Типовая схема и основные стадии биотехнологических производств. Основные разделы биотехнологии и их характеристика

Многообразие форм живой материи и новые знания в области физики и химии живых систем позволяют конструировать биологические системы различной степени сложности и организации, продуцирующие широчайший спектр макромолекул. Фундаментальные знания о молекулярной организации и закономерностях функционирования биосинтетических путей являются основой для метаболической инженерии биосистем суперпродукции макромолекул с заданными свойствами.

На смену ставших рутинными биотехнологическим продуктам (белку одноклеточных, биоудобрениям и биогазу, органическим кислотам, аминокислотам) приходят новые продукты и препараты, среди которых - средства диагностики и лечения на основе технологий генетической инженерии и клонирования, вакцины, сыворотки, моноклональные антитела, экологически чистые материалы, а также биоинженерная аппаратура нового поколения для реализации биотехнологических процессов.

Ведущие фирмы (табл. 1.3) в области биотехнологии в течение небольшого периода (с 1978 до 1982 гг. - период взрыва мирового рынка генно-инженерных продуктов) увеличили свои активы более чем в 30 раз; при этом их годовой доход возрос при этом с 5 до 67 млн дол.

Таблица 1.3. Динамика мирового рынка продукции биотехнологии, млрд дол.


Десятки новых препаратов ежегодно проходят различные стадии законодательного утверждения. Среди них - диагностикумы вируса В, СПИДа и др., моноклональные антитела, конъюгированные с растительными токсинами, эффективные противоопухолевые препараты, генные диагностикумы и пр.

К 2000 г. на мировом рынке биотехнологических продуктов доля медицинских препаратов, полученных только в США методами клеточной и генетической инженерии, достигла свыше 30 млрд дол., что составило около 60 % всех затрат.

Перечень медицинских препаратов, прошедших все стадии исследований и допущенных на рынок за период с конца 80-х гг. до 2004 г., существенно расширился. Ежегодно в США FDA (Администрация по продуктам питания и препаратам) выдает порядка 30-40 разрешений на серийное производство и применение биотехнологических препаратов и вакцин.

Помимо полученных и выпущенных на рынок в 1981 г. рекомбинантных инсулина, гормона роста, иммунно-глобулинов и эритропоэтина, появились следующие препараты: липосомальная форма противогрибкового препарата, активатор тканевого плазминогена; рекомбинантные факторы свертывания крови; человеческий альбумин; заменитель человеческой кожи, состоящий из коллагена, фибробластов и кератиноцитов; культивированные аутологичные хондроциты; липосомальная форма химиотерапевтического агента даунорубицина; вакцины против гепатита В и для лечения хронического гепатита С; рекомбинантный фолликулостимулирующий гормон для лечения бесплодия; биоинженерный коллагеновый матрикс для реконструкции мышечной ткани; препараты для диагностики и лечения ВИЧ-инфекции; костный трансплантат, содержащий рекомбинантный костный морфогенетический протеин (rhBMP-2); гранулоцитарно-макрофагальный колониестимулирующий фактор при проведении аутологичных трансплантаций костного мозга; ботулинический токсин типа В и др.

Японский рынок биотехнологических диагностикумов и препаратов в 2000 г. составил свыше 30 млрд дол.; среди них - препараты для лечения первичных и приобретенных иммунодефицитов, аутоиммунных состояний, вирусных и микробных инфекций, злокачественных новообразований, иммуноспецифических синдромов при шоке, лучевой и ожоговых болезнях.

Серьезный прорыв был достигнут в области получения трансгенных сортов культурных растений, это генно-инженерный сорт сладкой («золотой») кукурузы; гибридные сорта кукурузы, рапса, пшеницы и сои с генами устойчивости к насекомым и гербицидам; трансгенные сорта хлопка, устойчивые к вилту, вредителям и гербицидам; трансгенные сорта папайи с красной и желтой мякотью, устойчивые к вирусу кольцевой пятнистости; а также генетически модифицированные фрукты и овощи с удлиненным сроком хранения (сорта томатов и клубники, не портящиеся при длительном хранении за счет снижения синтеза этилена, ускоряющего процесс физиологического дозревания плодов).

