Внутреннее строение и история геологического развития земли. Строение Земли

Планета Земля относится к планетом земной группы, это говорит о том, что поверхность Земли твердая и строение и состав Земли во многом похоже на другие планеты земной группы. Земля является самой крупной планетой земной группы. У Земли самый большой размер, масса, сила гравитации и магнитного поля. Поверхность планеты Земля еще очень (по астрономическим меркам) молода. 71% Поверхности планеты занимает водная оболочка и это делает планету уникальной, на других планетах вода на поверхности не могла бы находиться в жидком состоянии из-за неподходящих температур планет. Способность океанов сохранять тепло воды, позволяет координировать климат, перенося это тепло в другие места при помощи течения (наиболее известное теплое течение – Гольфстрим в Атлантическом океане).

Строение и состав похож на многие другие планеты, но все же есть весомые отличия. В составе земли можно найти все элементы таблицы Менделеева. Строение Земли всем известно с малых лет: металлическое ядро, большой слой мантии и, конечно же, земная кора с большим разнообразием рельефа и внутреннего состава.

Состав Земли.

Изучая массу Земли ученые пришли к выводу, что планета состоит на 32% из железа, 30% кислорода, 15% кремния, 14% магния, 3% серы, 2% никеля, 1,5% земли состоит из кальция и на 1,4% из алюминия, а на остальные элементы приходится 1,1%.

Строение Земли.

Земля, как и все планеты земной группы имеет слоистое строение. В центре планеты расположено ядро из расплавленного железа. Внутренняя часть ядра состоит из твердого железа. Все ядро планеты окружено вязкой магмой (более твердой, чем под поверхностью планеты) В состав ядра так же входит расплавленный никель и другие химические элементы.

Мантия планеты – вязкая оболочка на которую приходится 68% массы планеты и около 82% от общего объема планеты. Мантия состоит из силикатов железа, кальция, магния и многих других. Расстояние от поверхности Земли до ядра более 2800 км. и все это пространство занимает мантия. Обычно мантию разделяют на две основные части: верхнею и нижнюю. Выше отметки 660 км. до земной коры расположена верхняя мантия. Известно, что она, со времен формирования Земли и до наших дней, потерпела значительные изменения в своем составе, так же известно, что именно верхняя мантия породила земную кору. Нижняя мантия расположена, соответственно, ниже границы 660 км. до ядра планеты. Нижняя мантия была мало изучена из-за трудной доступности, но у ученых есть все основания полагать, что нижняя мантия не потерпела серьезных изменений в своем составе за все время существования планеты.

Земная кора – самая верхняя, твердая оболочка планеты. Толщина земной коры сохраняется в пределах от 6 км. на дне океанов и до 50 км. на континентах. Земную кору, так же как и мантию, разделяют на 2 части: океаническая земная кора и континентальная земная кора. Океаническая земная кора состоит, в основном, из различных пород и осадочного чехла. Континентальная земная кора состоит из трех слоев: осадочный чехол, гранитный и базальтовый.

За время жизни планеты состав и строение Земли терпели значительные изменения. Рельеф планеты постоянно меняется, тектонические плиты то сдвигаются, образуя на месте своего стыка большие горные рельефы, то раздвигаются, создавая между собой моря и океаны. Движение тектонических плит происходит из-за изменения температур мантии под ними и под различными химическими воздействиями. Состав планеты тоже подвергался различным внешним воздействиям, что привело в его изменению.

В один момент, Земля достигла того состояния, чтобы на ней могла появиться жизнь, что и произошло. длилась очень долгое время. За эти миллиарды лет она смогла из одноклеточного организма перерасти или мутировать в многоклеточные и сложные организмы, каким и является человек.

Внутреннее строение Земли

В настоящее время преобладающим большинством геологов, геохимиков, геофизиков и планетологов принимается, что Земля имеет условно сферическое строение с нечёткими границами раздела (или перехода), а сферы – условно мозаично-блоковое. Основные сферы – земная кора, трёхслойная мантия и двухслойное ядро Земли.

Земная кора

Земная кора составляет самую верхнюю оболочку твёрдой Земли. Мощность её колеблется от 0 на некоторых участках срединно-океанических хребтов и океанских разломов до 70-75 км под горными сооружениями Анд, Гималаев и Тибета. Земная кора обладает латеральной неоднородностью , т.е. состав и строение земной коры различны под океанами и континентами. На основании этого выделяются два главных типа коры – океаническая и континентальная и один тип промежуточной коры.

Океаническая кора занимает на Земле около 56% земной поверхности. Мощность её обычно не превышает 5-6 км и максимальна у подножия континентов. В её строении выделяются три слоя.

Первый слой представлен осадочными породами. В основном это глинистые, кремнистые и карбонатные глубоководные пелагические осадки, причём карбонаты с определённой глубины исчезают вследствие растворения. Ближе к континенту появляется примесь обломочного материала, снесённого с суши (континента). Мощность осадков колеблется от ноля в зонах спрединга до 10-15 км вблизи континентальных подножий (в периокеанических прогибах).

Второй слой океанической коры в верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелагических осадков. Базальты нередко обладают подушечной отдельностью (пиллоу-лавы), но отмечаются и покровы массивных базальтов. В нижней части второго слоя (2В) в базальтах развиты параллельные дайки долеритов. Общая мощность второго слоя около 1,5-2 км. Строение первого и второго слоя океанской коры хорошо изучено с помощью подводных аппаратов, драгированием и бурением.

Третий слой океанической коры состоит из полнокристаллических магматических пород основного и ультраосновного состава. В верхней части развиты породы типа габбро, а нижняя часть сложена «полосчатым комплексом», состоящем из чередования габбро и ультрамафитов. Мощность 3-го слоя около 5 км. Он изучен по данным драгирования и наблюдений с подводных аппаратов.

Возраст океанической коры не превышает 180 млн. лет.

При изучении складчатых поясов континентов были выявлены в них фрагменты ассоциаций пород, подобных океанским. Г Штейманом было предложено в начале XX века называть их офиолитовыми комплексами (или офиолитами ) и рассматривать «триаду» пород, состоящую из серпентенизированных ультрамафитов, габбро, базальтов и радиоляритов, как реликты океанической коры. Подтверждения этому были получены только в 60-ые годы XX столетия, после публикаций статьи на эту тему А.В. Пейве.

Континентальная кора распространена не только в пределах континентов, но и в пределах шельфовых зон континентальных окраин и микроконтинентов, расположенных внутри океанских бассейнов. Общая площадь её составляет около 41% земной поверхности. Средняя мощность 35-40 км. На щитах и платформах континентов она варьирует от 25 до 65 км, а под горными сооружениями достигает 70-75 км.

