Пластический момент сопротивления при изгибе. Определение момента сопротивления

Mbt = Wpl Rbt,ser - обычная формула сопромата, в которую только внесена поправка на неупругие деформации бетона растянутой зоны: Wpl - упруго-пластический момент сопротивления приведенного сечения. Его можно определить по формулам Норм или из выражения Wpl = gWred , где Wred - упругий момент сопротивления приведенного сечения для крайнего растянутого волокна (в нашем случае - нижнего), g = (1,25...2,0) - зависит от формы сечения и определяется по таблицам справочников. Rbt,ser - расчетное сопротивление бетона растяжению для предельных состояний 2-й группы (численно равное нормативному Rbt, n ).

153. Почему неупругие свойства бетона увеличивают момент сопротивления сечения?

Рассмотрим простейшее прямоугольное бетонное (без арматуры) сечение и обратимся к рис.75,в, на котором показана расчетная эпюра напряжений накануне образования трещин: прямоугольная в растянутой и треугольная в сжатой зоне сечения. По условию статики равнодействующие усилий в сжатой Nb и в растянутойNbt зонах равны между собой, значит равны и соответствующие площади эпюр, а это возможно, если напряжения в крайнем сжатом волокне вдвое больше растягивающих: s b= 2Rbt, ser . Равнодействующие усилий в сжатой и растянутой зонах Nb = = Nbt = Rbt, ser bh / 2, плечо между ними z = h / 4 + h / 3 = 7h / 12. Тогда момент, воспринимаемый сечением, равен M = Nbtz = (Rbt, ser bh/ 2)(7h/ 12)= = Rbt, ser bh 27/ 24 = Rbt, ser (7/4)bh 2/6, или M = Rbt, ser 1,75 W . То есть, для прямоугольного сечения g = 1,75. Таким образом, момент сопротивления сечения возрастает благодаря принятой в расчете прямоугольной эпюре напряжений в растянутой зоне, вызванной неупругими деформациями бетона.

154. Как рассчитывают нормальные сечения по образованию трещин при внецентренном сжатии и растяжении?

Принцип расчета тот же, что и при изгибе. Нужно только помнить, что моменты продольных сил N от внешней нагрузки принимают относительно ядровых точек (рис. 76, б, в):

при внецентренном сжатии Мr = N (eo - r ), при внецентренном растяжении Мr = N (eo + r ). Тогда условие трещиностойкости принимает вид: Mr ≤ Mcrc = Mrp + Mbt - то же, что и при изгибе. (Вариант центрального растяжения рассмотрен в вопросе 50.) Напомним, что отличительной особенностью ядровой точки является то, что приложенная в ней продольная сила вызывает на противоположной грани сечения нулевые напряжения (рис. 78).

155. Может ли трещиностойкость железобетонного изгибаемого элемента быть выше его прочности?

В практике проектирования действительно встречаются случаи, когда по расчету Mcrc > Mu . Чаще всего подобное происходит в преднапряженных конструкциях с центральным армированием (сваях, дорожных бортовых камнях и т.п.), которым арматура требуется только на период перевозки и монтажа и у которых она расположена по оси сечения, т.е. вблизи нейтральной оси. Объясняется это явление следующими причинами.

Рис. 77, Рис. 78

В момент образования трещины растягивающее усилие в бетоне передается арматуре при соблюдении условия: Mcrc= Nbt z1 = Ns z2 (рис. 77) – для простоты рассуждений работа арматуры до образования трещины здесь не учтена. Если окажется, что Ns = Rs As Nbt z1 / z2 , то одновременно с образованием трещин происходит и разрушение элемента, что подтверждается многочисленными экспериментами. Для некоторых конструкций такая ситуация может оказаться чреватой внезапным обрушением, поэтому Нормы проектирования в этих случаях предписывают увеличить на 15 % площадь сечения арматуры, если она подобрана расчетом по прочности. (Кстати, именно подобные сечения в Нормах именуются «слабо армированными», что вносит некоторую путаницу в давно устоявшуюся научно-техническую терминологию.)

156. В чем особенность расчета нормальных сечений по образованию трещин в стадии обжатия, транспортировки и монтажа?

