С какими веществами не реагируют аминокислоты. Кислотно-основные свойства аминокислот

ОПРЕДЕЛЕНИЕ

Аминокислоты - это сложные органические соединения, которые в своей молекуле одновременно содержат аминогруппу и карбоксильную группу.

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

CH 3 -C(Br)H-COOH + 2NH 3 →CH 3 -C(NH 2)H-COOH + NH 4 Br.

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

CH 3 -C(O)H + NH 3 + HCN → CH 3 -C(NH 2)H-C≡H + H 2 O;

CH 3 -C(NH 2)H-C≡H + H 2 O (H +) → CH 3 -C(NH 2)H-COOH + NH 3 (1).

CH 2 =CH-COOH + NH 3 → H 2 N-CH 2 -CH 2 -COOH (2);

O 2 N-C 6 H 4 -COOH + [H] →H 2 N-C 6 H 4 -COOH (3).

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты - амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

NH 2 -CH 2 -COOH + HCl→ Cl

NH 2 -CH 2 -COOH + NaOH→ NH 2 -CH 2 -COONa + H 2 O

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин - щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна - капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

H 3 N + -CH(R)-COO — .

Запишем формулу аланина как внутренней соли:

H 3 N + -CH(CH 3)-COO — .

Исходя из этой структурной формулы, напишем уравнения реакций:

а) H 3 N + -CH(CH 3)-COO — + NaOH = H 2 N-CH(CH 3)-COONa + H 2 O;

б) H 3 N + -CH(CH 3)-COO — + NH 3 ×H 2 O = H 2 N-CH(CH 3)-COONH 4 + H 2 O;

в) H 3 N + -CH(CH 3)-COO — + HCl = Cl — .

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами - как основание. Кислотная группа - N + H 3 , основная - COO — .

ПРИМЕР 2

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

H 2 NC x H 2 x COOH + HONO = HO-C x H 2 x -COOH + N 2 + H 2 O.

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N 2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

По уравнению n(H 2 NC x H 2 x COOH) = n(N 2) = 0,082 моль.

M(H 2 NC x H 2 x COOH) = 9,63 / 0,082 = 117 г/моль.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

H 2 NC 4 H 8 COOH.

Из природных кислот такому составу может отвечать валин.

Ответ Эта аминокислота — валин.

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу - NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа - NH 2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты - это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-СО-, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды . В таких соединениях группы -NH-СО- на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Взаимодействие аминокислот:

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями :
Образуются соли :

NH 2 -CH 2 -COOH + NaOH NH 2 -CH 2 -COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами :

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир . Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH 2 -CH 2 -COOH + CH 3 OH NH 2 -CH 2 -COOCH 3 + H 2 O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком :

Образуются амиды :

NH 2 -CH(R)-COOH + H-NH 2 = NH 2 -CH(R)-CONH 2 + H 2 O

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

HOOC-CH 2 -NH 2 + HCl → Cl (или HOOC-CH 2 -NH 2 *HCl)

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот :

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

Аминокислоты, формулы которых рассматриваются в курсе химии старшей школы, являются важными веществами для человеческого организма. Белки, состоящие из аминокислотных остатков, необходимы человеку для полноценной жизнедеятельности.

Определение

Аминокислоты, формулы которых будут рассмотрены ниже, являются органическими соединениями, в молекулах которых содержатся амино- и карбоксильные группы. Карбоксил состоит из карбонильной и гидроксильной группировки.

Можно рассматривать аминокислоты в качестве производных карбоновых кислот, где атом водорода замещен на аминогруппу.

Особенности химических свойств

Аминокислоты, общая формула которых может быть представлена в виде CnH2nNH2COOH, являются амфотерными химическими соединениями.

Присутствие в их молекулах двух функциональных групп объясняет возможность проявления этими органическими веществами основных и кислотных свойств.