Континентальная кора имеет трёхслойное строение:

Первый слой – осадочный, обычно называется осадочным чехлом. Мощность его колеблется от нуля на щитах, поднятиях фундамента и в осевых зонах складчатых сооружений до 10-20 км в экзогональных впадинах плит платформ, передовых и межгорных прогибах. Он сложен, в основном, осадочными породами континентального или мелководного морского, реже батиального (в глубоководных впадинах) происхождения. В этом осадочном слое возможны покровы и силы магматических пород, образующих трапповые поля (трапповые формации). Возрастной диапазон пород осадочного чехла от кайнозоя до 1,7 млрд. лет. Скорость продольных волн составляет 2,0-5,0 км/с.

Второй слой континентальной коры или верхний слой консолидированной коры выходит на дневную поверхность на щитах, массивах или выступах платформ и в осевых частях складчатых сооружений. Он вскрыт на Балтийском (Фенноскандинавском) щите на глубину более 12 км Кольской сверхглубокой скважиной и на меньшую глубину в Швеции, на Русской плите в Саатлинской уральской скважине, на плите в США, в шахтах Индии и Южной Африки. Он сложен кристаллическими сланцами, гнейсами, амфиболитами, гранитами и гранитогнейсами, и называется гранитогнейсовым или гранитно-метаморфическим слоем. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях. Скорость продольных волн составляет 5,5-6,5 км/с.

Третий слой или нижний слой консолидированной коры был выделен как гранулито-базитовый слой. Ранее предполагалось, что между вторым и третьим слоем существует чёткая сейсмическая граница, названная по имени её первооткрывателя границей Конрада (К) . Позднее при сейсмических исследованиях стали выделять даже до 2-3 границ К . Кроме того, данные бурения Кольской СГ-3 не подтвердили различие в составе пород при переходе границы Конрада. Поэтому в настоящее время большинство геологов и геофизиков различают верхнюю и нижнюю кору по их отличным реологическим свойствам: верхняя кора более жёсткая, и хрупкая, а нижняя – более пластичная. Тем не менее, на основании состава ксенолитов из трубок взрыва можно полагать, что «гранулито-базитовый» слой содержит гранулиты кислого и основного состава и базиты. На многих сейсмических профилях нижняя кора характеризуется наличием многочисленных отражающих площадок, что также может, вероятно, рассматриваться как наличие пластовых внедрений магматических пород (что-то похожее на трапповые поля). Скорость продольных волн в нижней коре 6,4-7,7 км/с.

Кора переходного типа является разновидностью коры между двумя крайними типами земной коры (океанской и континентальной) и может быть двух типов – субокеанской и субконтинентальной. Субокеанская кора развита вдоль континентальных склонов и подножий и, вероятно, подстилает дно котловин не очень глубоких и широких окраинных и внутренних морей. Мощность её не превышает 15-20 км. Она пронизана дайками и силами основных магматических пород. Субокеанская кора вскрыта скважиной у входа в Мексиканский залив и обнажена на побережье Красного моря. Субконтинентальная кора образуется в том случае, когда океанская кора в энсиматических вулканических дугах превращается в континентальную, но ещё не достигает «зрелости». Она обладает пониженной (менее 25 км) мощностью и более низкой степенью консолидированности. Скорость продольных волн в коре переходного типа не более 5,0-5,5 км/с.

Поверхность Мохоровичича и состав мантии. Граница между корой и мантией достаточно чётко определяется по резкому скачку скоростей продольных волн от 7,5-7,7 до 7,9-8,2 км/сек и она известна как поверхность Мохоровичича (Мохо или М) по имени выделившего её хорватского геофизика.

В океанах она отвечает границе между полосчатым комплексом 3-го слоя и серпентинизированными базит-гипербазитами. На континентах она расположена на глубине 25-65 км и до 75 км в складчатых областях. В ряде структур выделяется до трёх поверхностей Мохо, расстояния между которыми могут достигать нескольких км.

По результатам изучения ксенолитов из лав и кимберлитов из трубок взрыва предполагается, что под континентами в верхней мантии присутствую кроме перидотитов эклогиты (как реликты океанской коры, оказавшиеся в мантии в процессе субдукции?).

Верхняя часть мантии – это «истощённая» («деплетированная») мантия. Она обеднена кремнезёмом, щелочами, ураном, торем, редкими землями и другими некогерентными элементами благодаря выплавлению из неё базальтовых пород земной коры. Она охватывает почти всю её литосферную часть. Глубже она сменяется «неистощенной» мантией. Средний первичный состав мантии близок к шпинелевому лерцолиту или гипотетической смеси перидотита и базальта в пропоции 3:1, которая была названа А.Е. Рингвудом пиролитом .

Слой Голицина или средняя мантия (мезосфера) – переходная зона между верхней и нижней мантией. Простирается он с глубины 410 км, где отмечается резкое возрастание скоростей продольных волн, до глубины 670 км. Возрастание скоростей объясняется увеличением плотности вещества мантии примерно на 10%, в связи с переходом минеральных видов в другие виды с более плотной упаковкой: например, оливина в вадслеит, а затем вадслеита в рингвудит со структурой шпинели; пироксена в гранат.

Нижняя мантия начинается с глубины около 670 км и простирается до глубины 2900 км со слоем D в основании (2650-2900 км), т. е. до ядра Земли. На основании экспериментальных данных предполагается, что она должна быть сложена в основном перовскитом (MgSiO 3) и магнезиовюститом (Fe,Mg)O – продуктами дальнейшего изменения вещества нижней мантии при общем увеличении отношения Fe/Mg.

По последним сейсмотомографическим данным выявлена значительная негомогенность мантии, а также наличие большего количества сейсмических границ (глобальные уровни – 410, 520, 670, 900, 1700, 2200 км и промежуточные – 100, 300, 1000, 2000 км), обусловленных рубежами минеральных преобразований в мантии (Павленкова, 2002; Пущаровский, 1999, 2001, 2005; и др.).

По Д.Ю. Пущаровскому (2005) строение мантии представляется несколько иначе, чем вышеприведённые данные согласно традиционной модели (Хаин, Ломизе, 1995):

Верхняя мантия состоит из двух частей: верхняя часть до 410 км, нижняя часть 410-850 км. Между верхней и средней мантией выделен раздел I – 850-900 км.

Средняя мантия : 900-1700 км. Раздел II – 1700-2200 км.

Нижняя мантия : 2200-2900 км.

Ядро Земли по данным сейсмологии состоит из внешней жидкой части (2900-5146 км) и внутренней твёрдой (5146-6371 км). Состав ядра большинством принимается железным с примесью никеля, серы либо кислорода или кремния. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Предполагается, что на границе ядра и нижней мантии зарождаются плюмы , которые затем в виде потока энергии или высокоэнергетического вещества поднимаются вверх, формируя в земной коре или на её поверхности магматические породы.