Все зависит от того, трещиностойкость какой грани проверяют и какие при этом действуют усилия. Например, если при перевозке балки или плиты подкладки находятся на значительном расстоянии от торцов изделия, то в опорных сечениях действует отрицательный изгибающий момент Мw от собственного веса qw (с учетом коэффициента динамичности kД = 1,6 - см. вопрос 82). Сила обжатия Р1 (с учетом первых потерь и коэффициента точности натяжения gsp > 1) создает момент того же знака, поэтому ее рассматривают как внешнюю силу, которая растягивает верхнюю грань (рис.79), и при этом ориентируются на нижнюю ядровую точку r ´. Тогда условие трещиностойкости имеет вид:

Мw + P1 (eop - r ´ )≤ Rbt,ser W ´pl , где W ´pl - упруго-пластический момент сопротивления для верхней грани. Заметим еще, что величина Rbt,ser должна соответствовать передаточной прочности бетона.

157. Влияет ли наличие начальных трещин в зоне, сжатой от внешней нагрузки, на трещиностойкость растянутой зоны?

Влияет, причем отрицательно. Начальные трещины, образовавшиеся в стадии обжатия, перевозки или монтажа под воздействием момента от собственного веса Mw , уменьшают размеры поперечного сечения бетона (заштрихованная часть на рис. 80), т.е. уменьшают площадь, момент инерции и момент сопротивления приведенного сечения. За этим следует увеличение напряжений обжатия бетона sbp , увеличение деформаций ползучести бетона, рост потерь напряжений в арматуре от ползучести, уменьшение силы обжатия Р и снижение трещиностойкости той зоны, которая будет растянута от внешней (эксплуатационной) нагрузки.

В основе расчета лежит кривая деформирования (рис. 28), представляющая собой зависимость устанавливаемую из опытов на растяжение. конструкционных сталей эта зависимость имеет такой же вид и при сжатии.

Для расчета обычно используют схематизированную диаграмму деформирования, показанную на рис. 29. Первая прямая соответствует упругим деформациям вторая прямая проходит через точки, соответствующие

Рис. 28. Диаграмма деформирования

пределу текучести и пределу прочности . Угол наклона значительно меньше угла а и для расчета вторая прямая иногда представляется горизонтальной линией, как показано на рис. 30 (кривая деформирования без упрочиения).

Наконец, если рассматриваются значительные пластические деформации, то участками кривых, соответствующих упругому деформированию, в практических расчетах можно пренебречь. Тогда схематизированные кривые деформирования имеют вид, показанный на рис. 31

Распределение напряжений изгиба при упругопластических деформациях. Для упрощения задачи рассмотрим стержень прямоугольного сечения и предположим, что кривая деформирования не имеет упрочиения (см. рис. 30).

Рис. 29. Схематизированная кривая деформирования

Рис. 30. Кривая деформирования без упрочнения

Если изгибающий момент таков, что наибольшее напряжение изгиба (рис. 32), то стержень работает в области упругой деформации

При дальнейшем возрастании изгибающего момента в крайних волокнах стержня возникают пластические деформации. Пусть при данном значении пластическими деформациями охвачена область от до . В этой области . При напряжения изменяются по линейному закону

Из условия равновесия момент внутренних сил

Рис. 31. Кривая деформирования при больших пластических деформациях

Рис. 32. (см. скан) Изгиб стержня прямоугольного сечения в упругопластической стадии

Если бы материал оставался упругим при любых напряжениях, то наибольшее напряжение

превышало бы предел текучести материала.

Напряжения при идеальной упругости материала показаны на рис. 32. С учетом пластической деформации напряжения, превосходящие предел текучести для идеально упругого тела, снижаются. Если эпюры распределения напряжений для действительного материала я для идеально упругою материала Сличаются одна от другой (при одних и тех же нагрузках), то в теле после снятия внешней нагрузки возникают остаточные напряжения, эпюра которых представляет собой разность эпюр упомянутых напряжений. В местах наибольших напряжений остаточные напряжения противоположны по знаку напряжениям а рабочих условиях.

Предельный пластический момент. Из формулы (51) следует, что при

величина , т. е. все сечение стержня находится в области пластической деформации.

