Статистическая физика. Предмет молекулярной физики и термодинамики

Термодинамическая система, коллектив и его состояния. Метод ансамблей. Энтропия и вероятность. Канонический ансамбль Гиббса. Каноническое распределение. Фактор Гиббса. Вероятности, свободная энергия и статистическая сумма.

Система и подсистемы. Общие свойства статистических сумм. Статистическая сумма пробной частицы и коллектива.

Идеальный газ. Распределение Больцмана. Фактор Больцмана. Квантовые состояния и дискретные уровни простых молекулярных движений. Статистический вес уровня (вырожденность). Суммы по уровням и суммы по состояниям.

Системы локализованные и делокализованные. Трансляционная сумма состояний, неразличимость частиц, стандартный объём. Вращательная сумма по уровням двухатомной молекулы, ориентационная неразличимость и число симметрии. Статистические суммы для одной и нескольких вращательных степеней свободы. Колебательная статистическая сумма в гармоническом приближении. Коррекция статистических сумм простых движений. Нулевой уровень колебаний, шкала молекулярной энергии, и молекулярная сумма состояний.

Свободная энергия A и статистические формулы для термодинамических функций: энтропия S, давление p, внутренняя энергия U, энтальпия H, энергия Гиббса G, химический потенциал m. Химическая реакция и константа равновесия Kp в системе идеальных газов.

1. Введение. Краткое напоминание основных сведений из термодинамики.

…Удобно термодинамические аргументы и определённые с их помощью функции состояния представить в виде единого массива взаимосвязанных переменных. Этот способ был предложен Гиббсом. Так, скажем, энтропия, которая по определению есть функция состояния, перемещается в разряд одной из двух естественных калорических переменных, дополняя в этом своём качестве температуру. И если в любых калорических процессах температура выглядит как интенсивная (силовая) переменная, то энтропия обретает статус экстенсивной переменной – тепловой координаты.

Этот массив всегда можно дополнить новыми функциями состояния или по необходимости уравнениями состояния, связывающими между собою аргументы. Число аргументов, минимально необходимое для исчерпывающего термодинамического описания системы, называется числом степеней свободы. Оно определяется из фундаментальных соображений термодинамики и может быть уменьшено благодаря различным уравнениям связи.

В таком едином массиве можно менять ролями аргументы и функции состояния. Этот приём широко используется в математике при построении обратных и неявных функций. Цель подобных логических и математических приёмов (достаточно тонких) одна – достижение максимальной компактности и стройности теоретической схемы.

2. Характеристические функции. Дифференциальные уравнения Массье.

Массив переменных p, V, T удобно дополнить функцией состояния S. Между ними имеется два уравнения связи. Одно из них выражено в виде постулируемой взаимозависимости переменных f(p,V,T) =0. Говоря об "уравнении состояния", чаще всего именно эту зависимость имеют в виду. Однако любой функции состояния отвечает новое уравнение состояния. Энтропия по определению есть функция состояния, т.е. S=S(p,V,T). Стало быть, между четырьмя переменными существует две связи, и в качестве независимых термодинамических аргументов можно выделить всего два, т.е. для исчерпывающего термодинамического описания системы достаточно лишь двух степеней свободы. Если этот массив переменных дополнить новой функцией состояния, то наряду с новой переменной появляется и ещё одно уравнение связи, и, стало быть, число степеней свободы не увеличится.

Исторически первой из функций состояния была внутренняя энергия. Поэтому с её участием можно сформировать исходный массив переменных:

Массив уравнений связи в таком случае содержит функции вида

f(p,V,T) =0, 2) U=U(p,V,T), 3) S=S(p,V,T).

Эти величины можно менять ролями или формировать из них новые функции состояния, но в любом случае суть дела не изменится, и останутся две независимые переменные. Теоретическая схема не выйдет за пределы двух степеней свободы до тех пор, пока не встанет необходимость учесть новые физические эффекты и связанные с ними новые превращения энергии, и их окажется невозможно охарактеризовать без расширения круга аргументов и числа функций состояния. Тогда может измениться и число степеней свободы.

(2.1)

3. Свободная энергия (энергия Гельмгольца) и её роль.

Состояние изотермической системы с неизменным объёмом целесообразно описывать посредством свободной энергии (функции Гельмгольца). В этих условиях она является характеристической функцией и изохорно-изотермическим потенциалом системы.