Плюм мантийный узкий, поднимающийся вверх поток твёрдофазного вещества мантии диаметром около100 км, который зарождается в горячем, низкоплотностном пограничном слое, расположенном либо выше сейсмической границы на глубине 660 км, либо рядом с границей ядро-мантия на глубине 2900 км (A.W. Hofmann, 1997). По А.Ф. Грачёву (2000) плюм мантийный – это проявление внутриплитной магматической активности, обусловленное процессами в нижней мантии, источник которой может находиться на любой глубине в нижней мантии, вплоть до границы ядро-мантия (слой «Д»). (В отличие от горячей точки, где проявление внутриплитной магматической активности обусловлено процессами в верхней мантии.) Мантийные плюмы характерны для дивергентных геодинамических режимов. По Дж. Моргану (1971) плюмовые процессы зарождаются ещё под континентами на начальной стадии рифтогенеза (рифтинга). С проявлением мантийного плюма связывается формирование крупных сводовых поднятий (диаметром до 2000 км), в которых происходят интенсивные трещинные излияния базальтов Fe-Ti-типа с коматиитовой тенденцией, умеренно обогащённых лёгкими РЗЭ, с кислыми дифференциатами, составляющими не более 5% от общего объёма лав. Отношения изотопов 3 He/ 4 He(10 -6)>20; 143 Nd/ 144 Nd – 0.5126-0/5128; 87 Sr/ 86 Sr – 0.7042-0.7052. С мантийным плюмом связывается формирование мощных (от 3-5 км до 15-18 км) лавовых толщ архейских зеленокаменных поясов и более поздних рифтогенных структур.

В северо-восточной части Балтийского щита, и на Кольском п-ове в частности, предполагается, что мантийные плюмы обусловили формирование позднеархейских толеитбазальтовых и коматиитовых вулканитов зеленокаменных поясов, позднеархейского щелочногранитного и анортозитового магматизма, комплекса раннепротерозойских расслоенных интрузий и палеозойских щелочно-ультраосновных интрузий (Митрофанов, 2003).

Плюм-тектоника тектоника мантийных струй, связанная с тектоникой плит. Эта связь выражается в том, что субдуцируемая холодная литосфера погружается до границы верхней и нижней мантии (670 км), накапливается там, частично продавливаясь вниз, а затем через 300-400 млн. лет проникает в нижнюю мантию, достигая её границы с ядром (2900 км). Это вызывает изменение характера конвекции во внешнем ядре и его взаимодействия с внутренним ядром (граница между ними на глубине около 4200 км) и, в порядке компенсации притока материала сверху, образование на границе ядро/мантия восходящих суперплюмов. Последние поднимаются до подошвы литосферы, частично испытывая задержку на границе нижней и верхней мантии, а в тектоносфере расщепляются на более мелкие плюмы, с которыми и связан внутриплитный магматизм. Они же, очевидно, стимулируют конвекцию в астеносфере, ответственную за перемещение литосферных плит. Процессы же, происходящие в ядре, японские авторы обозначают в отличие от плейт- и плюм-тектоники, как тектонику роста (growth teсtonics), имея ввиду рост внутреннего, чисто железо-никелевого ядра за счёт внешнего ядра, пополняемого корово-мантиным силикатным материалом.

Возникновение мантийных плюмов, приводящее к образованию обширных провинций плато-базальтов, предшествует рифтогенезу в пределах континентальной литосферы. Дальнейшее развитие может происходить по полному эволюционному ряду, включающему заложение тройных соединений континентальных рифтов, последующее утонение, разрыв материковой коры и начало спрединга. Однако развитие отдельно взятого плюма не может привести к разрыву материковой коры. Разрыв происходит в случае заложения системы плюмов на континенте и далее процесс раскола происходит по принципу продвигающей трещины от одного плюма к другому.

Литосфера и астеносфера

Литосфера состоит из земной коры и части верхней мантии. Это понятие чисто реологическое, в отличие от коры и мантии. Она более жесткая и хрупкая, чем более ослабленная и пластичная подстилающая оболочка мантии, которая была выделена как астеносфера . Мощность литосферы от 3-4 км в осевых частях срединно-океанских хребтов до80-100 км на периферии океанов и 150-200 км и более (до 400 км?) под щитами древних платформ. Глубинные границы (150-200 км и более) между литосферой и астеносферой определяется с большим трудом, либо вовсе не выявляются, что, вероятно, объясняется высокой изостатической уравновешенностью и уменьшением контраста между литосферой и астеносферой в приграничной зоне, обусловленным высоким геотермическим градиентом, уменьшением количества расплава в астеносфере и т.д.

Тектоносфера

Источники тектонических движений и деформаций лежат не в самой литосфере, а в более глубоких уровнях Земли. В них вовлечена вся мантия вплоть до пограничного слоя с жидким ядром. В связи с тем, что источники движений проявляются и в непосредственно подстилающем литосферу более пластичном слое верхней мантии – астеносфере, литосферу и астеносферу нередко объединяют в одно понятие – тектоносферы как области проявления тектонических процессов. В геологическом смысле (по вещественному составу) тектоносфера делится на земную кору и верхнюю мантию до глубины примерно 400 км, а в реологическом смысле – на литосферу и астеносферу. Границы между этими подразделениями, как правило, не совпадают, и литосфера обычно включает кроме коры и какую-то часть верхней мантии.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Внутреннее строение Земли

Недавно американский геофизик М. Херндон высказал гипотезу о том, что в центре Земли находится естественный «ядерный реактор» из урана и плутония (или тория) диаметром всего 8 км. Эта гипотеза способна объяснить инверсию земного магнитного поля, происходящую каждые 200 000 лет. Если это предположение подтвердится, то жизнь на Земле может завершиться на 2 млрд. лет ранее, чем предполагалось, так как и уран, и плутоний сгорают очень быстро. Их истощение приведет к исчезновению магнитного поля, защищающего 3емлю от коротковолнового солнечного излучения и, как следствие, к исчезновению всех форм биологической жизни. Эту теорию прокомментировал член-корреспондент РАН В.П. Трубицын: «И уран, и торий - очень тяжелые элементы, которые в процессе дифференциации первичного вещества планеты могут опуститься к центру Земли. Но на атомном уровне они увлекаются с легкими злементами, которые выносятся в земную кору, поэтому все урановые месторождения и находятся в самом верхнем слое коры. То есть если бы и эти элементы были сосредоточены в виде скоплений, они могли бы опуститься в ядро, но, по сложившимся представлениям, их должно быть небольшое количество. Таким образом, для того чтобы делать заявления об урановом ядре Земли, необходимо дать более обоснованную оценку количества урана, ушедшего в железное ядро. Следует также Строение Земли

Осенью 2002 года профессор Гарвардского университета А. Дзевонски и его студент М. Исии на основании анализа данных от более чем 300 000 сейсмических явлений, собранных за 30 лет, предложили новую модель, согласно которой в пределах внутреннего ядра лежит так называемое «самое внутреннее» ядро, имеющее около 600 км в поперечнике: Его наличие может быть доказательством существования двух этапов развития внутреннего ядра. Для подтверждения подобной гипотезы необходимо разместить по всему земному шару еще большее число сейсмографов, чтобы nровести более детальное выделение анизотропии (зависимость физических свойств вещества от направления внутри него), которая характеризует самый центр Земли.

