало также буквальное прочтение Библии.

Имперский период (II-V века н. э.)

Астрономия постепенно возрождается, но с заметной примесью астрологии. В этот период создаются ряд обобщающих астрономических трудов. Однако новый расцвет стремительно сменяется застоем и затем новым кризисом, на этот раз ещё более глубоким, связанным с общим упадком культуры в период крушения Римской империи, а также с радикальным пересмотром ценностей античной цивилизации, произведённым ранним христианством.
[править]
Источники

До нас дошли сочинения Клавдия Птолемея (2-я половина II века н. э.):

Иллюстрация из Альмагеста (латинский перевод Георгия Трапезундского, 1451 г.)
Альмагест, затрагивающий почти все аспекты математической астрономии античности - главный источник наших знаний об античной астрономии; содержит знаменитую птолемееву теорию планетных движений;
Канопская надпись - предварительная версия параметров его планетной теории, высеченная на каменной стеле;
Подручные таблицы - таблицы планетных движений, составленные на основе изложенных в Альмагесте теорий;
Планетные гипотезы, где содержится космологическая схема Птолемея.
О планисфере, где описывается теория стереографической проекции, лежащей в основе некоего «гороскопического инструмента» (вероятно, астролябии).
О восходах неподвижных звёзд, где представлен календарь, основанный на моментах гелиактических восходов звёзд в течение года.

Некоторые астрономические сведения содержат и другие сочинения Птолемея: Оптика, География и трактат по астрологии Четверокнижие.

Возможно, в I-II вв. н.э. были написаны и другие произведения такого же характера, что и Альмагест, но они до нас не дошли.

В этот период были также написаны два трактата по сферической астрономии, известных под названием Сферика. Один из них является фундаментальным трудом, написанным выдающимся астрономом Менелаем Александрийским (I век н. э.), где изложены основы сферической тригонометрии (внутренней геометрии сферических поверхностей). Второй труд написан Феодосием (I или II век н. э.) и является промежуточным по уровню между трудами ранних авторов (Автолика и Евклида) и Менелая. Феодосию принадлежат также ещё два дошедших до нас труда: О жилищах, где приведено описание звёздного неба с точки зрения наблюдателей, находящихся на разных географических широтах, и О днях и ночах, где рассматривается движение Солнца вдоль эклиптики. Описанию вида звёздного неба посвящён небольшой трактат Астрономия Гигина (I век н. э.).

Вопросы астрономии рассматриваются также в ряде трудов комментаторского характера, написанных в этот период (авторы: Теон Смирнский, II век н. э., Симпликий, V век н. э., Цензорин, III век н. э., Папп Александрийский, III или IV век н. э., Теон Александрийский, IV век н. э., Прокл, V век н. э. и др.). Некоторые астрономические вопросы рассматриваются также в трудах энциклопедиста Плиния Старшего, философов Цицерона, Сенеки, Лукреция, архитектора Витрувия, географа Страбона, астрологов Манилия и Веттия Валента, механика Герона Александрийского, богослова Синезия Киренского.
[править]
Практическая астрономия

Трикветрум Клавдия Птолемея (из книги 1544 г.)

Задачей планетных наблюдений рассматриваемого периода является обеспечение численным материалом теорий движения планет, Солнца и Луны. С этой целью производили свои наблюдения Менелай Александрийский, Клавдий Птолемей и другие астрономы (по вопросу подлинности наблюдений Птолемея ведётся напряжённая дискуссия). В случае Солнца, основные усилия астрономов по прежнему были направлены на точную фиксацию моментов равноденствий и солнцестояний. В случае Луны, наблюдались затмения (фиксировался точный момент наибольшей фазы и положение Луны среди звёзд), а также моменты квадратур. Для внутренних планет (Меркурия и Венеры), основной интерес представляли наибольшие элонгации, когда эти планеты находятся на наибольшем угловом расстоянии от Солнца. У внешних планет особый упор делался на фиксировании моментов противостояний с Солнцем и их наблюдении в промежуточные моменты времени, а также на изучении их попятных движений. Большое внимание астрономов привлекали также такие редкие явления, как соединения планет с Луной, звёздами и друг с другом.

Производились также наблюдения координат звёзд. Птолемей приводит в Альмагесте звёздный каталог, где, по его утверждению, каждую звезду он наблюдал самостоятельно. Не исключено, однако, что этот каталог почти целиком является каталогом Гиппарха с пересчитанными за счёт прецессии координатами звёзд.

Последние астрономические наблюдения в античности были произведены в конце V века Проклом и его учениками Гелиодором и Аммонием.