В области рыбоводства были получены модифицированные быстрорастущие морепродукты (лосось, камбала), достигающие товарной массы в течение одного-полутора лет, по сравнению с двумя-тремя годами, требующимися для лососей традиционных пород и др.

Объем рынка биотехнологий в мире к 2005 г. оценивался примерно в 200 млрд дол. США. Ежегодный рост в настоящее время составляет около 7-9 %. Для рынка биотехнологий в мире 2005 г. можно охарактеризовать как один из самых успешных за всю историю развития этой отрасли. В этот период правительства стран Европы и Азии продолжали демонстрировать энтузиазм по отношению к индустрии биотехнологий и инвестировать миллиарды долларов в эту отрасль, считая ее одним из приоритетов экономического развития своих государств.

В настоящее время компании, связанные с биотехнологией и медициной, начинают выдвигаться на ведущие позиции в рейтингах по различным приоритетам. Так, журнал Fortune опубликовал ежегодный рейтинг 100 лучших компаний-работодателей. Лучшим местом работы в США признана компания Google. На втором месте - биотехнологическая компания Genetech. В рейтинге, проводимом компанией «Делойт», по показателям наиболее быстрого роста названы фирмы Anistoma и Biotage, занимающиеся разработкой биотехнологических препаратов для лечения онкологических заболеваний, генетическим анализом и медико-техническими исследованиями, заняли среди стран Европы 3-е и 4-е места, показав рост за 2005 г. на 20 и 13 % соответственно.

Рынок биотехнологий в разных странах имеет свои особенности, обусловленные уровнем развития экономики стран и доходами населения. Наиболее активно в настоящее время ведется разработка лекарственных средств с использованием современной биотехнологии. В США, Японии и отдельных странах Западной Европы на эти цели расходуется в среднем средств, выделяемых на НИОКР в области биотехнологии. Практически во всех этих государствах существуют правительственные программы поддержки биотехнологических компаний.

В США, являющихся лидером в области современной биотехнологии, для проведения фундаментальных и прикладных исследований было образовано много специализированных биотехнологических фирм, которые, привлекая частный и государственный капитал и лучшие научные кадры, в считанные годы разработали и запатентовали способы получения многих белковых продуктов медицинского назначения. К таким фирмам относятся в первую очередь Genentech, Biogen, Amgen, Genetic Institute, Cetus, Immunex и ряд других.

Примерно в это же время к финансированию НИОКР в области современной биотехнологии подключились и крупные транснациональные компании, приобретая акции или лицензии на готовые продукты, а впоследствии создавая собственные исследовательские подразделения. Эти фирмы сыграли решающую роль в промышленном внедрении первых генно-инженерных медицинских препаратов, таких как инсулин, гормон роста человека, интерферон, эритропоэтин, тканевой активатор плазминогена, вакцина против гепатита В и др.

Например, фирма Genentech имеет различные лицензионные соглашения и соглашения о сотрудничестве с Elly Lilly (США), Hoffmann-La Roshe (Швейцария), Takeda, Daiichy Seiyaky, Toray и Fujisawa (Япония), Boeringer Ingelheim, Gruenenthal (Германия), Kabi Vitrum (Швеция).

По данным исследовательской компании Abercade, основными сегментами рынка биотехнологических продуктов в РФ являются фармацевтика (66 %), препараты для сельского хозяйства (18 %), дрожжи (9 %) (рис. 1.1) при весьма низких (порядка 1 %) уровнях остальных продуктов.



Рис. 1.1. Долевой анализ рынка биотехнологии РФ (по данным исследовательской компании Abercade, источник - https://www.abercade.ru/)


Однако нельзя не отметить, что основную долю самого развитого рынка фармацевтических препаратов в РФ (порядка 450 млн дол. США) в настоящее время занимает импортная продукция - это преимущественно инсулины, вакцины, сыворотки. Доля отечественной фармацевтической продукции в совокупном объеме составляет только 60,6 млн дол. США.

Более перспективным выглядит рынок отечественной промышленной биотехнологии, в основном это производство ферментов и средств защиты растений. Объемы продаж ферментных препаратов отечественного производства составляет порядка 12,3 млн дол. США, это 38 % от общего объема этого сегмента рынка.

Преимущественно это ферменты и ферментные препараты для спиртовой промышленности и для животноводства.