Изгибающий момент, при котором во всех точках сечения возникают пластические деформации, называют предельным пластически и моментом. Распределение напряжений изгиба по сечению в этом случае показано на рис. 33.

В области растяжения в области сжатия . Так как из условия равновесия то нейтральная линия делит сечение на две равновеликие (по площади) части.

Для прямоугольного сечения предельный пластический момент

Рис. 33. Распределение напряжений при действии предельного пластического момента

Изгибающий момент, при котором возникает пластическая деформация только в крайних волокнах,

Отношение пластического момента сопротивления к обычному (упругому) моменту сопротивления для прямоугольного сечения

Для двутаврового сечеиия при изгибе в плоскости наибольшей жесткости это отношение составляет для тонкостенного трубчатого -1,3; для сплошного круглого сечеиия 1,7.

В общем случае величину при изгибе в плоскости симметрии сечеиия можно определить следующим способом (рис. 34); разбить сечение линией на две равновеликие (по площади) части. Если расстояние между центрами тяжести этих частей обозначить через то

где - площадь поперечного сечения; - расстояние от центра тяжести какой-либо половины сечения до центра тяжести всего сечения (точку О находит на равном расстоянии от точек

Осевой момент сопротивления - отношение момента инерции относительно оси к расстоянию от нее до наиболее удаленной точки сечения. [см 3 , м 3 ]

Особенно важны моменты сопротивления относительно главных центральных осей:

прямоугольник:
; круг:W x =W y =
,

трубчатое сечение (кольцо): W x =W y =
, где = d Н /d B .

Полярный момент сопротивления - отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:
.

Для круга W р =
.

Кручение

Т

акой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты - М к. Знак крутящего момента М к удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то М к >0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания - закон плоских сечений . Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси. Из закона Гука при сдвиге: =G, G - модуль сдвига,
,
- полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания
,GJ p - жесткость сечения при кручении .
-относительный угол закручивания . Потенциальная энергия при кручении:
. Условие прочности:
, [] =, для пластичного материала за  пред принимается предел текучести при сдвиге  т, для хрупкого материала –  в – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении:  max [] – допустимый угол закручивания.

Кручение бруса прямоугольного сечения

При этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются –депланация поперечного сечения.

Эпюры касательных напряжений прямоугольного сечения.

;
,J k и W k - условно называют моментом инерции и моментом сопротивления при кручении. W k = hb 2 ,

J k = hb 3 , Максимальные касательные напряжения  max будут посредине длинной стороны, напряжения по середине короткой стороны: =  max , коэффициенты: ,, приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, =0,246; =0,229; =0,795.

Изгиб

П
лоский (прямой) изгиб
- когда изгибающий момент действует в плоскости, проходящей через одну из главных центральных осей инерции сечения, т.е. все силы лежат в плоскости симметрии балки. Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений: сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

С
лой, в котором отсутствуют удлинения, называетсянейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя. Закон Гука при изгибе :
, откуда (формула Навье):
,J x - момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости изгибающего момента, EJ x - жесткость при изгибе, - кривизна нейтрального слоя.

М
аксимальные напряжения при изгибе возникают в точках, наиболее удаленных от нейтрального слоя:
,J x /y max =W x -момент сопротивления сечения при изгибе,
. Если сечение не имеет горизонтальной оси симметрии, то эпюра нормальных напряжений не будет симметричной. Нейтральная ось сечения проходит через центр тяжести сечения. Формулы для определения нормального напряжения для чистого изгиба приближенно годятся и когда Q0. Это случай поперечного изгиба . При поперечном изгибе, кроме изгибающего момента М, действует поперечная сила Q и в сечении возникают не только нормальные , но и касательные  напряжения. Касательные напряжения определяются формулой Журавского:
, гдеS x (y) - статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; J x - момент инерции всего поперечного сечения относительно нейтральной оси, b(y) - ширина сечения в слое, на котором определяются касательные напряжения.

Д
ля прямоугольного сечения:
,F=bh, для круглого сечения:
,F=R 2 , для сечения любой формы
,

k- коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).

M

max и Q max определяются из эпюр изгибающих моментов и поперечных сил. Для этого балка разрезается на две части и рассматривается одна из них. Действие отброшенной части заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т.е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М, Q и q :

q - интенсивность распределенной нагрузки [кН/м]

Главные напряжения при поперечном изгибе :

.