Птолемей описывает несколько астрономических инструментов, бывших в употреблении в его время. Это квадрант, равноденственное кольцо, полуденный круг, армиллярная сфера, трикветрум, а также специальный прибор для измерения углового размера Луны. Герон Александрийский упоминает ещё один астрономический инструмент - диоптру.

Постепенно получает распространение астролябия, в средние века ставшая главным инструментом астрономов. Являющаяся математической основой астролябии стереографическая проекция была использована в так называемом «указателе бурной погоды», описанным Витрувием и представляющим собой механический аналог подвижной карты звёздного неба. В своей работе О планисфере Птолемей описывает стереографическую проекцию и отмечает, что она является математической основой «гороскопического инструмента», по описанию совпадающего с астролябией. В конце IV века н.э. трактат об астролябии был написан Теоном Александрийским; это сочинение до нас не дошло, но его содержание может быть восстановлено на основании более трудов более поздних авторов. По сообщению Синезия, в изготовлении астролябий принимала участие дочь Теона, легендарная Гипатия. Самые ранние дошедшие до нас трактаты об астролябии были написаны Аммонием Гермием в конце V или начале VI века и немного позднее его учеником Иоанном Филопоном.
[править]
Математический аппарат астрономии

Заметным новшеством птолемеева Альмагеста является описание уравнения времени - функции, описывающей отклонение среднего солнечного времени от истинного солнечного времени.
[править]
Теории движения небесных тел

Теория бисекции эксцентриситета. Точки на окружности показывают положения планеты через равные промежутки времени. O - центр деферента, T - Земля, E - точка экванта, A - апогей деферента, P - перигей деферента, S - планета, C - средняя планета (центр эпицикла)

Хотя теория движения Солнца, Луны и планет развивалась начиная ещё с эллинистического периода, первая дошедшая до нас теория представлена в Альмагесте Птолемея. Движение всех небесных тел представлено в виде комбинации нескольких движений по большим и малым кругам (эпициклам, деферентам, эксцентрам). Солнечная теория Птолемея полностью совпадает с теорией Гиппарха, о которой мы знаем только из Альмагеста. Значительные новшества содержатся в лунной теории Птолемея, где впервые учтён и смоделирован новый вид неравномерности в движении естественного спутника - эвекция. Недостатком этой теории является преувеличение интервала изменения расстояния от Земли до Луны - почти в два раза, что должно отражаться в изменении углового диаметра Луны, что не наблюдается в реальности.

Наиболее интересной является планетная теория Птолемея (теория бисекции эксцентриситета): каждая из планет (кроме Меркурия) равномерно движется по малому кругу (эпициклу), центр которого совершает движение по большому кругу (деференту), причём Земля смещена относительно центра деферента; самое главное, и угловая, и линейная скорость центра эпицикла меняется при движении по деференту, причём это движение выглядело бы равномерным при наблюдении из некоторой точки (экванта), так что отрезок, соединяющий Землю и эквант делится центром деферента пополам. Эта теория позволяла с большой точностью смоделировать зодиакальное неравенство в движении планет.

Был ли автором теории бисекции эксцентриситета сам Птолемей, неизвестно. По мнению Ван дер Вардена, находящему поддержку в ряде недавних исследований, её истоки следует искать в не дошедших до нас работах учёных более раннего времени.

Параметры движения планет по эпициклам и деферентам были определены из наблюдений (хотя до сих пор неясно, не были ли эти наблюдения сфальцифицированы). Точность птолемеевской модели составляет: для Сатурна - около 1/2°, Юпитера - около 10", Марса - более 1°, Венеры и особенно Меркурия - до нескольких градусов.
[править]
Космология и физика неба

В теории Птолемея предполагался следующий порядок следования светил с увеличением расстояния от Земли: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, неподвижные звезды. При этом среднее расстояние от Земли росло с ростом периода обращения среди звёзд; по прежнему оставалась нерешённой проблема Меркурия и Венеры, у которых этот период равен солнечному (Птолемей не приводит достаточно убедительных аргументов, почему он помещает эти проблемы «ниже» Солнца, просто ссылаясь на мнение учёных более раннего периода). Все звезды считались находящимися на одной и той же сфере - сфере неподвижных звёзд. Для объяснения прецессии он был вынужден добавить ещё одну сферу, которая находится выше сферы неподвижных звёзд.

Эпицикл и деферент согласно теории вложенных сфер.

В теории эпициклов, в том числе у Птолемея, расстояние от планет до Земли менялось. Физическую картину, которая может стоять за этой теорией, описал Теон Смирнский (конец I - начало II века н. э.) в дошедшем до нас сочинении Математические понятия, полезные для чтения Платона. Это теория вложенных сфер, основные положения которой сводится к следующему. Представим себе две сделанные из твёрдого материала концентрические сферы, между которыми помещена маленькая сфера. Среднее арифметическое радиусов больших сфер является радиусом деферента, а радиус малой сферы - радиусом эпицикла. Вращение двух больших сфер заставит маленькую сферу вращаться между ними. Если поместить на экватор малой сферы планету, то её движение будет в точности таким, как в теории эпициклов; таким образом, эпицикл является экватором малой сферы.