Индивидуальное лицо планеты, подобно облику живого существа, во многом определяется внутренними факторами, возникающими в ее глубоких недрах. Изучать эти недра очень трудно, так как материалы, из которых состоит Земля, непрозрачны и плотны, поэтому объем прямых данных о веществе глубинных зон весьма ограничен. К их числу относятся: так называемый минеральный агрегат (крупные составные части породы) из природной сверхглубокой скважины - кимберлитовой трубки в Лecoтo (Южная Африка), который рассматривается как представитель пород, залегающих на глубине порядка 250 км, а также керн (цилиндрическая колонка горной породы), поднятый из глубочайшей в мире скважины (12 262 м) на Кольском полуострове. Исследование сверхглубин планеты этим не ограничивается. В 70-е годы ХХ века научное континентальное бурение производилось на на территории Азербайджана - Сааблинская скважина (8 324 м). А в Баварии в начале 90-х годов прошлого века была заложена сверхглубокая скважина КТБ-Оберпфальц размером более 9 000 м.

Существует много остроумных и интересных методов изучения нашей планеты, но основная информация о ее внутреннем строении получена в результате исследований сейсмических волн, возникающих при землетрясениях и мощных взрывах. Каждый час в различных точках Земли регистрируется около 10 колебаний земной поверхности. При этом возникают сейсмические волны двух типов: продольные и поперечные. В твердом веществе могут распространиться оба типа волн, а вот в жидкостях - только продольные. Смещения земной поверхности регистрируются сейсмографами, установленными по всему земному шару. Наблюдения скорости, с которой волны проходят сквозь 3емлю, позволяют геофизикам определить плотность и твёрдость пород на глубинах, недоступных прямым исследованиям. Сопоставление плотностей, известных по сейсмическим данным и полученным в ходе лабораторных экспериментов с горными породами (где моделируются температура и давление, соответствующие определенной глубине 3емли), позволяет сделать вывод о вещественном составе земных недр. Новейшие данные геофизики и эксперименты, связанные с исследованием структурных превращений минералов, позволили смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли.

Еще в XVII веке удивительное совпадение очертаний береговых линий западного побережья Африки и восточного побережья Южной Америки наводило некоторых ученых на мысль о том, что континенты «гуляют» по планете. Но только три века спустя, в 1912 году, немецкий метеоролог Альфред Лотар Вегенер подробно изложил свою гипотезу континентального дрейфа, согласно которой относительное положение континентов менялось на протяжении истории 3емли. Одновременно он выдвинул множество аргументов в пользу того, что в далеком прошлом континенты были собраны вместе. Помимо сходства береговых линий им были обнаружены соответствие геологических структур, непрерывность реликтовых горных хребтов и тождественность ископаемых остатков на разных континентах. Профессор Вегенер активно отстаивал идею о существовании в прошлом единого суперконтинента Пангея, его расколе и последующем дрейфе образовавшихся континентов в разные стороны. Но эта необычная теории не была воспринята всерьез, потому что с точки зрения того времени казалось совершенно непостижимым, чтобы гигантские континенты могли самостоятельно перемещаться по планете. К тому же сам Вегенер не смог предоставить подходящий «механизм», способный двигать континенты.

Возрождение идей этого ученого произошло в результате исследований дна океанов. Дело в том, что наружный рельеф континентальной коры хорошо известен, а вот океанское дно, в течение многих веков надежно укрытое многокилометровой толщей воды, оставалось недоступным для изучения и служило неисчерпаемым источником всевозможных легенд и мифов. Важным шагом вперёд в изучении его рельефа явилось изобретение прецизионного эхолота, с помощью которого стало возможным непрерывно измерять и регистрировать глубину дна по линии движения судна. Одним из поразительных результатов интенсивного исследования дна океанов стали новые данные о его топографии. Сегодня топографию океанского дна легче картировать благодаря спутникам, очень точно измеряющим «высоту» морской поверхности: ее в точности отображают различия уровня моря от места к месту. Вместо плоского, лишенного каких-либо особых примет, прикрытого илом дна обнаружились глубокие рвы и крутые обрывы, гигантские горные хребты и крупнейшие вулканы. Особенно явственно выделяется па картах Срединно-Атлантический горный хребет, рассекающий Атлантический океан точно посередине.

Оказалось, что дно океана стареет по мере удаления от срединно-океанического хребта, «расползаясь» от его центральной зоны со скоростью несколько сантиметров в год. Действием этого процесса можно объяснить сходство очертаний континентальных окраин, если предполагать, что между частями расколовшегося континента образуется новый океанический хребет, а океаническое дно, наращиваемое симметрично с обеих сторон, формирует новый океан. Атлантический океан, посреди которого лежит Срединно-Атлантический хребет, вероятно, возник именно таким образом. Но если площадь морского дна увеличивается, а Земля не расширяется, то что-то в глобальной коре должно разрушаться, чтобы скомпенсировать этот процесс. Именно это и происходит на окраинах большей части Тихого океана. 3десь литосферные плиты сближаются, и одна из сталкивающихся плит погружается под другую и уходит глубоко внутрь Земли. Такие участки столкновения отмечаются активными вулканами, которые протянулись вдоль берегов Тихого океана, образуя так называемое «огненное кольцо».

Непосредственное бурение морского дна и определение возраста поднятых пород подтвердили результаты палеомагнитных исследований. Эти факты легли в основу теории новой глобальной тектоники, или тектоники литосферных плит, которая произвела настоящую революцию в науках о 3емле и принесла новое представление о внешних оболочках планеты. Главной идеей этой теории являются горизонтальные движения плит.

Как рождалась земля

Согласно современным космологическим представлениям 3емля образовалась вместе с другими планетами около 4,5 млрд. лет назад из кусков и обломков, вращавшихся вокруг молодого Солнца. Она разрасталась, захватывая вещество, находившееся вокруг, пока не достигла своего нынешнего размера. Вначале процесс разрастания происходил очень бурно, и непрерывный дождь падающих тел должен был привести к ее значительному нагреванию, так как кинетическая энергия частиц превращалась в тепло. При ударах возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть силу земного притяжения и падало обратно, и чем крупнее были падающие тела, тем сильнее разогревали они Землю. Энергия падающих тел освобождалась уже не на поверхности, а в глубине планеты, не успевая излучиться в пространство. Хотя первоначальная смесь веществ могла быть однородной в большом масштабе, разогрев земной массы вследствие гравитационного сжатия и бомбардировки ее обломками привел к расплавлению смеси и возникшие жидкости под действием тяготения отделялись от оставшихся твердых частей. Постепенное перераспределение вещества по глубине в соответствии с плотностью должно было привести к его расслоению на отдельные оболочки. Более легкие вещества, богатые кремнием, отделялись от более плотных, содержащих железо и никель, и образовывали первую земную кору. Спустя примерно миллиард лет, когда 3емля существенно охладилась, земная кора затвердела, превратившись в прочную внешнюю оболочку планеты. Остывая, 3емля выбрасывала из своего ядра множество различных газов (обычно это происходило при извержении вулканов) - легкие, такие как водород и гелий, большей частью улетучивались в космическое пространство, но так как сила притяжения 3емли была уже достаточно велика, то удерживала у своей поверхности более тяжелые. Они как раз и составили основу земной атмосферы. Часть водяных паров из атмосферы сконденсировалась, и на 3емле возникли океаны.