Посредством частного дифференцирования из неё далее можно извлечь прочие необходимые термодинамические характеристики, а именно:

(3.1)

Построить явный вид функции свободной энергии для некоторых относительно простых систем можно методом статистической термодинамики.

4. О равновесии.

В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.

Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.

Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.

5. О статистическом методе.

Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.

Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.

6. Равновесия и флуктуации. Микросостояния.

Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.

Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.

Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.

Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …

Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.

Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.

7. Метод Гиббса. Статистический ансамбль и его элементы.

Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.

Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.

В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. "Неоднородности" в коллективе постоянно мигрируют.

Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...

Статистическая термодинамика – раздел статистической физики, формулирующий законы, связывающие молекулярные свойства веществ с измеряемыми на опыте ТД величинами.

СТД посвящена обоснованию законов термодинамики равновесных систем и вычислению ТД функций по молекулярным постоянным. Основу СТД составляют гипотезы и постулаты.

В отличие от механики, в СТЛ рассматриваются средние значения координат и импульсов и вероятности появления их значений. Термодинамические свойства макроскопической системы рассматриваются как средние значения случайных величин или как характеристики плотности вероятности.

Различают классическую СТД (Максвелл, Больцман), квантовую (Ферми, Дирак, Бозе, Эйнштейн).

Основная гипотеза СТД: существует однозначная связь молекулярных свойств частиц, составляющих систему, и макроскопических свойств системы.

Ансамбль – большое, почти бесконечное число аналогичных ТД систем, находящихся в различных микросостояниях. У ансамбля с постоянной энергией все микросостояния равновероятны. Средние значения физически наблюдаемой величины за большой промежуток времени равно среднему значению по ансамблю.

§ 1. Микро- и макросостояния. Термодинамическая вероятность (статичтический вес) и энтропия. Формула Больцмана. Статистический характер второго закона ТД

Для описания макросостояния указывают небольшое число переменны (часто 2). Для описания микросостояния применяют описание конкретных частиц, для каждой из которых вводится шесть переменных.

Для графического изображения микросостояния удобно пользоваться фазовым пространством. Различают - фазовое пространство (молекулы) и Г-фазовое пространство (газ).

Для подсчёта числа микросостояний Больцман использовал метод ячеек, т.е. фазовый объём разбивается на ячейки, причем величина ячеек достаточно большая, чтобы поместилось несколько частиц, но маленькая по сравнению с целым объёмом.

Если полагать, что одна ячейка соответствует одному микросостоянию, то, если весь объём поделить на объём ячейки, получим число микросостояний.

Примем, что объём фазового пространства разбит на три ячейки. Общее число частиц в системе – девять. Пусть одно макросостояние: 7+1+1, второе: 5+2+2, третье: 3+3+3. Посчитаем число микросостояний, которыми может быть реализовано каждое макросостояние. Это число способов равно . В статистике Больцмана частицы считаются различимыми, т.е. обмен частиц между ячейками даёт новое микросостояние, но макросостояние остается тем же.

Наибольшее число микросостояний даёт система, в которой частицы равномерно распределены по всему объёму. Самое неустойчивое состояние соответствует накоплению частиц в одной части системы.


Посчитаем число микросостояний, когда число Авогадро распределено по двум ячейкам:

Применим формулу Стирлинга:

Если одна частица перескочит в чужую ячейку, получим отличие на .

Возьмем систему, в которой произошёл переход х частиц. Пусть мы хотим, чтобы . Расчет показывает, что х = 10 12 .

По мере перехода системы в равновесное состояние термодинамическая вероятность сильно растёт, энтропия тоже растёт. Следовательно,

Найдём вид этой функции, для этого возьмем систему из двух ячеек. В первом случае NA+0, во втором 0,5 + 0,5. Температура постоянна. Переход от первого состояния ко второму есть изотермическое расширение газа.

Согласно формуле Больцмана,

Так получается постоянная Больцмана. Теперь получим формулу Больцмана.

Возьмем две системы

Из двух систем образуем третью, тогда энтропия новой системы будет равняться:

Вероятность двух независимых систем перемножается:

Функция логарифмическая:

Но энтропия – величина размерная, нужен коэффициент пропорциональности. А это и есть константа Больцмана.