Этой теории, с некоторыми модификациями, придерживался и Птолемей. Она описана в его труде Планетные гипотезы. Там отмечается, в частности, что максимальное расстояние до каждой из планет равно минимальному расстоянию до планеты, следующей за ней, то есть максимальное расстояние до Луны равно минимальному расстоянию до Меркурия и т. д. Максимальное расстояние до Луны Птолемей смог оценить с помощью метода, аналогичного методу Аристарха: 64 радиуса Земли. Это дало ему масштаб всей Вселенной. В результате вышло, что звезды расположены на расстоянии около 20 тысяч радиусов Земли. Птолемей также сделал попытку оценить размеры планет. В результате случайной компенсации ряда ошибок Земля у него оказалась средним по размерам телом Вселенной, а звезды имеющими примерно тот же размер, что и Солнце.

По мнению Птолемея, совокупность эфирных сфер, принадлежащих каждой из планет - это разумное одушевленное существо, где сама планета выполняет роль мозгового центра; исходящие от него импульсы (эманации) приводят в движение сферы, которые, в свою очередь, переносят планету. Птолемей приводит следующую аналогию: мозг птицы посылает в её тело сигналы, заставляющие двигаться крылья, несущие птицу по воздуху. При этом Птолемей отвергает точку зрения зрения Аристотеля о Перводвигателе как причине движения планет: небесные сферы совершают движения по своей воле, и только самая внешняя из них приводится в движение Перводвигателем.

В позднюю античность (начиная со II века н. э.) отмечается существенный рост влияния физики Аристотеля. Был составлен ряд комментариев к произведениям Аристотеля (Созиген, II в. н. э., Александр Афродисийский, конец II - начало III века н. э., Симпликий, VI в.). Наблюдается возрождение интереса к теории гомоцентрических сфер и попытки согласовать теорию эпициклов с физикой Аристотеля. Вместе с тем, некоторые философы выражали достаточно критическое отношение к тем или иным постулатам Аристотеля, особенно к его мнению о существовании пятого элемента - эфира (Ксенарх, I в. н. э., Прокл Диадох, V в., Иоанн Филопон, VI в.). Проклу принадлежат также и ряд критических замечания в адрес теории эпициклов.

Развивались также взгляды, выходящие за рамки геоцентризма. Так, Птолемей дискутирует с некоторыми учёными (не называя их по имени), которые предполагают суточное вращение Земли. Латинский автор V в. н. э. Марциан Капелла в сочинении Брак Меркурия и филологии описывает систему, в которой Солнце обращается по окружности вокруг Земли, а Меркурий и Венера - вокруг Солнца.

Наконец, в сочинениях ряда авторов той эпохи описаны представления, которые предвосхитили идеи учёных Нового времени. Так, один из участников диалога Плутарха О лике, видимом на диске Луны утверждает, что Луна не падает на Землю из-за действия центробежной силы (подобно предметам, вложенным в пращу), «ведь каждый предмет увлекается естественным ему движением, если его не отклоняет в сторону какая иная сила». В том же диалоге отмечается, что тяготение свойственно не только Земле, но и небесным телам, включая Солнце. Мотивом могла быть аналогия между формой небесных тел и Земли: все эти объекты имеют форму шара, а раз шарообразность Земли связана с её собственной гравитацией, то логично предположить, что и шарообразность других тел во Вселенной связана с той же причиной.

Философ Сенека (I век н. э.) свидетельствует, что в античности были распространены взгляды, согласно которым сила тяготения действует и между небесными телами. При этом попятные движения планет являются лишь видимостью: планеты всегда движутся в одном направлении, ибо если бы они остановились, они бы просто упали друг на друга, а в действительности их удерживает от падения само их движение. Сенека отмечает также возможность суточного вращения Земли.

Плиний и Витрувий описывают теорию, в которой движением планет управляют солнечные лучи «в форме треугольников». Что это означает, очень трудно понять, но возможно, в оригинальном тексте, откуда заимствовали свои описания эти авторы, говорилось о движении планет под действием силы тяготения и инерции.

Тот же Сенека излагает одно из мнений о природе комет, согласно которому кометы движутся по очень вытянутым орбитам, будучи видимыми только тогда, когда они достигает нижайшей точки своей орбиты. Он также полагает, что кометы могут возвращаться, причём время между их возвращениями составляет 70 лет (напомним, что период обращения самой известной из комет, кометы Галлея, составляет 76 лет).