Их водные растворы имеют свойства буферных растворов. Цвиттер-ион - аминокислоты, где аминогруппа имеет вид NH3+, а карбоксил представлен как -COO-. Молекула подобного вида обладает существенным дипольным моментом, при этом суммарный заряд равен нулю. На таких молекулах выстроены кристаллы многих аминокислот.

Среди важнейших химических свойств данного класса веществ можно выделить процессы поликонденсации, в результате которых образуются полиамиды, включая белки, пептиды, нейлон.

Аминокислоты, общая формула которых имеет вид CnH2nNH2COOH, реагируют с кислотами, основаниями, оксидами металлов, солями слабых кислот. Особый интерес представляют взаимодействия аминокислот со спиртами, относящиеся к этерификации.

Особенности изомерии

Для того чтобы записать структурные формулы аминокислот, отметим, что многие аминокислоты, принимающие участие в биохимических превращениях, содержат аминогруппу в a-положении от карбоксильной группы. Такой углеродный атом является а аминокислоты считают оптическими изомерами.

Структурная формула аминокислот дает представление о расположении основных функциональных групп, входящих в состав данного вещества, относительно активного углеродного атома.

Природные аминокислоты, которые входят в состав белковых молекул, являются представителями L-ряда.

Для оптических изомеров аминокислот характерна самопроизвольная медленная неферментативная рацемизация.

Особенности a-соединений

Любая формула веществ этого вида предполагает расположение аминогруппы у второго углеродного атома. формулы которых рассматривают даже в школьном курсе биологии, также принадлежат к этому виду. Например, к ним относится аланин, аспарагин, серин, лейцин, тирозин, фенилаланин, валин. Именно эти соединения составляют генетический код человека. Помимо стандартных соединений? также в белковых молекулах обнаружены нестандартные аминокислоты, являющиеся их производными.

Классификация по синтезу

Как можно разделить незаменимые аминокислоты? Формулы этого класса подразделяют по физиологическому признаку на полузаменимые, способные синтезироваться в человеческом организме. Выделяют и обычные соединения, синтезируемые в любом живом организме.

Подразделение по радикальным и функциональным группам

Формула аминокислот отличается по строению радикала (боковой группы). Существует деление на неполярные молекулы, содержащие гидрофобный неполярный радикал, а также на заряженные полярные группы. В качестве отдельной группы в биохимии рассматривают гистидин, триптофан, тирозин. В зависимости от функциональных групп выделяют несколько групп. Алифатические соединения представлены:

  • моноаминомонокарбоновыми соединениями, в качестве которых можно рассматривать глицин, валин, аланин, лейцин;
  • оксимонокаминокарбоновыми веществами: треонином, серином;
  • моноаминокарбоновыми: глутаминовой, аспарагиновой кислотой;
  • серосодержащими соединениями: метионином, цистеином;
  • диаминомонокарбоновыми веществами: лизином, гистидином, аргинином;
  • гетероциклическими: пролином, гистидином, трпитофаном/

Любая формула аминокислот может быть записана в общем виде, отличаться будут только радикальные группы.

Качественное определение

Для того чтобы обнаружить незначительные количества аминокислот, проводится В процессе нагревания аминокислот с избыточным количеством нингидрина получается лиловый продукт, если кислота имеет свободную a-аминогруппу, а для защищенной группы характерно получение желтого продукта. Данная методика имеет высокую чувствительность, применяется для колориметрического выявления аминокислот. На ее основе были создан метод распределительной хроматографии на бумаге, внедренный Мартином в 1944 году.

Эту же химическую реакцию применяют в автоматическом анализаторе аминокислот. Прибор, созданный Муром, Шпакманом, Стейном, основывается на разделении аминокислотной смеси в колонках, которые заполнены Из колонки поступает ток элюента в смеситель, сюда же идет нингидрин.

По интенсивности получаемой окраски судят о количественном содержании аминокислот. Показания фиксирует фотоэлектроколориметр, регистрирует самописец.