Среди биотехнологических препаратов сельскохозяйственного назначения - средства защиты и стимуляторы роста растений, пробиотики, вакцины ветеринарные, кормовые антибиотики, аминокислоты и кормовой белок, витамины, кормовые добавки.

На рынке биотехнологических препаратов для защиты окружающей среды доминирует отечественное производство продукции в размере 8 млн дол. США, а доля импортной продукции (бактериальные препараты для ликвидации нефтяных загрязнений, биосорбенты для очистки воды и донных отложений от нефтепродуктов) составляет только 800 тыс. дол. США. Объемы отечественного производства дрожжей составляют 58 млн дол. США, импорт этого вида биотехнологического продукта - в 3,5 раза меньше.

Направления более наукоемких новейших биотехнологий, базирующихся на достижениях генетической инженерии, в России, к сожалению, только вступают в фазу своего развития. Так, на рынке генетически модифицированных культур, которые занимают в мире площадь 8,1 млн га и их продажи ежегодно растут на 20 %, Россия пока не представлена.

Н.А. Воинов, Т.Г. Волова

Cтраница 1


Биотехнологические производства прямо или косвенно нацелены на обеспечение здоровья людей.  

Современные технологические линии и биотехнологические производства, характеризующиеся сложной многоуровневой структурой взаимосвязей эффектов физической, химической и биологической природы, наличием прямых и обратных потоков между технологическими аппаратами, могут рассматриваться как сложные кибернетические системы, при изучении которых используется стратегия системного анализа.  

Борьба с микробами-контаминантами в биотехнологических производствах Защита биотехнологических процессов от микробов-контаминантов эффективно осуществляется с помощью различных фильтров В последнее десятилетие широкое распространение приобрела мембранная фильтрация в целях получения стерильных воздуха и различных жидкостей (разновидность холодной стерилизации) Более того, мембраны нашли применение в рДНК - биотехнологиии, в дисперсионном и других анализах биомолекул.  

Бактерии брожения используются в биотехнологических производствах. Бактерии применяют в генетической инженерии, например, для биотехнологического получения инсулина, интерферона и других ценных лекарственных препаратов.  

В частности, БВК паприн - продукт крупнотоннажного биотехнологического производства - представляет собой биомассу дрожжей, выращенных на н-алканах; основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности.  

Из биомассы ряда базидиальных грибов в Японии получают полисахариды кориолан, лентипан, пахиман, шизофиллан, которые используют для лечения некоторых онкологических заболеваний. В России разработано биотехнологическое производство экзополисахаридов аубазидан и поллулан, являющихся продуцентами гриба Aureobasidium pullulans. Аубазидан используется как вспомогательное средство для создания лекарственных форм, а поллулан нашел применение в пищевой промышленности.  

Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря, чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

Кроме того, для химического и биотехнологического производства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев при оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Решение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы - от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хро-матографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций по различным вопросам теории и применения метода, общее же их число в несколько раз больше.  

Для стерилизации жидкостей используют фильтры из коллодия, диаметр пор которых меньше размеров вирусов. Этот метод применяют в биотехнологическом производстве при изготовлении вакцин, иммунных сывороток, растворов антибиотиков, бактериофагов и других материалов, не пригодных для тепловых или других методов стерилизации.  

Увеличилось производство и снизилась стоимость конкурирующих кормовых добавок для животных, таких как соевые бобы, рыбная мука и клейковина из кукурузы. Последняя является побочным продуктом при биотехнологическом производстве топлива.  

В условиях интенсивно развивающегося животноводства крайне важна задача создания сбалансированных кормов. Одним из альтернативных путей ее достижения является биотехнологическое производство клеточных белков, полноценных по набору незаменимых аминокислот. Производство кормового белка [ синонимы: БВК, кормовые дрожжи, в зарубежной литературе - белок одноклеточных (SCP) ] основано на культивировании четырех категорий микроорганизмов: бактерий, грибов, дрожжей и микроводорослей, использующих в качестве субстрата источников питания углеводы отходов сельскохозяйственной продукции, целлюлозно-бумажного производства, углеводороды нефти, простейшие спирты, газы (С02, метан) и др. В настоящее время производство кормовых дрожжей только в СССР превысило 1 млн. т / год и характеризуется тенденцией неуклонного роста в предстоящее десятилетие.  