Макробий (V век н. э.) упоминает о существовании школы астрономов, предполагавших существование собственных движений звезд, незаметных ввиду огромной удаленности звезд и недостаточного промежутка времени наблюдений.

Ещё один древнеримский автор Манилий (I век н. э.) приводит мнение, что Солнце периодически притягивает кометы к себе и затем заставляет их удаляться, как и планеты Меркурий и Венера. Манилий также свидетельствует, что в начале нашей эры все ещё жива была точка зрения, что Млечный Путь является совместным свечением многих звёзд, расположенных недалеко друг от друга

В древности астрономия получила наибольшее развитие среди всех прочих наук. Одна из причин этого заключалась в том, что астрономические явления проще для понимания, чем явления, наблюдаемые на поверхности Земли. Хотя древние не знали этого, тогда, как и теперь, Земля и другие планеты двигались вокруг Солнца по орбитам, близким к круговым, примерно с постоянной скоростью, под воздействием единственной силы – гравитации, а также вращались вокруг своих осей, в общем, с постоянными скоростями. Все это справедливо и по отношению к движению Луны вокруг Земли. В результате Солнце, Луна и планеты кажутся с Земли движущимися упорядоченным и предсказуемым образом, и их движение можно изучать с достаточной точностью.

Другая причина была в том, что в древности астрономия имела практическое значение, в отличии от физики. Как использовали астрономические знания, мы увидим в главе 6.

В главе 7 мы рассмотрим то, что стало, несмотря на неточности, триумфом науки эпохи эллинизма: успешное измерение размеров Солнца, Луны и Земли, а также расстояний от Земли до Солнца и Луны. Глава 8 посвящена задачам анализа и предсказания видимого движения планет – проблеме, которая оставалась до конца не решенной астрономами и в Средних веках и решение которой в конечном итоге породило современную науку.

6. Практическая польза астрономии

Даже в доисторические времена люди, должно быть, ориентировались по небу как по компасу, часам и календарю. Трудно не заметить, что солнце встает каждое утро примерно в одной и той же стороне света; что можно определить, скоро ли наступит ночь, глядя, как высоко солнце над горизонтом, и что теплая погода наступает в то время года, когда дни длиннее.

Известно, что звезды стали использовать для подобных целей довольно рано. Около III тыс. до н. э. древние египтяне знали, что разлив Нила – важнейшее событие для сельского хозяйства – совпадает с днем гелиакического восхода звезды Сириус. Это тот день в году, когда Сириус в первый раз становится виден в лучах зари перед восходом солнца; в предшествующие дни он вообще не виден, а в последующие дни появляется на небе все раньше и раньше, задолго до рассвета. В VI в. до н. э. Гомер в своей поэме сравнивает Ахилла с Сириусом, который виднеется высоко в небе на исходе лета:

Словно звезда, что под осень с лучами огнистыми всходит

И, между звезд неисчетных горящая в сумраках ночи

(Псом Ориона ее нарицают сыны человеков),

Всех светозарнее блещет, но знаменьем грозным бывает;

Злые она огневицы наносит смертным несчастным…

Позже поэт Гесиод в поэме «Труды и дни» советовал земледельцам собирать виноград в дни гелиакического восхода Арктура; пахать следовало в дни так называемого космического захода звездного скопления Плеяды. Так называется день в году, когда это скопление в первый раз садится за горизонт в последние минуты перед восходом солнца; до этого солнце уже успевает подняться, когда Плеяды еще высоко на небе, а после этого дня они заходят раньше, чем встает солнце. После Гесиода календари, называемые «парапегма», в которых для каждого дня давались моменты восхода и захода хорошо заметных звезд, получили широкое распространение в древнегреческих городах-государствах, которые не имели другого общепринятого способа отмечать дни.

Наблюдая темными ночами звездное небо, не засвеченное огнями современных городов, жители цивилизаций древности ясно видели, что за рядом исключений, о которых мы скажем позже, звезды не меняют своего взаимного расположения. Поэтому созвездия не изменяются из ночи в ночь и из года в год. Но при этом весь свод этих «неподвижных» звезд каждую ночь поворачивается с востока на запад вокруг особой точки на небе, указывающей точно на север, которую назвали северным полюсом мира. В терминах нашего дня это та точка, куда направлена ось вращения Земли, если продлить ее из северного полюса Земли в небо.

Эти наблюдения сделали звезды с древнейших времен полезными для моряков, которые по ним определяли расположение сторон света ночью. Гомер описывает, как Одиссей по дороге домой в Итаку был пленен нимфой Калипсо на ее острове в западном Средиземноморье и оставался в плену, пока Зевс не приказал ей отпустить путешественника. Напутствуя Одиссея, Калипсо советует ему ориентироваться по звездам:

Руль обращая, он бодрствовал; сон на него не спускался

Очи, и их не сводил […] с Медведицы, в людях еще Колесницы

Имя носящей и близ Ориона свершающей вечно

Круг свой, себя никогда не купая в водах океана.