Вот здесь скользкий переход и вывод, что максимум энтропии в точке равновесия – закон не абсолютный, а статистический. Как видно, чем меньше частиц, тем реже выполняется второй закон термодинамики.

§ 2. Распределение молекул по энергии. Закон Больцмана

Система из Н частиц, . Как молекулы распрделены по энергии? Какое число молекул обладает энергией ?

Энтропия в состоянии равновесия имеет максимальное значение:

А теперь найдем что-то ещё:

Найдём дифференциалы:

В уравнении (2) не все количества независимы

Для того, чтобы избавиться от зависимых переменных, используем метод неопределенных множителей Лагранжа:

Подбираются так, чтобы коэффициенты при зависимых переменных были равны нулю.

Тогда остальные члены в сумме независимы. Окончательно получится, что

Потенцируем это уравнение:

Просуммируем:

Подставим в (3):

Избавимся от ещё одного множителя. Ур-е (6) логарифмируем, умножаем на и суммируем:

Неопределенный множитель Лагранжа стал определенным.

Окончательно, закон Больцмана запишется:

Подставим в (8) значение

Фактор Больцмана

Иногда распределение Больцмана записывают и так:

Соответственно, при температуре, близкой к абсолютному нулю, , т.е. нет молекул на возбужденных уровнях. При температуре, стремящейся к бесконечности, распределение по всем уровнями одинаково.

– сумма по состояниям


§ 3. Сумма по состояниям молекулы и её связь с термодинамическими свойствами

Выясним, какими свойствами обладает сумма по состояниям молекулы. Во-первых, это безразмерная величина, а её значение определяется температурой, количеством частиц и объёмом системы. Также она зависит от массы молекулы и её формы движения.

Далее, сумма по состояниям неабсолютная величина, она определена с точностью до постоянного множителя. Её величина зависит от уровня отсчёта энергии системы. Часто за этот уровень принимается температура абсолютного нуля и состояние молекулы с минимальными квантовыми числами.

Сумма по состояниям – монотонно увеличивающаяся функция температуры:

С ростом энергий сумма по состояниям увеличивается.

Сумма по состояниям молекулы обладает свойством мультипликативности. Энергию молекулы можно представить суммой поступательной и внутримолекулярной энергий. Тогда сумма по состояниям запишется так:

Можно ещё и так:

На возбуждение электронных уровней необходима высокая температура. При сравнительно невысоких температурах вклад электронных колебаний близок к нулю.

Нулевой уровень электронного состояния

Это вот всё называется приближением Борна – Оппенгеймера.

Предположим, что , тогда сумму можно заменить так:

Если остальные тоже между собой практически одинаковы, то:

Вырожденность уровней

Такая форма записи называется суммой по энергетическим уровням молекулы.

Сумма по состояниям связана с термодинамическими свойствами системы.

Возьмем производную по температуре:

Получили выражение для энтропии

Энергия Гельмгольца

Найдем давление:

Энтальпия и энергия Гиббса:

Осталась теплоемкость:

Во-первых, все величины – это приращение к нулевой энергии, во-вторых, все уравнения выполняются для систем, где частицы можно считать различимыми. В идеальном газе молекулы неразличимы.

§ 4. Каноническое распределение Гиббса

Гиббс предложил метод статистических, или термодинамических, ансамблей. Ансамбль – это большое, стремящееся к бесконечности, число аналогичных термодинамических систем, находящихся в различных микросостояниях. Микроканонический ансамбль характеризуется постонством . Канонический ансамбль имеет постоянные . Распределение Больцмана было выведено для микроканонического ансамбля, перейдём к каноническому.

Какова вероятность одного микросостояния в системе в термостате?

Гиббс ввёл понятие статистического ансамбля. Представим большой термостат, поместим в него ансамбль – одинаковые системы в различных микросостояниях. Пусть М – число систем в ансамбле. В состоянии i находятся систем.

В каноническом ансамбле, поскольку могут реализоваться состояния с различной энергией, следует ожидать, что вероятности будут зависеть от уровня энергии, которому они принадлежат.

Пусть имеется состояние, где энергия системы и её энтропия равны . Этой системе соответствует микросостояний.

Энергия Гельмгольца всего ансамбля постоянна.

Если внутреннюю энергию приравнять к энергии , то

Тогда вероятность одного состояния равна

Таким образом, вероятности, относящиеся к различным энергиям, зависят от энергии системы, а она может быть различной.