Что сейчас?

Земля - не самая большая, но и не самая маленькая планета среди своих соседей. Экваториальный радиус ее, равный 6378 км, из-за центробежной силы, создаваемой суточным вращением, больше полярного на 21 км. Давление в центре Земли составляет 3 млн. атм., а плотность вещества - около 12 г/см3. Масса нашей планеты, найденная путем экспериментальных измерений физической постоянной тяготения и ускорения силы тяжести на экваторе, составляет 6*1024 кг, что соответствует средней плотности вещества 5,5 г/см3. Плотность минералов на поверхности приблизительно вдвое меньше средней плотности, а значит, плотность вещества в центральных областях планеты должна быть выше среднего значения. Момент инерции Земли, зависящий от распределения плотности вещества вдоль радиуса, также свидетельствует о значительном увеличении плотности вещества от поверхности к центру. Из недр Земли постоянно выделяется тепловой поток, а так как тепло может передаваться только от горячего к холодному, то температура в глубине планеты должна быть выше, чем на ее поверхности. Глубокое бурение показало, что температура с глубиной увеличивается примерно на 20°С на каждом километре и меняется от места к месту. Если бы увеличение температуры продолжалось непрерывно, то в самом центре Земли она достигла бы десятков тысяч градусов, однако геофизические исследования показывают, что в действительности температура здесь должна составлять несколько тысяч градусов.

Толщина Земной коры (внешней оболочки) изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков). Сфера земной коры очень небольшая, на ее долю приходится всего около 0,5% общей массы планеты. Основной состав коры - это окислы кремния, алюминия, железа и щелочных металлов. В составе континентальной коры, содержащей под осадочным слоем верхний (гранитный) и нижний (базальтовый), встречаются наиболее древние породы Земли, возраст которых оценивается более чем в 3 млрд. лет. Океаническая же кора под осадочным слоем содержит в основном один слой, близкий по составу к базальтовым. Возраст осадочного чехла не превышает 100-150 миллионов лет.

От низлежащей мантии земную кору отделяет во вмогом еще загадочный Слой Мохо (назван так в честь сербского сейсмолога Мохоровичича, открывшего его в 1909 году), в котором скорость распространения сейсмических волн скачкообразно увеличивается.

На долю Мантии приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой - самой жесткой оболочкой Земли. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой, менее вязкий и более пластичный по отношению к выше и ниже лежащим слоям, называют астеносферой. Считается, что вещество мантии находится в непрерывном движении, и высказывается предположение, что в относительно глубоких слоях мантии с ростом температуры и давления происходит переход вещества в более плотные модификации. Такой переход подтверждается и экспериментальными исследованиями.

В нижней мантии на глубине 2900 км отмечается резкий скачок не только в скорости продольных волн, но и в плотности, а поперечные волны сдесь исчезают совсем, что указывает на смену вещественного состава пород. Это внешняя граница ядра Земли.

Земное ядро открыто в 1936 году. Получить его изображение было чрезвычайно трудно из-за малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Земное ядро разделяется на 2 отдельные области: жидкую (ВНЕШНЕЕ ЯДРО) и твердую (BHУTPEHHE), переход между ними лежит на глубине 5156 км. Железо - элемент, который соответствует сейсмическим свойствам ядра и обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

ВНУТРЕННЕЕ ТВЕРДОЕ ЯДРО не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра 3емли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При зтом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.

Чтобы понять каким образом геологи создали модель строения Земли, надо знать основные свойства и их параметры, характеризующие все части Земли. К таким свойствам (или характеристикам) относятся:

1. Физические - плотность, упругие магнитные свойства, давление и температура.

2. Химические - химический состав и химические соединения, распределение химических элементов в Земле.

Исходя из этого, определяется выбор методов исследования состава и строения Земли. Кратко рассмотрим их.

Прежде всего, отметим, что все методы разделяются на:

· прямые - опираются на непосредственное изучение минералов и горных пород и их размещении в толщах Земли;

· косвенные - основаны на изучении физических и химических параметров минералов, пород и толщ с помощью приборов.

Прямыми методами мы можем изучить лишь верхнюю часть Земли, т.к. самая глубокая скважина (Кольская) достигла~12 км. О более глубоких частях можно судить по вулканическим извержениям.

Глубинное внутреннее строение Земли изучается косвенными методами, в основном комплексом геофизических методов. Рассмотрим основные из них.

1.Сейсмический метод (греч. сейсмос - трясение) - опирается на явление возникновения и распространения упругих колебаний (или сейсмических волн) в различных средах. Упругие колебания возникают в Земле при землетрясениях, падениях метеоритов или взрывах и начинают распространяться с разной скоростью от очага их возникновения (очага землетрясения) до поверхности Земли. Выделяют два типа сейсмических волн:

1-продольные P-волны (самые быстрые), проходят через все среды - твердые и жидкие;

2-поперечные S-волны, более медленные и проходят только через твердые среды.

Сейсмические волны при землетрясениях возникают на глубинах от 10 км до 700 км. Скорость сейсмических волн зависит от упругих свойств и плотности горных пород, которые они пересекают. Достигая поверхности Земли, они как бы просвечивают ее и дают представление о той среде, которую пересекли. Изменение скоростей дает представление о неоднородности и расслоенности Земли. Кроме изменения скоростей, сейсмические волны испытывают преломление, проходя через неоднородные слои или отражение от поверхности, разделяющей слои.

2.Гравиметрический метод основан на изучении ускорения силы тяжести Dg, которое зависит не только от географической широты, но и от плотности вещества Земли. На основании изучения этого параметра установлена неоднородность в распределении плотности в разных частях Земли.

3.Магнитометрический метод - основан на изучении магнитных свойств вещества Земли. Многочисленные измерения показали, что различные горные породы отличаются друг от друга по магнитным свойствам. Это приводит к образованию участков с неоднородными магнитными свойствами, которые позволяют судить о строении Земли.

Сопоставляя все характеристики, ученые создали модель строения Земли, в которой выделяют три главные области (или геосферы):

1-Земная кора, 2-Мантия Земли, 3-Ядро Земли.

Каждая из них в свою очередь разделяется на зоны или слои. Рассмотрим их и основные параметры суммируем в таблице.

1. Земная кора (слой А)- это верхняя оболочка Земли, ее мощность колеблется от 6-7км до 75км.

2.Мантия Земли подразделяется на верхнюю (со слоями: В и С) и нижнюю (слой D).


3. Ядро - подразделяется на внешнее (слой Е) и внутреннее (слой G), между которыми располагается переходная зона - слой F.

Границей между земной корой и мантией является раздел Мохоровичича, между мантией и ядром также резкая граница- раздел Гуттенберга.

Из таблицы видно, что скорость продольных и поперечных волн возрастает от поверхности к более глубоким сферам Земли.