От качества плотных и жидких отходов, образующихся в биотехнологических производствах, зависит выбор путей использования их на практике. Так, в производстве пива из ячменя отходами являются дрожжевые клетки, солодовая дробина и некоторые другие вещества. Из таблицы видно, что по питательной ценности и усвояемости все компоненты плотных отходов могли бы быть рекомендованы к употреблению на животноводческих фермах.  

Ультразвук вызывает гибель микроорганизмов в суспензиях: в микробной клетке образуются кавитационные полости с резкими перепадами разрежения и избыточного давления, что приводит к разрушению клетки. Этот метод используют для очистки (деконтаминации) медицинских инструментов, обеззараживания некоторых жидких препаратов, питьевой воды, молока, соков, а также для получения компонентов микробной клетки для исследований или в ходе биотехнологического производства.  

С позиций системного анализа решаются задачи математического моделирования на ЭВМ, при этом полная математическая модель биотехнологической системы может быть представлена в виде иерархической структурной модели, где на каждом уровне имеется описание своего класса явлений. Применение такого подхода к изучению сложных БТС позволяет целенаправленно использовать и систематизировать исследования, получаемые в лабораторных, опытных и промышленных условиях для разработки модели БТС в целом. Полученная таким образом математическая модель используется затем для оптимизации биотехнологического производства при его функционировании, а также на стадии проектирования биохимических производств.  

Стадии биотехнологического производства

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса. В общем виде система биотехнологического производства продуктов микробного синтеза представлена на рис. 1.

Рис. 1. Система биотехнологического производства

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными. Далее приводится характеристики каждой из стадий промышленного микробиологического синтеза.


Крупно- и маломасштабное производство

Необходимо отметить, что в зависимости от цели производства и конечного продукта различают крупно- и маломасштабное производство. Их основные различия заключаются в следующем:

Объем используемых установок и реакторов – маломасштабное производство 100-1000 л, крупномасштабное- 10 000 л.;

Стоимость продукции – маломасштабного производства- высокая, крупномасштабного- невысокая;

Тип продукции – маломасштабного производства- высокоспециализированный для медицины, фармацевтики и.т.п., крупномасштабного - малоспециализированные предметы потребления;

Основные приемы получения – маломасштабного- гентические манипуляции, крупномасштабного технология ферментации, инженерия процессов; стоимость НИР – маломасштабное высокая, крупномасштабное умеренная.

Мы уже поняли, что в основе всех биотехнологических процессов лежит использование способности живых организмов трансформировать дешевый субстрат в более дорогие и ценные продукты или эненргию. Чистую культуру микроорганизма одного вида, происходящую из одной колниеобразующей единицы с характерным геномом и стабильными свойствами называют штаммом.

Производственные штаммы представляют большую ценность в виду того, что их селекция требовала значительных затрат, а кроме того с их помощью получают значительные объемы коммерческого продукта.

Существуют целые коллекции культур микроорганизмов. Например, одна из самых больших коллекций – АТСС – американская коллекция культур микроорганизмов. Существует с начала 20 века. В Республике Беларусь есть коллекции полезных микроорганизмов в Институте микробиологии НАН Беларуси, в мясо-молочном институте НАНБ. Коллекции патогенных микроорганизиов есть при Институте микробиологии и эпидемиологии МЗ РБ и в Институте экспериментальной ветеринарии им.С.Н.Вышелесского.

Производственные штаммы микроорганизмов должны обладать способностью к росту на дешевых питательных средах, высокой скоростью роста и образованию целевого продукта, стабильностью производственных свойств, безвредностью штамма и целевого продукта для человека и окружающей среды.

Микроорганизмы, используемые в промышленности, проходят длительные испытания на безвредность для людей, животных и окружающей среды.

Основные принципы промышленной организации биотехнологических процессов

Получение засевной дозы

В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента. Такое отделение проводит контроль и сохранение чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации. Фактически это микробиологическая лаборатория, с музеем штаммов-продуцентов. В ходе контрольных высевов и маломасштабных ферментаций (в пробирках, колбах и т. д.) контролируется устойчивость всех имевшихся или приобретенных признаков, послуживших основанием для рекомендации к промышленному применению этих культур. По мере необходимости из отделения чистой культуры получается масса инокулята, идущая в производство.