– каноническое распределение Гиббса

– вероятность макросостояния

вероятн.

§ 5. Сумма по состояниям системы и её связь с термодинамическими функциями

Сумма по состояниям системы

Функция состояния системы обладает свойством мультипликативности. Если энергию системы представить в виде:

Оказалось, что эта связь действует для системы локализованных частиц. Число микросостояний для нелокализованных частиц будет гораздо меньше. Тогда:

Пользуясь свойством мультипликативности, получим:

§ 6. Поступательная сумма по состояниям.
ТД свойства одноатомного идеального газа

Будем рассматривать одноатомный идеальный газ. Молекула считается точкой, которая обладает массой и способностью перемещаться в пространстве. Энергия такой частицы равна:

Такое движение имеет три степени свободы, поэтому представим эту энергию в виде трех составляющих. Рассмотрим движение вдоль координаты х .

Из квантовой механики:

Постулируется также.

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА,

раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вычислять , записывать уравнения состояния, условия фазовых и хим. равновесий. Неравновесная С. т. дает обоснование соотношений термодинамики необратимых процессов (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы С. т. используются во всех направлениях совр. теоретич. химии.

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией Eс окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N(параметры состояния V, Т, N ).Большой канонич. ансамбль Гиббса используется для описания открытых систем, находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V).Параметры состояния такой системы-V, Ти mЧ химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P(параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты i и сопряженные им импульсы

(i =1,2,..., М) системы с Мстепенями свободы. Для системы, состоящей из Nатомов, i и

соответствуют декартовой координате и компоненте импульса (a = х, у, z ) нек-рого атома jи М = 3N. Совокупность координат и импульсов обозначаются qи pсоответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q ),к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т. к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний.

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микросостояния ( р, q ) в элементе объема dГ фазового пространства. Вероятность пребывания Nчастиц в бесконечно малом объеме фазового пространства равна:

где dГ N -> элемент фазового объема системы в единицах h 3N , h -постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки тf(p, q )dГ N => 1, т. к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , нахождения системы из Nчастиц в квантовом состоянии, задаваемом набором квантовых чисел i, с энергией при условии нормировки

Среднее значение в момент времени т (т. е. по бесконечно малому интервалу времени от т до т + )любой физ. величины А( р, q ), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т. ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от Ч, до +,. Состояние термодинамич. равновесия системы следует рассматривать как предел т:,. Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Еравновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q ) = A d,

где d-дельта-ф-ция Дирака, Н( р,q )-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная Аопределяется из условия нормировки ф-ции f(p, q ).Для квантовых систем при точности задания квантового состояния, равной величине DE, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w() = -1 , если Е E + DE, и w() = 0, если и DE. Величина g(E, N, V )-т. наз. статистич. вес, равный числу квантовых состояний в энергетич. слое DE. Важное соотношение С. т.-связь энтропии системы со статистич. весом:

S(E, N, V ) = k lng(E, N, V ),где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех Nчастиц или значениями , имеет вид: f(p, q ) = exp {/kT }; w i,N = exp[(F - E i,N )/kT ], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kT ln

где статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N > или f(p, q ):


Z N = тexp[-H(р, q)/kT ]dpdq /()

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q ) и статистич. сумма X, определяемая из условия нормировки, имеют вид:

где W-термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N).В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий. Статистич. суммы и Qпозволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9ln ) V , > энтальпию H = RT 2 (9ln , энтропию S = Rln + RT (9ln /9T) V = = Rln Q + RT (9ln , теплоемкость при постоянном объеме С V = 2RT (9ln 2 (ln /9T 2) V , > теплоемкость при постоянном давлении С Р => 2RT (9ln 2 (9 2 ln /9T 2) P > и т. д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний gв данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия изолир. системы имеет максимально возможное значение при заданных внеш. условиях ( Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии, согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой (см. Тепловая теорема ).Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т. к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов, если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q ) для Nчастиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловленных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином.