Особенностью верхней мантии является наличие зоны, в которой резко падает скорость поперечных волн до 0.2-0.3 км/сек. Это объясняется тем, что наряду с твердым состоянием, мантия частично представлена расплавом. Этот слой пониженных скоростей называют астеносферой . Его мощность 200-300 км, глубина 100-200 км.

На границе мантии и ядра происходит резкое снижение скорости продольных волн и затухание скорости поперечных волн. На основании этого сделано предположение, что внешнее ядро находится в состоянии расплава.

Средние значения плотности по геосферам показывают ее возрастание к ядру.

О химическом составе Земли и ее геосфер дают представление:

1- химический состав земной коры,

2 - химический состав метеоритов.

Химический состав земной коры изучен достаточно детально - известен ее валовый химический состав и роль химических элементов в минерало- и породообразовании. Труднее обстоит дело с изучением химического состава мантии и ядра. Прямыми методами мы этого пока сделать не можем. Поэтому применяют сравнительный подход. Исходным положением является предположение о протопланетном сходстве между составом метеоритов, упавших на землю, и внутренних геосфер Земли.

Все метеориты, попавшие на Землю, по составу делятся на типы:

1-железные, состоят из Ni и 90% Fe;

2-железокаменные (сидеролиты) состоят из Fe и силикатов,

3-каменные, состоящие из Fe-Mg силикатов и включений никелистого железа.

На основании анализа метеоритов, экспериментальных исследований и теоретических расчетов ученые предполагают (по таблице), что химический состав ядра - это никелистое железо. Правда, в последние годы высказывается точка зрения, что кроме Fe-Ni в ядре могут быть примеси S, Si или О. Для мантии химический спектр определяется Fe-Mg силикатами, т.е. своеобразный оливино-пироксеновый пиролит слагает нижнюю мантию, а верхнюю - породы ультраосновного состава.

Химический состав земной коры включает максимальный спектр химических элементов, который выявляется в многообразии минеральных видов, известных к настоящему времени. Количественное соотношение между химическими элементами достаточно велико. Сравнение наиболее распространенных элементов в земной коре и мантии показывает, что ведущую роль играют Si, Al и О 2 .

Таким образом, рассмотрев основные физические и химические характеристики Земли, мы видим, что их значения неодинаковы, распределяются зонально. Тем самым, давая представление о неоднородном строении Земли.

Строение Земной коры

Рассмотренные нами ранее типы горных пород - магматические, осадочные и метаморфические участвуют в строении земной коры. По своим физико-химическим параметрам все породы земной коры группируются в три крупных слоя. Снизу вверх это: 1-базальтовый, 2-гранито-гнейсовый, 3-осадочный. Эти слои в земной коре размещены неравномерно. Прежде всего, это выражается в колебаниях мощности каждого слоя. Кроме того, не во всех частях наблюдается полный набор слоев. Поэтому более детальное изучение позволило по составу, строению и мощности выделить четыре типа земной коры: 1-континентальный, 2-океанский, 3-субконтинентальный, 4-субокеанский.

1. Континентальный тип - имеет мощность 35-40 км до 55-75 км в горных сооружениях, содержит в своем составе все три слоя. Базальтовый слой состоит из пород типа габбро и метаморфических пород амфиболитовой и гранулитовой фаций. Называется он так потому, что по физическим параметрам он близок базальтам. Гранитный слой по составу - это гнейсы и гранито-гнейсы.

2.Океанский тип - резко отличается от континентального мощностью (5-20 км, средняя 6-7 км) и отсутствием гранито-гнейсового слоя. В его строении участвуют два слоя: первый слой осадочный, маломощный (до 1 км), второй слой - базальтовый. Некоторые ученые выделяют третий слой, который является продолжением второго, т.е. имеет базальтовый состав, но сложен ультраосновными породами мантии, подвергшихся серпентинизации.

3.Субконтинентальный тип - включает все три слоя и этим близок к континентальному. Но отличается меньшей мощностью и составом гранитного слоя (меньше гнейсов и больше вулканических пород кислого состава). Этот тип встречается на границе континентов и океанов с интенсивным проявлением вулканизма.

4. Субокеанский тип - располагается в глубоких прогибах земной коры (внутриконтинентальные моря типа Черного и Средиземного). От океанского типа отличается большей мощностью осадочного слоя до 20-25 км.

Проблема формирования земной коры .

По Виноградову- процесс формирования земной коры происходил по принципу зонной плавки . Суть процесса: вещество Протоземли, близкое к метеоритному, в результате радиоактивного прогрева расплавлялось и более легкая силикатная часть поднималась к поверхности, а Fe-Ni концентрировалась в ядре. Таким образом, происходило формирование геосфер.

Следует отметить, что земная кора и твердая часть верхней мантии объединяются в литосферу , ниже которой располагается астеносфера .

Тектоносфера - это литосфера и часть верхней мантии до глубин 700км (т.е. до глубины самых глубоких очагов землетрясений). Названа так потому, что здесь происходят основные тектонические процессы, определяющие перестройку этой геосферы.

Земля является объектом исследования значительного количества наук о Земле. Изучение Земли как небесного тела принадлежит к области , строение и состав Земли изучает геология, состояние атмосферы - метеорология, совокупность проявлений жизни на планете - биология. География дает описание особенностей рельефа поверхности планеты - океанов, морей, озер и год, материков и островов, гор и долин, а также поселения и обществ. образования: города и села, государства, экономические районы и т.д.

Планетарные характеристики

Земля вращается вокруг звезды Солнце по эллиптической орбите (очень близкой к круговой) со средней скоростью 29765 м / с на среднем расстоянии 149 600 000 км за период, что примерно равно 365,24 суток. Земля имеет спутник - , которая вращается вокруг Солнца на среднем расстоянии 384400 км. Наклон земной оси к плоскости эклиптики составляет 66 0 33"22"". Период обращения планеты вокруг своей оси 23 ч 56 мин 4,1 с. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года.

Форма Земли - геоид. Средний радиус Земли составляет 6371,032 км, экваториальный - 6378,16 км, полярный - 6356,777 км. Площадь поверхности земного шара 510 млн км ², объем - 1,083 · 10 12 км ², средняя плотность - 5518 кг / м ³. Масса Земли составляет 5976.10 21 кг. Земля имеет магнитное и тесно связанное с ним электрическое поля. Гравитационное поле Земли обуславливает ее близкую к сферической форму и существование атмосферы.

По современным космогоническим представлениям Земля образовалась примерно 4,7 млрд лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества Земли, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34,6%), кислород (29,5%), кремний (15,2%), магний (12,7%). Земная кора, мантия и внутренняя часть ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Давление в центре планеты 3.6 · 10 11 Па, плотность примерно 12,5 · 10 ³ кг / м ³, температура в диапазоне от 5000 до 6000 ° C . Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Форма Земли

Фигура Земли - это идеализация, с помощью которой пытаются описать форму планеты. В зависимости от цели описания используют различные модели формы Земли.