Расчет на прочность при изгибе : два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям
, (точки наиболее удаленные от С); б) по касательным напряжениям
, (точки на нейтр.оси). Из а) определяют размеры балки:
, которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности

I-я:
;II-я:(при коэфф.Пуассона=0,3); - применяются редко.

теория Мора: ,
(используется для чугуна, у которого допускаемое напряжение на растяжение [ р ][ с ] – на сжатие).

Напряжение при изгибе в упругой стадии распределяется в сечении по линейному закону. Напряжения в крайних волокнах для симметричного сечения определяются формулой:

где М – изгибающий момент;

W - момент сопротивления сечения.

С увеличением нагрузки (или изгибающего момента М) напряжения будут увеличиваться и достигнут значения предела текучести R yn .

Ввиду того, что предела текучести достигли только крайние волокна сечения, а соединенные с ними менее напряженные волокна могут еще работать, несущая способность элемента не исчерпана. С дальнейшим увеличением изгибающего момента будет происходить удлинение волокон сечения, однако напряжения не могут быть больше R yn . Предельной эпюрой будет такая, в которой верхняя часть сечения до нейтральной оси равномерно сжата напряжением R yn . Несущая способность элемента при этом исчерпывается, а он может как бы поворачиваться вокруг нейтральной оси без увеличения нагрузки; образуется шарнир пластичности.

В месте пластического шарнира происходит большое нарастание деформаций, балка получает угол перелома, но не разрушается. Обычно балка теряет при этом либо общую устойчивость, либо местную устойчивость отдельных частей. Предельный момент, отвечающий шарниру пластичности,

где W пл = 2S – пластический момент сопротивления

S – cтатический момент половины сечения относительно оси, проходящий через центр тяжести.

Пластический момент сопротивления, а следовательно предельный момент, отвечающий шарниру пластичности больше упругого. Нормами разрешается учитывать развитие пластических деформаций для разрезных прокатных балок, закрепленных от потери устойчивости и несущих статическую нагрузку. Значение пластических моментов сопротивления при этом принимаются: для прокатных двутавров и швеллеров:

W пл =1,12W – при изгибе в плоскости стенки

W пл = 1,2W – при изгибе параллельно полкам.

Для балок прямоугольного поперечного сечения W пл = 1,5 W.

По нормам проектирования развития пластических деформаций допускается учитывать для сварных балок постоянного сечения при отношениях ширины свеса сжатого пояса к толщине пояса и высоты стенки к ее толщине .



В местах наибольших изгибающих моментов недопустимы наибольшие касательные напряжения; они должны удовлетворять условию:

Если зона чистого изгиба имеет большую протяженность, соответствующий момент сопротивления во избежании чрезмерных деформаций принимается равным 0,5(W yn +W пл).

В неразрезных балках за предельное состояние принимается образование шарниров пластичности, но при условии сохранения системой своей неизменяемости. Нормами разрешается при расчете неразрезных балок (прокатных и сварных) определять расчетные изгибающие моменты исходя из выравнивания опорных и пролетных моментов (при условии, что смежные пролеты отличаются не больше чем на 20%).

Во всех случаях, когда расчетные моменты принимаются в предположении развития пластических деформаций (выравнивания моментов), проверку прочности следует производить по упругому моменту сопротивления по формуле:

При расчете балок из алюминиевых сплавов развитие пластических деформаций не учитывается. Пластические деформации пронизывают не только наиболее напряженное сечение балки в месте наибольшего изгибающего момента, но и распространяются по длине балки. Обычно в изгибаемых элементах кроме нормальных напряжений от изгибающего момента есть еще и касательное напряжение от поперечной силы. Поэтому условие начала перехода металла в пластическое состояние в этом случае должно определяться приведенными напряжениями s че d:

.

Как уже отмечалось, начало текучести в крайних фибрах (волокнах) сечения еще не исчерпывает несущие способности изгибаемого элемента. При совместном действии s и t предельная несущая способность примерно на 15% выше чем при упругой работе, и условие образования шарнира пластичности записывается в виде:

,

При этом должно быть .

Похожие публикации