С нею богиня богинь повелела ему неусыпно

Путь соглашать свой, ее оставляя по левую руку.

Медведица – это, конечно же, созвездие Большой Медведицы, также известное древним грекам под названием Колесница. Она располагается недалеко от северного полюса мира. По этой причине на широтах Средиземноморья Большая Медведица никогда не заходит («… себя никогда не купая в водах океана», как выразился Гомер) и всегда видна ночью в более или менее северном направлении. Держа Медведицу по левому борту, Одиссей мог постоянно сохранять курс на восток, в Итаку.

Некоторые древнегреческие наблюдатели поняли, что среди созвездий есть и более удобные ориентиры. В биографии Александра Великого, созданной Луцием Флавием Аррианом, упоминается, что, хотя большинство мореходов предпочитало определять север по Большой Медведице, финикийцы, настоящие морские волки Древнего мира, с этой целью пользовались созвездием Малой Медведицы – не таким ярким, как Большая Медведица, но ближе расположенным на небе к полюсу мира. Поэт Каллимах из Кирены, чьи слова приводит Диоген Лаэртский, заявлял, что способ искать полюс мира по Малой Медведице придумал еще Фалес.

Солнце тоже совершает днем видимый путь по небу с востока на запад, двигаясь вокруг северного полюса мира. Конечно, днем звезды обычно не видны, но, по всей видимости, Гераклити, возможно, его предшественники поняли, что их свет теряется в сиянии солнца. Некоторые звезды можно видеть незадолго до рассвета или вскоре после заката солнца, когда его положение на небесной сфере очевидно. Положение этих звезд в течение года меняется, и отсюда ясно, что Солнце не находится в одной и той же точке по отношению к звездам. Точнее, как было хорошо известно еще в древнем Вавилоне и Индии, вдобавок к видимому ежедневному вращению с востока на запад вместе со всеми звездами, Солнце также совершает оборот за год в обратную сторону, с запада на восток, вдоль пути, известного как зодиак, на котором расположены традиционные зодиакальные созвездия: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыбы. Как мы увидим, Луна и планеты тоже перемещаются по этим созвездиям, хотя и не по одинаковым путям. Тот путь, который проделывает через них именно Солнце, называется эклиптикой .

Поняв, что такое зодиакальные созвездия, легко определить, где сейчас находится Солнце среди звезд. Надо лишь посмотреть, какое из созвездий зодиака видно выше всех на небе в полночь; Солнце будет находиться в том созвездии, которое напротив данного. Утверждают, что Фалес рассчитал, что один полный оборот Солнца по зодиаку занимает 365 дней.

Наблюдающий с Земли может полагать, что звезды расположены на твердой сфере, окружающей Землю, полюс мира которой расположен над северным полюсом Земли. Но зодиак не совпадает с экватором этой сферы. Анаксимандру приписывается открытие того, что зодиак располагается под углом 23,5° по отношению к небесному экватору, причем созвездия Рак и Близнецы находятся ближе всего к северному полюсу мира, а Козерог и Стрелец – дальше всего от него. Сейчас мы знаем, что этот наклон, обуславливающий смену времен года, существует потому, что ось вращения Земли не перпендикулярна плоскости орбиты Земли вокруг Солнца, которая, в свою очередь, довольно точно совпадает с той плоскостью, в которой движутся почти все тела Солнечной системы. Отклонение земной оси от перпендикуляра составляет угол в 23,5°. Когда в Северном полушарии лето, солнце находится в той стороне, куда наклонен северный полюс Земли, а когда зима – в противоположной.

Астрономия как точная наука началась с применения устройства, известного как гномон, с помощью которого стало возможным измерять видимое движение солнца по небу. Епископ Евсевий Кесарийский в IV в. писал, что гномон изобрел Анаксимандр, но Геродот приписывал заслугу его создания вавилонянам. Это всего лишь стержень, вертикально установленный на освещаемой солнцем плоской площадке. С помощью гномона можно точно сказать, когда наступает полдень, – в этот момент солнце стоит на небе выше всего, поэтому гномон отбрасывает самую короткую тень. В любом месте земли к северу от тропиков в полдень солнце расположено точно на юге, и значит, тень от гномона указывает в этот момент точно на север. Зная это, легко разметить площадку по тени гномона, нанеся на нее направления на все стороны света, и она станет служить компасом. Также гномон может работать как календарь. Весной и летом солнце восходит немного севернее точки востока на горизонте, а осенью и зимой – южнее нее. Когда тень гномона на рассвете показывает точно на запад, солнце встает точно на востоке, и значит, сегодня день одного из двух равноденствий: или весеннего, когда зима сменяется весной, или осеннего, когда лето оканчивается и приходит осень. В день летнего солнцестояния тень гномона в полдень самая короткая, в день зимнего – соответственно, самая длинная. Солнечные часы похожи на гномон, но устроены иначе – их стержень параллелен оси Земли, а не вертикальной линии, и тень от стержня каждый день, в одно и то же время указывает в одном и том же направлении. Поэтому солнечные часы, собственно, и есть часы, но их нельзя использовать как календарь.