Первое приближение

Наиболее грубой форме описания фигуры Земли при первом приближении - есть сфера. Для большинства проблем общего землеведения этого приближения представляется достаточным, чтобы использовать в описании или исследовании некоторых географических процессов. В таком случае отвергают Сплющенность планеты при полюсах как несущественное замечание. Земля имеет одну ось вращения и экваториальную плоскость - плоскость симметрии и плоскости симметрии меридианов, что характерно отличает ее от бесконечности множеств симметрии идеальной сферы. Горизонтальная структура географической оболочки характеризуется определенной поясностью и определенной симметрией относительно экватора.

Второе приближение

При большем приближении фигуру Земли приравнивают к эллипсоида вращения. Эта модель, характеризующаяся выраженной осью, экваториальной плоскостью симметрии и меридиональными плоскостями, используется в геодезии для вычисления координат, построение картографических сетей, расчетов и т.д. Разница полуосей такого эллипсоида составляет 21 км, большая ось - 6378,160 км, малая - 6356,777 км, эксцентриситет - 1 / 298, 25. Положение поверхности легко может быть теоретически рассчитано, но его невозможно определить экспериментально в натуре.

Третье приближение

Так как экваториальный сечение Земли также эллипс с разностью длин полуосей в 200 м и эксцентриситетом 1 / 30000, третьей моделью выступает трехосный эллипсоид. В географических исследованиях эта модель почти не используется, она лишь свидетельствует о сложной внутреннее строение планеты.

Четвертое приближение

Геоид - это эквипотенциальные поверхность, совпадающая со средним уровнем Мирового океана, является геометрическим местом точек пространства, имеющих одинаковый потенциал силы тяжести. Такая поверхность имеет неправильную сложную форму, т.е. не является плоскостью. Уровневая поверхность в каждой точке перпендикулярна к отвеса. Практическое значение и важность этой модели состоит в том, что только с помощью отвеса, уровня, нивелира и других геодезических приборов можно проследить положение уровневых поверхностей, т.е. в нашем случае, геоида.

Океан и суша

Генеральная особенность строения земной поверхности заключается в распределении на материки и океаны. Большая часть Земли занята Мировым океаном (361,1 млн. км ² 70,8%), суша составляет 149,1 млн. км ² (29,2%), и образует шесть материков (Евразию, Африку, Северную Америку, Южную Америку, и Австралию) и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомолунгма), горы занимают свыше 1 / 3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Амплитуда высот на планете достигает 20 км. Средняя глубина мирового океана примерно равна 3800 м (наибольшая глубина 11020 м - Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн км ³, средняя соленость 35 ‰ (г / л).

Геологическое строение

Геологическое строение Земли

Внутреннее ядро, предположительно, имеет диаметр 2600 км и состоит из чистого железа или никеля, внешнее ядро толщиной 2250 км из расплавленного железа или никеля, мантия около 2900 км толщиной состоит преимущественно из твердых горных пород, отделенная от земной коры поверхностью Мохоровича. Кора и верхний слой мантии образуют 12 основных подвижных блоки, некоторые из них несут континенты. Плато постоянно медленно движутся, это движение называется тектоническим дрейфом.

Внутреннее строение и состав «твердой» Земли. 3. состоит из трех основных геосфер: земной коры, мантии и ядра, которое, в свою очередь, делится на ряд слоев. Вещество этих геосфер разная по физическим свойствам, состоянием и минералогическим составом. В зависимости от величины скоростей сейсмических волн и характера их изменения с глубиной «твердую» Землю делят на восемь сейсмических слоев: А, В, С, D ", D ", Е, F и G. Кроме того, в Земле выделяют особо прочный слой литосферу и следующий, размягченный слой - астеносферу Шар А, или земная кора, имеет переменную толщину (в континентальной области - 33 км, в океанической - 6 км, в среднем - 18 км).

Под горами кора утолщается, в рифтовых долинах срединно-океанических хребтов почти исчезает. На нижней границе земной коры, - поверхности Мохоровичича, - скорости сейсмических волн возрастают скачкообразно, что связано преимущественно с изменением вещественного состава с глубиной, переходом от гранитов и базальтов в ультраосновных горных пород верхней мантии. Слои В, С, D ", D "входят в мантию. Слои Е, F и G образуют ядро Земли радиусом 3486 км На границе с ядром (поверхности Гутенберга) скорость продольных волн резко уменьшается на 30%, а поперечные волны исчезают, что означает, что внешнее ядро (слой Е, тянется до глубины 4980 км) жидкое Ниже переходного слоя F (4980-5120 км) находится твердое внутреннее ядро (слой G), в котором вновь распространяются поперечные волны.

В твердой земной коре преобладают такие химические элементы: кислород (47,0%), кремний (29,0%), алюминий (8,05%), железо (4,65%), кальций (2,96%), натрий (2,5%), магний (1,87%), калий (2,5%), титан (0,45%), которые в сумме составляют 98,98%. Наиболее редкие элементы: Ро (примерно 2.10 -14 %), Ra (2.10 -10 %), Re (7.10 -8 %), Au (4,3 · 10 -7 %), Bi (9 · 10 -7 %) и т.д.

В результате магматических, метаморфических, тектонических процессов и процессов осадкообразования земная кора резко дифференцирована, в ней протекают сложные процессы концентрации и рассеяния химических элементов, приводящих к образованию различных типов пород.

Считают, что верхняя мантия по составу близка к ультраосновных пород, в которых преобладает О (42,5%), Mg (25,9%), Si (19,0%) и Fe (9,85%). В минеральном отношении здесь царит оливин, меньше пироксенов. Нижнюю мантию считают аналогом каменных метеоритов (хондритов). Ядро 3емли по составу аналогичное железным метеоритам и содержит примерно 80% Fe , 9% Ni , 0,6% Co . На основе метеоритной модели рассчитан средний состав Земли, в котором преобладает Fe (35%), А (30%), Si (15%) и Mg (13%).

Температура является одной из важнейших характеристик земных недр, позволяющих объяснить состояние вещества в различных слоях и построить общую картину глобальных процессов. По измерениям в скважинах температура на первых километрах нарастает с глубиной с градиентом 20 ° C / км. На глубине 100 км, где находятся первичные очаги вулканов, средняя температура чуть ниже температуры плавления горных пород и равна 1100 ° C. При этом под океанами на глубине 100-200 км температура выше, чем во континентами, на 100-200 ° C. Скачок плотности вещества в слое С на глибинв 420 км соответствует давления 1,4 · 10 10 Па и отождествляется с фазовым переходом в оливин, который происходит при температуре примерно 1600 ° C. На границе с ядром при давления 1,4 · 10 11 Па и температуре порядка 4000 ° C силикаты находятся в твердом состоянии, а железо в жидком. В переходном слое F, где железо затвердевает, температура может быть 5000 ° C, в центре 3емли - 5000-6000 ° C, т.е., адекватная темпператури Солнца.