Подобная технология в настоящее время используется в клинической практике при проведении анализов крови, спинномозговой жидкости, мочи. Она позволяет дать полную картину качественного состава аминокислот, содержащихся в биологических жидкостях, определить в них нестандартные азотсодержащие вещества.

Особенности номенклатуры

Как правильно назвать аминокислоты? Формулы и названия этих соединений дают по международной номенклатуре ИЮПАК. К соответствующей карбоновой кислоте добавляют положение аминогруппы, начиная нумерацию с углеводорода, стоящего при карбоксильной группе.

Например, 2-аминоэтановая кислота. Помимо международной номенклатуры есть тривиальные названия, которыми пользуются в биохимии. Так, аминоуксусная кислота - это глицин, используемый в современной медицине.
При наличии в молекуле двух карбоксильных групп в названии добавляется суффикс -дионовая. Например, 2-аминобутандионовая кислота.

Для всех представителей этого класса характерна структурная изомерия, обусловленная изменениями в строении углеродной цепи, а также расположением карбоксильной и аминогрупп. Помимо глицина (простейшего представителя данного класса кислородсодержащих органических веществ)? остальные соединения имеют зеркальные антиподы (оптические изомеры).

Применение

Аминокислоты распространены в природе, они являются основой для построения животных и растительных белков. Эти соединения применяются в медицине в случае сильного истощения организма, например после сложных хирургических операций. Глутаминовая кислота помогает бороться с нервными заболеваниями, для лечения язвы желудка используется гистидин. При синтезе синтетических волокон (капрона, энанта) в качестве исходного сырья выступает аминокапроновая и аминоэнантоваяя кислота.

Заключение

Аминокислоты являются органическими соединениями, которые в своем составе имеют две функциональные группы. Именно особенности строения объясняют двойственность их химических свойств, а также специфику их использования. По результатам научно-исследовательских экспериментов удалось установить, что биомасса живых организмов, которые живут на нашей планете, в сумме составляет 1,8·1012-2,4·1012 тонны сухого вещества. Аминокислоты являются исходными мономерами в биосинтезе белковых молекул, без которого невозможно существование человека и животных.

В зависимости от физиологических признаков существует подразделение всех аминокислот на незаменимые вещества, синтез которых не осуществляется в организме человека и млекопитающих. Для того чтобы не возникало нарушений в обменных процессах, важно употреблять продукты питания, в которых есть эти аминокислоты.

Именно эти соединения являются своеобразными «кирпичиками», которые используются для построения биополимеров-белков. В зависимости от того, какие именно аминокислотные остатки, в какой последовательности будут выстраиваться в структуру белка, образующийся белок имеет определенные физические и химические свойства и области применения. Благодаря качественным реакциям на функциональные группы биохимики определяют состав белковых молекул, ищут новые пути синтеза индивидуальных биополимеров, необходимых для организма человека.

Аминокислоты относятся к гетерофункциональным соединениям, т.е. вещества, проявляющим свойства двух классов соединений. В неорганической химии такие соединения называют амфотерными.

ФИЗИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений.

ХИМИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ

Особенности физических и химических свойств аминокислот обусловлены их строением - присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной. $\alpha$-аминокислоты являются амфотерными электролитами. Имея как минимум две диссоциирующие и противоположно заряженные группировки, аминокислоты в растворах с нейтральным значением рН практически всегда находятся в виде биполярных ионов, или цвиттер-ионов, в которых противоположные заряды пространственно разделены, например $H_3^+N-CH_2-CH_2-COO^-$.

Именно амфотерность аминокислот обуславливает их наиболее характерные свойства.

1. Кислотные свойства аминокислот проявляются по карбоксильной группе в их способности взаимодействовать, например, с щелочами:

или вступать в реакцию этерификации со спиртами с образованием сложных эфиров:

2. Основные свойства аминокислот проявляются по аминогруппе в их способности взаимодействовать с кислотами, образуя комплексные ионы по донорно-акцепторному механизму:

3. Амфотерность аминокислот проявляется также в их способности образовывать в растворе в результате диссоциации биполярный ион - внутреннюю соль, а самое главное, за счет амфотерности аминокислоты могут вступать друг с другом в реакции поликонденсации. образуя полипептиды и белки :

КАЧЕСТВЕННЫЕ (ЦВЕТНЫЕ) РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ

Качественные цветные реакции можно подразделить на два типа: универсальные и специфические . К универсальным реакциям относятся те, которые дают окрашивание в присутствии любых белков.