Гномон – прекрасный пример важной связи между наукой и техникой: техническое приспособление, придуманное с практической целью, которое дает возможность совершать научные открытия. С помощью гномона стал доступным точный подсчет дней в каждом из времен года – промежуток времени от одного равноденствия до солнцестояния и затем до следующего равноденствия. Так, Евктемон, живший в Афинах современник Сократа, открыл, что длительности времен года не совпадают в точности. Это оказалось неожиданным, если считать, что Солнце движется вокруг Земли (или Земля вокруг Солнца) по правильной окружности с Землей (или Солнцем) в центре с постоянной скоростью. Исходя из этого предположения, все времена года должны быть строго одинаковой длины. Веками астрономы пытались понять причину их фактического неравенства, но правильное объяснение этой и других аномалий появилось лишь в XVII в., когда Иоганн Кеплер понял, что Земля обращается вокруг Солнца по орбите, которая является не кругом, а эллипсом, и Солнце расположено не в его центре, а смещено в точку, которая называется фокусом. При этом движение Земли то ускоряется, то замедляется по мере приближения или удаления от Солнца.

Луна для земного наблюдателя тоже вращается вместе со звездным небом каждую ночь с востока на запад вокруг северного полюса мира и так же, как Солнце, медленно движется по зодиакальному кругу с запада на восток, но ее полный оборот по отношению к звездам, «на фоне» которых он происходит, занимает чуть больше 27 суток, а не год. Поскольку для наблюдателя Солнце движется по зодиаку в ту же сторону, что и Луна, но медленнее, проходит около 29,5 суток между моментами, когда Луна оказывается в том же положении по отношению к Солнцу (на самом деле 29 суток 12 часов 44 минуты и 3 секунды). Так как фазы Луны зависят от взаимного расположения Солнца и Луны, именно этот интервал в 29,5 суток и есть лунный месяц, то есть время, проходящее от одного новолуния до другого. Давно было замечено, что лунные затмения происходят в фазе полнолуния и их цикл повторяется каждые 18 лет, когда видимый путь Луны на фоне звезд пересекается с путем Солнца.

В некотором отношении Луна более удобна для календаря, чем Солнце. Наблюдая фазу Луны в какую-либо ночь, можно приблизительно сказать, сколько дней прошло с момента последнего новолуния, и это гораздо более точный способ, чем пытаться определять время года, просто глядя на солнце. Поэтому лунные календари были очень распространены в Древнем мире и до сих пор находят применение – например, таков исламский религиозный календарь. Но, само собой, для того, чтобы строить планы в сельском хозяйстве, мореходстве или военном деле, надо уметь предугадывать смену времен года, а она происходит под влиянием Солнца. К сожалению, в году не целое число лунных месяцев – год примерно на 11 суток длиннее, чем 12 полных лунных месяцев, и по этой причине дата любого солнцестояния или равноденствия не может оставаться одной и той же в календаре, основанном на смене фаз Луны.

Другая известная сложность заключается в том, что сам год занимает не целое число суток. Во времена Юлия Цезаря было принято считать каждый четвертый год високосным. Но это не решило проблему полностью, поскольку год длится не в точности 365 суток с четвертью, а на 11 минут дольше.

История помнит бессчетные попытки создать календарь, который учитывал бы все указанные сложности – их было так много, что нет смысла говорить здесь обо всех. Фундаментальный вклад в решение этого вопроса сделал в 432 г. до н. э. афинянин Метон, который, возможно, был коллегой Евктемона. Используя, вероятно, вавилонские астрономические хроники, Метон определил, что 19 лет точно соответствуют 235 лунным месяцам. Погрешность составляет лишь 2 часа. Поэтому можно создать календарь, но не на один год, а на 19 лет, в котором и время года, и фаза Луны окажутся точно определенными для каждого дня. Дни календаря будут повторяться каждые 19 лет. Но поскольку 19 лет почти точно равняются 235 лунным месяцам, этот промежуток на треть суток короче, чем ровно 6940 дней, и по этой причине Метон предписал каждые несколько 19-летних циклов выбрасывать один день из календаря.