При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры.

Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.

Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.

При производстве вакцин и биологических препаратов используют систему посевных серий. В начале создают первичную посевную серию штамма с известными свойствами. Для получения каждой производственной серии рассевают 1 единицу хранения первичной посевной серии. Это важное требование закреплено в правилах ВОЗ для обеспечения стабильности свойств вакцин и диагностических препаратов.

Если вернуться к основным этапам биотехнологического процесса и рассмотреть их с точки зрения принятых методов, то можно отметить, что на стадии сырья и его подготовки используют общепринятые методы.

Чаще всего – сырье это питательная среда для продуцентов. Поэтому, часто проводят его подготовку путем стерилизации, используя автоклавирование или гамма-облучение.

Методы на стадии ферментации и биотрансформации более разнообразны.

1) селекция продуктов;

3) технология рекомбинантных ДНК

4) реакторное культивирование

На стадии конечной обработки и получения целевого продукта используются, в основном, методы фракционирования

1) центрифугирование;

2) фильтрация;

3) дезинтеграция;

4) ультрафильтрация;

5) сушка: сублимационная и в падающем потоке.

Использование грибов, плесеней, дрожжей, актиномицетов

Их используют для получения:

→ антибиотиков (пенициллы, цефалоспорины);

→ каротиноидов (астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок, его вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);

→ белка (Candida, Saccharomyces lipolitica);

→ сыров типа рокфор и камамбер (пенициллы);

→ соевого соуса (Aspergillus oryzae).

Из 500 известных видов дрожжей первыми стали использовать Saccharomyces cerevisiae, этот вид используется и наиболее интенсивно.

Saccharomyces cerevisiae

Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог E . coli . Их генетика, молекулярная биология и метаболизм детально изучены. S . cerevisiae размножаются почкованием и хорошо растут на такой же простой среде, как и E . coli . Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. В настоящее время ежегодно во всем мире расходуется более 1 млн. тонн S . cerevisiae . Дрожжи S . cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S . cerevisiae , сходны с таковыми у человека. Это открытие способствовало идентификации и – характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S . cerevisiae , что еще более повысило ценность этого микроорганизма для научных исследований. Такая работа на эукариотах была выполнена впервые.

Синтезированный бактериальной клеткой эукариотический белок часто приходится повергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения во многих случаях это необходимо для правильного функционирования белка. К сожалению, E . coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S . cerevisiae , а также другие виды дрожжей: Kluyveromyces lactis , Saccharomyces diastaticus , Schizisaccharomyces pombe , Yarrowia lipolytica , Hansenula polymoгрha . Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P . pastoris и H . polymoгрha .

Дрожжи Kluyveromyces fragilis сбраживают лактозу. Их используют для получения спирта из сыворотки молока.

Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов.

Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков.

Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

Плесени вызывают многочисленные превращения в твердых средах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше рибофлавина и никотиновой кислоты, чем исходный субстрат. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

Искусственное выращивание макромицетов или грибов способно внести важный вклад в обеспечения продовольствием населения земного шара.

Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы.

Простейшие в биотехнологии

Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.

В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.

Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента

Возбудитель южноамериканского трипаносомоза - Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога-трипанозы (Франция). Изучая механизм действия этих препаратов, советские ученые (Г. И. Роскин, Н. Г. Клюева и их сотрудники), а также их французские коллеги (Ж. Кудер, Ж. Мишель-Брэн и др.) пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингибирующее действие связано с жирнокислотными фракциями.

Водоросли

Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus. Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.

Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав - люцерна дает с той же площади только 15- 20 т урожая.

Хлорелла содержит около 50 % белка, а люцерна - лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна - 2-3,5 т. Кроме того, хлорелла содержит 40 % углеводов, 7-10 % жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.

При завоевании племен майя миссионерами описывался случай, когда испанцы около полутора лет осаждали крепость на вершине горы. Естественно, что все продукты давно должны были кончиться, однако крепость не сдавалась. Когда же она была наконец взята, то испанцы с удивлением увидели в ней небольшие пруды, где культивировались одноклеточные водоросли, из которых индейцы готовили особый сыр. Испанцы попробовали его и нашли весьма приятным на вкус. Однако это было уже после того, как испанцы уничтожили абсолютно всех защитников и секрет племени был утерян. В наше время делались попытки определить этот вид водорослей, из которых готовился сыр, но они не увенчались успехом.