Специфические реакции доказывают наличие какой-то определенной аминокислоты. Все качественные реакции можно наблюдать на примере раствора яичного белка, представляющего собой многокомпонентную смесь аминокислот:

УНИВЕРСАЛЬНЫЕ ЦВЕТНЫЕ РЕАКЦИИ

1 . Биуретовая реакция - универсальная реакция на все белки и пептиды, так как является реакцией на пептидную связь . Представляет собой взаимодействие щелочного раствора биурета ($(H_2NC(O))_2NH$ с раствором сульфата меди в присутствии гидроксида натрия (реактив Фелинга).

В реакцию, подобную биуретовой, вступают многие вещества, содержащие в молекуле не менее двух амидных группировок, амиды и имиды аминокислот и некоторые другие соединения. Продукты реакции в этом случае имеют фиолетовую или синюю окраску.

В условиях биуретовой реакции белки дают фиолетовую окраску, что используется для их качественного и количественного анализа. Биуретовая реакция обусловлена присутствием в белках пептидных связей, которые в щелочной среде образуют с сульфатом меди (ІІ) окрашенные солеобразные комплексы меди.

2. Нингидриновая реакция - цветная реакция на α-аминокислоты, которую осуществляют нагреванием последних в избытке щелочного раствора нингидрина (гидрата 1,2,3-индантриона).

Образующееся в результате реакции соединение (дикетогидринимин - на рисунке самый левый продукт реакции) имеет фиолетово-синюю окраску. Данную используют для колориметрического количественного определения $\alpha$-аминокислот, в том числе в автоматических аминокислотных анализаторах.

СПЕЦИФИЧЕСКИЕ ЦВЕТНЫЕ РЕАКЦИИ

1. Реакция Щульца-Распайли (аналогично проводится реакция Адамкевича, только с добавлением глиоксиловой кислоты) - является специфической реакцией на аминокислоту триптофан - взаимодействие раствора яичного белка с 10% раствором сахарозы и равным объемом концентрированной $H_2SO_4$. На границе двух жидкостей образуется красно-фиолетовое кольцо (при нагревании на водяной бане реакция идет быстрее - главное не смешивать жидкости).

2 . Реакция Милона - используется для обнаружения тирозина , в составе которого имеется фенольный гидроксил . При добавлении к раствору белка реактива Милона (раствор $HgNO_3$ и $Hg(NO_3)_2$ в разбавленной азотной кислоты $HNO_3$, содержащей примесь азотистой кислоты $HNO_2$) образуется осадок, сначала окрашенный в розовый, а затем в пурпурно-красный цвет. Нагревание до $50^\circ C$ ускоряет эту реакцию.

3. Кс антопротеиновая реакция - является специфической реакцией и используется для обнаружения $\alpha$-аминокислот, содержащих в радикале ароматический цикл, например фенилаланина . Для ее осуществления к раствору белка прибавляют концентрированную азотную кислоту $HNO_3$ до тех пор, пока не прекратится образование осадка, который при нагревании окрашивается в желтый цвет. Окраска возникает в результате нитрования ароматических колец аминокислотных остатков белка (тирозина и триптофана). При добавлении к охлажденной жидкости избытка щелочи появляется оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

4. Реакция Фоля на серосодержащие аминокислоты (цистеин, метионин) - взаимодействие раствора яичного белка с 30% раствором NaOH и 5% раствором уксуснокислого свинца - $Pb(CH_3COO)_2$. При длительном нагревании жидкость буреет, выпадает черный осадок сульфида свинца.

Похожие публикации