Усилия астрономов согласовать солнечные и лунные календари хорошо иллюстрирует определение дня Пасхи. Никейский собор в 325 г. объявил, что Пасху следует праздновать каждый год в воскресенье после первого полнолуния, следующего за весенним равноденствием. В период правления императора Феодосия I Великого было установлено законом, что празднование Пасхи в неправильный день строго карается. К несчастью, точная дата наблюдения весеннего равноденствия не всегда одна и та же в различных точках земли. Чтобы избежать ужасных последствий от того, что кто-то где-то отмечает Пасху не в тот день, возникла необходимость назначить какой-то из дней точным днем весеннего равноденствия, а также договориться, когда именно случается следующее за ним полнолуние. Римско-католическая церковь в позднеантичный период стала пользоваться для этого Метоновым циклом, в то время как монашеские ордена Ирландии приняли за основу более ранний иудейский 84-летний цикл. Вспыхнувшая в XVII в. борьба между миссионерами Рима и монахами Ирландии за контроль над английской церковью была в основном спровоцирована спором из-за точной даты Пасхи.

До наступления Нового времени создание календарей было одним из основных занятий астрономов. В итоге в 1582 г. был создан и при покровительстве папы Григория XIII введен в употребление общепринятый в наши дни календарь. Для определения дня Пасхи теперь считается, что весеннее равноденствие всегда происходит 21 марта, но только это 21 марта по григорианскому календарю в западном мире и тот же день, но по юлианскому календарю, в странах, исповедующих православие. В результате в разных частях мира Пасху празднуют в разные дни.

Хотя астрономия была полезной наукой уже в Классическую эпоху Эллады, на Платона это не производило никакого впечатления. В диалоге «Государство» есть иллюстрирующее его точку зрения место в разговоре Сократа с его оппонентом Главконом. Сократ утверждает, что астрономия должна быть обязательным предметом, которому надо обучать будущих царей-философов. Главкон легко соглашается с ним: «По-моему, да, потому что внимательные наблюдения за сменой времен года, месяцев и лет пригодны не только для земледелия и мореплавания, но не меньше и для руководства военными действиями». Однако Сократ объявляет эту точку зрения наивной. Для него смысл астрономии заключается в том, что «… в науках этих очищается и вновь оживает некое орудие души каждого человека, которое другие занятия губят и делают слепым, а между тем сохранить его в целости более ценно, чем иметь тысячу глаз, ведь только при его помощи можно увидеть истину». Такое интеллектуальное высокомерие было менее характерно для александрийской школы, чем для афинской, но даже в работах, к примеру, философа Филона Александрийского в I в. отмечается, что «воспринимаемое умом всегда выше всего того, что воспринимается и видится чувствами». К счастью, хотя бы и под давлением практической необходимости, астрономы постепенно отучились полагаться на один лишь собственный интеллект.

В древности как науки не было. За всеми небесными телами наблюдали жрецы. Но уже великие мыслители Древней Греции впервые занялись научными исследованиями Вселенной. Они создали базу для дальнейшего развития науки астрономии.

Астрономы древности и Нового времени

Аристотель

Аристотель родился в 384 году до н.э. в Эстагире и умер в 322 году до н.э. в Халкедонии. Он занимался философией, ботаникой, зоологией, психологией, медициной, физикой и астрономией. Аристотель был уверен, что Земля является центром мироздания, будучи неподвижной сферой. Остальные же планеты, звезды, Солнце и Луна постоянно вращаются вокруг нашей планеты. Аристотель пытался доказать это суждение с помощью философских рассуждений. Он был уверен в своей теории по исследованию Вселенной.

Аристотелем был написан философский трактат под названием «О небе», речь в котором шла о планетах и звездах. Поскольку в Древней Греции не существовало современных знаний в области математики, не было современных инструментов для астрономических расчетов и учитывая авторитет ученого — никто не мог возразить Аристотелю.

Утверждения и рассуждения Аристотеля, касающиеся астрономии, считались непогрешимыми на протяжении 2000 лет.

Гиппарх Никейский

Об этом ученом известно очень мало. Жил Гиппарх Никейский во II в. до н.э. Именно ему принадлежит право считаться основателем научной астрономии. Гиппарх совершил важные расчеты относительно движения Луны и Солнца. Ему удалось достаточно точно описать орбиту спутника Земли.

Также Гиппархом был создан звездный каталог, в котором описывалось более 1000 звезд. В этом каталоге основатель научной астрономии разделил звезды по яркости на шесть классов. Этот метод и по сегодняшний день используется астрономами.