В пищу употребляют около 100 видов макрофитных водорослей

В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных.

Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.

Одним из самых ценных продуктов, получаемых из красных водорослей, является агар - полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли - единственный источник получения агара, агароидов, каррагинина, альгинатов. В мире ежегодно получается более 16 тыс. т агара.

Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей - солей альгиновой кислоты, альгинатов. Альгиновая кислота - линейный гетерополисахарид, построенный из связанных остатков (3 - Д-маннуроновой и α - L-гиулуроновой кислот.

Альгинаты исключительно широко применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества - фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия - наиболее используемое соединение - способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.

Бурые водоросли богаты также весьма полезным соединением - шестиатомным спиртом маннитом, который с успехом применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др.

Растения в биотехнологии

Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Азолла быстро размножается простым делением: часть листьев отделяется от материнского растения и начинает самостоятельную жизнь. При благоприятных условиях способна удваивать свою биомассу каждые трое суток.

Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Цветут крайне редко. Рясковые - свободноживущие водные плавающие растения.

Рясковые ( Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza ) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры.



Биотехнологическим процессом называют синтез какого - либо вещества (биотехнологического продукта) при непосредственном участии живых микроорганизмов и выделенных из них ферментов - биологических катализаторов.

Основными особенностями и отличиями биотехнологического процесса являются: участие микроорганизмов, сложный состав реакционной среды, сложный механизм реакции и длительность её протекания, чувствительность к внешним условиям (стерильности, давлению, температуре и т. п.).

Биотехнологические продукты получают по индивидуальным технологиям со своими агентами, сырьём, количеством стадий, технологическими режимами. Тем не менее можно выделить схему, типовую для данных производств. Общий вид её приведён на рис. 4.


Рис. 4. Типовая схема биотехнологических производств


Основной в этой схеме является биотехнологическая стадия, главная задача которой - получение определённого органического вещества. Она включает в себя ряд следующих биологических процессов, с помощью которых сырьё превращается в тот или иной конечный продукт (см. рис. 4).

Ферментация - особый класс химических превращений вещества, состоящий из серии взаимосвязанных реакций синтеза и разложения, протекающих в органических веществах под воздействием ферментов. Ферменты, таким образом, представляют собой универсальные биологические катализаторы, имеющие сложный состав.

Биотрансформация - процесс изменения химической структуры вещества под действием ферментов или ферментативной активности клеток микроорганизмов.

Биокатализ - химические превращения вещества, протекающие с использованием биокатализаторов - ферментов.

Биоокисление - потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

Метановое брожение - переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

Биокомпостирование - снижение содержания вредных органических веществ ассоциацией микроорганизмов в твёрдых отходах, которым придана специальная взрыхлённая структура для обеспечения доступа воздуха и равномерного увлажнения.

Биосорбция - сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закреплёнными на специальных твёрдых носителях.

Бактериальное выщелачивание - процесс перевода нерастворимых в воде соединений металлов в растворённое состояние под действием специальных микроорганизмов.

Биодеградация - деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии. Здесь используют следующие процессы: приготовление среды, её стерилизацию, подготовку посевного материала и биокатализатора, предварительную обработку сырья.

Разделение жидкости и биомассы в зависимости от их свойств осуществляют различными способами, отличающимися движущей силой процесса:

  • отстаивание - разделение под действием сил гравитации (при очистке сточных вод);
  • фильтрация - пропускание суспензии через фильтрующий материал под действием разности давлений с целью задержки биомассы на поверхности материала. С помощью микро- или ультрафильтрации получают раствор, свободный от взвешенных клеток биомассы;
  • сепарация или центрифугирование - разделение под действием центробежных сил. Таким способом отделяют, например, дрожжи при получении кормовой биомассы;
  • флотация - выделение биомассы из её пенной фракции;
  • коагуляция - отделение твёрдых веществ от жидкости путем их осаждения в виде крупных агломератов и последующего их отстаивания.
Выделение продуктов биосинтеза, очистка и концентрирование продукта являются вспомогательными процессами для получения продукта в готовой форме. Некоторые отличия имеются только на стадии выделения продуктов биосинтеза для внутри- и внеклеточных продуктов. Так, для внутриклеточных продуктов необходимо разрушить клеточную оболочку одним из методов- дезинтеграцией клеток, гидролизом, ферментолизом, автолизом и т. д.