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах Р= h/2p. Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах, металлах и полупроводниках, атомные ядра с нечетным атомным номером, атомы с нечетной разностью атомного номера и числа электронов, квазичастицы (напр., электроны и дырки в твердых телах) и т. д. Данная статистика была предложена Э. Ферми в 1926; в том же году П. Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т. е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип ). Среднее число частиц идеального газа фермионов, находящихся в состоянии с энергией , определяется ф-цией распределения Ферми-Дирака:

={1+exp[( -m)/kT ]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, Р, 2Р, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа, рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т. д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках. Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т. е. в одном состоянии может находиться любое число частиц. Среднее число частиц идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

={exp[( -m)/kT ]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей, нельзя выбрать объем меньший, чем h 3 . Среднее число частиц идеального газа, находящихся в состоянии с энергией описывается ф-цией распределения Больцмана:

=exp[(m)/kT ].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам pи координатам r частиц идеального газа имеет вид: f 1 (p,r) = Aехр{ - [р 2 /2m + U(r)]/kT }. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная Аопределяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT ],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r(n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение молекул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках, а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от до + (i= x, у, z ),определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов, но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе. Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы. Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - > энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов, атомов и групп атомов в молекуле, а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА" в других словарях:

    - (равновесная статистическая термодинамика) раздел статистической физики, посвящённый обоснованию законов термодинамики равновесных процессов (на основе статистич. механикиДж. У. Гиббса, J. W. Gibbs) и вычислениям термодинамич. характеристик физ … Физическая энциклопедия

    Раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ … Большой Энциклопедический словарь

    Раздел статистической физики, посвященный теоретическому определению термодинамических характеристик физических систем (уравнений состояния, термодинамических потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти … Энциклопедический словарь

    статистическая термодинамика - statistinė termodinamika statusas T sritis chemija apibrėžtis Termodinamika, daugiadalelėms sistemoms naudojanti statistinės mechanikos principus. atitikmenys: angl. statistical thermodynamics rus. статистическая термодинамика … Chemijos terminų aiškinamasis žodynas

    статистическая термодинамика - statistinė termodinamika statusas T sritis fizika atitikmenys: angl. statistical thermodynamics vok. statistische Thermodynamik, f rus. статистическая термодинамика, f pranc. thermodynamique statistique, f … Fizikos terminų žodynas

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело - твердое, жидкое или газообразное - состоит из большого количества весьма малых обособленных частиц - молекул. Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении. Его интенсивность зависит от температуры вещества.

Непосредственным доказательством существования хаотического движения молекул служит броуновское движение. Это явление заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, которое не зависит от внешних причин и оказывается проявлением внутреннего движения вещества. Броуновские частицы совершают движение под влиянием беспорядочных ударов молекул.

Молекулярно-кинетическая теория ставит себе целью истолковать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и т. п.), как суммарный результат действия молекул. При этом она пользуется статистическим методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название - статистическая физика.

Изучением различных свойств тел и изменений состояния вещества занимается также термодинамика.

Однако в отличие от молекулярно-кинетической теории термодинамики изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Не вводя в рассмотрение молекулы и атомы, не входя в микроскопическое рассмотрение процессов, термодинамика позволяет делать целый ряд выводов относительно их протекания.

В основе термодинамики лежит несколько фундаментальных законов (называемых началами термодинамики), установленных на основании обобщения большой совокупности опытных фактов. В силу этого выводы термодинамики имеют весьма общий характер.

Подходя к рассмотрению изменений состояния вещества с различных точек зрения, термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу одно целое.

Обращаясь к истории развития молекулярно-кинетических представлений, следует прежде всего отметить, что представления об атомистическом строении вещества были высказаны еще древними греками. Однако у древних греков эти идеи были не более чем гениальной догадкой. В XVII в. атомистика возрождается вновь, но уже не как догадка, а как научная гипотеза. Особенное развитие эта гипотеза получила в трудах гениального русского ученого и мыслителя М. В. Ломоносова (1711-1765), который предпринял попытку дать единую картину всех известных в его время физических и химических явлений. При этом он исходил из корпускулярного (по современной терминологии - молекулярного) представления о строении материи. Восставая против господствовавшей в его время теории теплорода (гипотетической тепловой жидкости, содержание которой в теле определяет степень егонагретости), Ломоносов «причину тепла» видит во вращательном движении частиц тела. Таким образом, Ломоносовым были по существу сформулированы молекулярно-кинетические представления.

Во второй половине XIX в. и в начале XX в. благодаря трудам ряда ученых атомистика превратилась в научную теорию.

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006
Похожие публикации