Эратосфен

Родился Эратосфен в Кирене в 275 году до н.э., а умер в Александрии в 193 году до н.э. Он был не только астрономом, но географом и философом. Оставил Эратосфен свой след и в математике. ему принадлежит право быть изобретателем прибора, с помощью которого можно было находить расположения селений и городов, расстояние до которых было заранее известно. Также известно, что Эратосфен заведовал Александрийской Библиотекой.

Одной из самых главных заслуг Эратосфен является то, что ему удалось определить длину окружности Земли. В ходе исследований астроном обнаружил, что в день летнего солнцестояния (21 июня) Солнце отражается в колодцах города Асуан, а в Александрии (которая была расположена севернее, но, практически, на том же меридиане) предметы отбрасывают небольшую тень. Эратосфен предположил, что это явление может быть обоснованно кривизной поверхности Земли. С помощью измерения расстояние между двумя городами астроному удалось определить радиус Земли.

Клавдий Птолемей

Птолемей был философом, математиком и астрономом. Он родился и жил в Александрии, во II в. до н.э. В своем монументальном труде, под названием «Sintaxis matematica», Птолемей собрал все астрономические знания. Этот труд имел 13 томов.

Птолемей составил астрономические таблицы, создал произведение по картографии, которое стало хорошим подспорьем при составлении точнейших, по тем временам, карт. Также астроному удалось составить звездный каталог, который включал около 1200 звезд.

Птолемеем была создана планетарная геоцентрическая система, описанная им в пяти книгах. Его астрономические представления были непререкаемыми в течении тринадцати веков. Также как и Аристотель, Птолемей считал Землю центром Вселенной, вокруг которой находятся Луна, планеты и Солнце, вращающиеся согласно своим орбитам. Землю Птолемей представлял в виде сферы.

Николай Коперник

Николай Коперник — польский астроном. Он родился 19 февраля 1473 года в городе Торунь и умер во Фромборке 24 мая 1543 года. Ему довелось учиться в университетах Кракова, Болоньи и Падуи, где Коперник изучал различные науки, в том числе астрономию. В 1512 году он стал каноником во Фромборке, посвятив себя исполнению его обязанностей, а также астрономическим наблюдениям и исследованиям Вселенной. Он создал гидравлическую систему, которая могла обеспечивать водоснабжение.

Коперник очень внимательно изучал и анализировал все известные на те времена астрономические теории, проводя сравнительный анализ с новейшими по тем временам данными. Из всей этой кропотливой работы ученый сделал вывод, что Земля не является центром Вселенной. Коперник написал трактат, в котором изложил свою гелиоцентрическую теорию. Его работа была запрещена церковью, но все же она увидела свет незадолго до смерти астронома.

По мнению Коперника, именно Солнце является центром Вселенной, а остальные планеты (в том числе и Земля) вращаются вокруг него.

Иоганн Кеплер

Иоганн Кеплер — немецкий астроном, родившейся в городе Вейль-дер-Штадт. Произошло это 27 декабря 1571 года. Умер он 15 ноября 1630 года. Кеплер создал новую модель телескопа, которая позволяла улучшить исследование Солнечной системы. Так же Иоганн математическими расчетами траектории планет, что дало возможность открыть законы, управляющие их движением.

Согласно законам Кеплера, все планеты движутся по эллиптическим орбитам. В одном из фокусов этих орбит находится Солнце. В зависимости от отдаленности от Солнца уменьшается или увеличивается скорость движения планеты по орбите. Чтобы сформировать свои законы, Кеплер изучал орбиту Марса в течении 10 лет.

Галилео Галилей

«А все-таки она вертится!» — Галилео Галилей

Галилео — известный итальянский математик, физик и астроном. Он родился 15 февраля 1564 году в Пизе и умер 8 января 1642 году во Флоренции. Им были открыты законы движения маятника, созданы гидравлические весы и изобретен газовый термометр. В 1609 году Галилею удалось создать телескоп, улучшенной конструкции, который давал тринадцатикратное увеличение. С его помощью ученый наблюдал за небесными телами и исследовал Вселенную.

Галилей открыл пятна на Солнце, рассчитал период вращения этой звезды и сделал вывод, что звезды расположены очень далеко от нашей планеты. Ему принадлежит утверждение, что Вселенная бесконечна.

Галилео был ревностным приверженцем теории Коперника, что стало причиной конфликта между Галилеем и церковью. Галилей был привлечен к суду и будучи в безвыходном положении, он был вынужден публично отказаться от своих убеждений. Случилось это в 1632 году. Будучи под домашним арестом, Галилей продолжал свою работу с учениками, хотя и был наполовину слеп.

Ученому-астроному удалось доказать, что Млечный Путь не является облаком. Он доказал что это масса звезд, обнаружил горы на спутнике Земли (на Луне) и открыл четыре спутника Юпитера.

Похожие материалы

Похожие публикации