Дезинтеграция клеток осуществляется физическими (ультразвук замораживание, декомпрессия и т. п.), химическими и биотехнологическими методами.

Гидролиз - разрушение клеточных оболочек под действием химических реагентов и температуры.

Ферментолиз - разрушение клеточных оболочек под действием ферментов при повышенной температуре.

Автолиз - разновидность ферментолиза, когда используются собственные ферментные клетки.

Общими для выделения внутри- и внеклеточных продуктов являются экстракция осаждение, адсорбция, ионный обмен, отгонка, ректификация ультрарование и нанофильтрация, обратный осмос, центрифугирование, ультрацентрифугирование.

Экстракция - переход целевого продукта из водной фазы в несмешивающуюся с водой органическую жидкость (экстрагент). Экстракция прямо из твердой фазы, в том числе и биомассы организмов, называется экстрагированием.

Осаждение - выделение целевого продукта путём добавления к жидкости реагента, взаимодействующего с растворённым продуктом и переводящего его в твердую фазу.

Адсорбция - перевод растворенного в жидкости продукта в твёрдую фазу путём его поглощения твёрдым носителем - сорбентом.

Ионный обмен сходен с адсорбцией, но в этом случае в твёрдую фазу переходят ионы (катионы или анионы), а не целиком молекула целевого продукта или примеси.

Отгонка, ректификация используются для выделения растворённых в культуральной жидкости легкокипящих продуктов, например, этилового спирта.

Ультрафильтрация, нанофильтрация, обратный осмос применяются для выделения высокомолекулярных соединений (белков, полипептидов, полинук-леотидов). Обратный осмос и нанофильтрация позволяют отделить даже небольшие по размеру молекулы.

Центрифугирование, ультрацентрифугирование используют для выделения вирусов, клеточных органелл, высокомолекулярных соединений.

Очистка продукта осуществляется с использованием разнообразных процессов, в числе которых экстракция, хроматография, диализ, ультрафильтрация, обратный осмос. На стадии концентрирования применяют выпаривание, сушку, осаждение, кристаллизацию, ультра-, гипер- или нанофильтрацию, обеспечивающие «отжим» растворителя из раствора.

Хроматография используется для разделения смесей веществ, часто очень близких по строению. Процесс проводят в специальных хроматографических колонках, заполненных твердым сорбентом. Все вещества сначала адсорбируются на этом сорбенте. Десорбция же разных по молекулярной массе соединений проходит с разной скоростью, что позволяет разделять и очищать их друг от друга, используя подходящий растворитель.

Диализ используется для разделения смесей низко- и высокомолекулярных соединений. Процесс основан на способности низкомолекулярных веществ проходить через мембрану, являющуюся непроницаемой для высокомолекулярных соединений. Таким путём осуществляют очистку вакцин и ферментов от солей и низкомолекулярных растворимых примесей.

Кристаллизация - процесс, основанный на различной растворимости веществ при разных температурах. Как правило, в ходе этого процесса выделяют твердые целевые продукты, а примеси остаются в маточном растворе. Так, например, получают кристаллы пенициллина.

В зависимости от места, которое занимают биотехнологические продукты в типовой технологической схеме, они могут представлять собой: 1) газы со стадии ферментации (примеры - углекислый газ, биогаз); 2) среду ферментации - кулыпуральную жидкость вместе с микроорганизмами (пример - кефир) или твердый субстрат (пример - сыр); 3) концентрат культуральной жидкости (пример - кормовой лизин); 4) жидкость, полученную после отделения биомассы от культуральной жидкости (пример - квас, пиво); 5) инактивированную биомассу (пример - кормовые дрожжи); 6) жизнеспособную биомассу - биопрепарат (пример - пекарские дрожжи, силосные закваски); 7) ослабленную биомассу (пример - живые вакцины); 8) очищенный поток жидкости при очистке сточных вод и т.д.

С.В. Макаров, Т.Е. Никифорова, Н.А. Козлов

Похожие публикации