Атмосфера Земли

Атмосфера Земли, общая масса которой 5,15 · 10 15 т, состоит из воздуха - смеси в основном азота (78,08%) и кислорода (20,95%), 0,93% аргона, 0,03% углекислого газа, остальное - это водяной пар, а также инертные и другие газы. Максимальная температура поверхности суши 57-58 ° C (в тропических пустынях Африки и Северной Америки), минимальная - около -90 ° C (в центральных районах Антарктиды).

Атмосфера Земли защищает все живое от губительного воздействия космического излучения.

Химический состав атмосферы Земли : 78,1% - азот, 20 - кислород, 0,9 - аргон, остальные - углекислый газ, водяной пар, водород, гелий, неон.

Атмосфера Земли включает :

  • тропосферу (до 15 км)
  • стратосферу (15-100 км)
  • ионосферу (100 - 500 км).
Между тропосферой и стратосферой размещается переходный слой - тропопауза. В глубинах стратосферы под воздействием солнечного света создается озоновый экран, защищающий живые организмы от космического излучения. Выше - мезо- , термо- и экзосферы.

Погода и климат

Нижний слой атмосферы называется тропосферой. В ней происходят явления, определяющие погоду. Вследствие неравномерного нагрева поверхности Земли солнечной радиацией, в тропосфере непрестанно проходит циркуляция больших масс воздуха. Основными воздушными течениями в атмосфере Земли является пассаты в полосе до 30 ° вдоль экватора и западные ветры умеренного пояса в полосе от 30 ° до 60 °. Другим фактором переноса тепла является система океанических течений.

Вода оказывает на поверхности земли постоянный круговорот. Испаряясь с поверхности вод и суши, при благоприятных условиях водяной пар поднимается вверх в атмосфере, что приводит к образованию облаков. Вода возвращается на поверхность земли в виде атмосферных осадков и стекает к морей и океанов системой год.

Количество солнечной энергии, которую получает поверхность Земли уменьшается с ростом широты. Чем дальше от экватора, тем меньше угол падения солнечных лучей на поверхность, и тем больше расстояние, которое должен пройти луч в атмосфере. Вследствие этого среднегодовая температура на уровне моря уменьшается примерно на 0.4 ° ​​C на один градус широты. Поврехню Земли разделяют на широтные пояса из примерно одинаковым климатом: тропический, субтропический, умеренный и полярный. Классификация климатов зависит от температуры и количества осадков. Наибольшее признание получила классификация климатов Кеппена, по которой выделяют пять широких групп - влажные тропики, пустыня, влажные средние широты, континентальный климат, холодный полярный климат. Каждая из этих групп разделяется на специфические пидрупы.

Влияние человека на атмосферу Земли

Атмосфера Земли испытывает значительное влияние жизнедеятельности человека. Около 300 млн автомобилей ежегодно выбрасывают в атмосферу 400 млн т оксидов углерода, более 100 млн т углеводов, сотни тысяч тонн свинца. Мощные производители выбросов в атмосферу: ТЭС, металлургическая, химическая, нефтехимическая, целлюлозная и другие отрасли промышленности, автотранспорт.

Систематическое вдыхание загрязненного воздуха заметно ухудшает здоровье людей. Газообразные и пылевые примеси могут оказывать воздуху неприятного запаха, раздражать слизистые оболочки глаз, верхних дыхательных путей и тем самым снижать их защитные функции, быть причиной хронических бронхитов и заболеваний легких. Многочисленные исследования показали, что на фоне патологических отклонений в организме (заболевания легких, сердца, печени, почек и других органов) вредное воздействие атмосферного загрязнения проявляется сильнее. Важной экологической проблемой стало выпадение кислотных дождей. Ежегодно при сжигании топлива в атмосферу поступает до 15 млн т двуокиси серы, который, сочетаясь с водой, образует слабый раствор серной кислоты, что вместе с дождем выпадает на землю. Кислотные дожди негативно влияют на людей, урожай, сооружения и т.д.

Загрязнение атмосферного воздуха может также косвенно влиять на здоровье и санитарные условия жизни людей.

Накопление в атмосфере углекислого газа может вызвать потепление климата в результате парникового эффекта. Суть его заключается в том, что слой двуокиси углекислого газа, который свободно пропускает солнечную радиацию к Земле, будет задерживать возвращения в верхние слои атмосферы теплового излучения. В связи с этим в нижних слоях атмосферы повышаться температура, что, в свою очередь, приведет к таянию ледников, снегов, подъема уровня океанов и морей, затопление значительной части суши.

История

Земля образовалась примерно 4540 миллионов лет назад с дискообразной протопланетарном облака вместе с другими планетами Солнечной системы. Формирования Земли в результате аккреции продолжалось 10-20 млн лет. Сначала Земля была полностью расплавленной, но постепенно остыла, и на ее поверхности образовалась тонкая твердая оболочка - земная кора.

Вскоре после образования Земли, примерно 4530 миллионов лет назад, образовалась Луна. Современная теория образования единого естественного спутника Земли утверждает, что это произошло как результат столкновения с массивным небесным телом, которое получило название Тея.
Первичная атмосфера Земли образовалась в результате дегазации горных пород и вулканической активности. Из атмосферы сконденсировавшаяся вода, образовав Мировой океан. Несмотря на то, что Солнце к тому времени светило на 70% слабее, чем сейчас, геологические данные показывают, что океан не замерз, что, возможно, связано с парниковым эффектом. Примерно 3,5 млрд лет назад сформировалось магнитное поле Земли, что защитило ее атмосферу от солнечного ветра.

Образование Земли и начальный этап ее развития (продолжительностью примерно 1,2 млрд лет) относятся к догеологичнои истории. Абсолютный возраст древнейших горных пород составляет свыше 3,5 млрд лет и, начиная с этого момента, ведет отсчет геологическая история Земли, которая делится на два неравных этапа: докембрий, занимающий примерно 5 / 6 всего геологического летоисчисления (около 3 млрд. лет) , и фанерозой, охватывающей последние 570 млн. лет. Около 3-3,5 млрд лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы - совокупности всех живых организмов (так называемая живое вещество Земли), которая существенно повлияла на развитие атмосферы, гидросферы и геосферы (по крайней мере в части осадочной оболочки). В результате кислородной катастрофы деятельность живых организмов изменила состав атмосферы Земли, обогатив ее кислородом, что создало возможность для развития аэробных живых существ.

Новый фактор, который оказывает мощное влияние на биосферу и даже геосферу - деятельность человечества, появившееся на Земле после появления в результате эволюции человека менее 3 млн лет назад (единства относительно датировки не достигнуто и некоторые исследователи считают - 7 млн лет назад) . Соответственно, в процессе развития биосферы выделяют образования и дальнейшее развитие ноосферы - оболочки Земли, на которую большое влияние оказывает деятельность человека.

Высокий темп роста населения Земли (численность земного населения составляла 275 млн в 1000 году, 1,6 млрд в 1900 году и примерно 6,7 млрд в 2009 году) и усиление влияния человеческого общества на природную среду выдвинули проблемы рационального использования всех природных ресурсов и охраны природы.

Похожие публикации