Планеты нашей с вами солнечной системы. Орбиты комет

Наша планетарная система состоит не только из Солнца и окружающих его планет. Существует еще огромное количество объектов, вращающихся по своим орбитам, но обладающих гораздо меньшими размерами, чтобы дать им полноценный планетарный статус. Для таких объектов в 2006 году Международный астрономический союз ввел термин «малое тело Солнечной системы». К ним причисляют межпланетное вещество (газ и пыль), астероиды, метеориты, кометы и карликовые планеты.

Пояс астероидов

Название этого загадочного места Солнечной системы - главный пояс астероидов - ввел в середине XIX века немецкий ученый-просветитель Александр фон Гумбольдт. Суммарная масса скопления летающих скал диаметром от метра до сотен километров равна примерно 4 % лунной массы, причем больше ее половины заключено в четырех крупнейших телах: Церере, Палладе, Весте и Гигее. Их средний диаметр близок к 400 км, а самое огромное из них - Цереру - можно даже считать настоящей карликовой планетой (ее диаметр более 950 км, а масса превосходит суммарную массу Паллады и Весты). Однако подавляющее число из многих миллионов астероидов главного пояса значительно меньше по величине, они составляют в диаметре всего лишь десятки метров.

Астероидами считают тела диаметром более 30 м, меньшие называют метеороидами, или метеоритами. Особо крупных тел в главном поясе астероидов довольно мало, например стокилометровых астероидов всего около 200, и известно порядка тысячи астероидов радиусом больше 15 км. Основное население главного пояса, судя по всему, образует несколько миллионов астероидов диаметром в десятки и сотни метров.

Астрономы-планетологи до сих пор спорят о причинах появления главного астероидного пояса, но в большинстве сходятся во мнении, что определяющую роль сыграло чудовищное тяготение Юпитера, то ли мешавшее сформироваться полноценной планете, то ли, наоборот, разорвавшее ее на части, множественные столкновения которых и привели к сегодняшней картине этого орбитального роя астероидов.

В итоге множество астероидов распалось на более мелкие фрагменты. Основная их часть была выброшена силами гравитации на окраины Солнечной системы либо перешла на очень вытянутые орбиты, двигаясь по которым (и возвращаясь во внутреннюю часть Солнечной системы) они сталкивались с планетами земной группы во время эпохи поздней тяжелой бомбардировки, около 3,5 млрд лет назад. Это объясняет низкую плотность сегодняшнего состояния пояса астероидов. Столкновения между астероидами происходят постоянно даже с учетом разреженности современного астероидного пояса, что формирует множество астероидных семейств с похожими орбитами и химическим строением.

Группы астероидов

Среди астероидов выделяют околоземные амуры и аполлоны (названные так в честь самых известных своих представителей - астероидов Амура и Аполлона). Орбиты амуров находятся полностью за пределами земной орбиты, траектория движения аполлонов пересекает земную с внешней стороны.

Изучение малых тел

Крупнейшие представители главного пояса астероидов - Церера, Паллада, Юнона и Веста - были открыты в начале XIX века, а Астрея и Геба - в середине. В отличие от других планет, даже в самые сильные телескопы того времени все они выглядели как точки света, неотличимые от обычных звезд в отсутствие движения. Поэтому новые небесные тела стали считать отдельным классом звездоподобных объектов.

Новый этап изучения астероидов начался с применения в 1891 году метода астрофотографии, заключающегося в съемке с долгой экспозицией, так что движущиеся слабовидимые тела оставляют четкие светлые линии. С помощью астрофотографии за последующие три десятилетия было обнаружено свыше тысячи астероидов, а сегодня их число составляет около 300 тыс. и продолжает расти, причем современные системы поиска новых астероидов позволяют выявлять их автоматически, практически без участия человека. Самое пристальное внимание уделяется в первую очередь крупным объектам, способным вторгнуться в земную атмосферу вместе с некоторыми кометами и метеороидами.

Строение и состав астероидов

Эволюция крупнейших астероидов пояса включала процесс гравитационного разделения, когда они испытывали нагревание, приводившее к плавлению их силикатного вещества с выделением металлических ядер и более легких силикатных оболочек. Так, у крупных астероидов возникла даже своеобразная базальтовая кора, совсем как у внутренних планет земной группы.

Теория возникновения главного пояса астероидов предполагает, что вначале население пояса должно было включать немало крупных объектов, в которых происходила дифференциация внутреннего строения. Подобные астероиды могли бы иметь все признаки малых планет вместе с корой и мантией из базальтовых пород. Соответственно, в последующем более половины фрагментов крупных тел должны были бы состоять из базальта. Тем не менее базальтовые тела почти не встречаются в главном поясе. Одно время даже считалось, что практически все базальтовые астероиды представляют собой осколки коры Весты, однако более подробные исследования показали различие в их химическом составе, что указывает на их отдельное
происхождение.

Интересно, что когда главный пояс находился в стадии формирования, в нем возникла так называемая снеговая линия, в пределах которой поверхность астероидов не нагревалась выше температуры таяния льда. Поэтому на астероидах, образовавшихся вне этой линии, смог возникнуть водяной лед, что привело к появлению космических айсбергов с большим содержанием льда.

Подобные соображения подтвердило открытие новых разновидностей обитателей главного пояса астероидов в виде сравнительно небольших комет, населяющих внешнюю часть пояса далеко за пределами снеговой линии. Может быть, именно эти «снежные астероиды» стали источниками воды (и следовательно, жизни) в земных океанах, попав на нашу планету во время кометной бомбардировки. Данную гипотезу косвенно подтверждает и разница в изотопном составе комет, прилетающих с далеких окраин Солнечной системы, с распределением изотопов в воде земной гидросферы. В то же время изотопный состав небольших комет, располагающихся во внешней части главного пояса астероидов, вполне схож с земным, стало быть, можно предположить, что эти астероиды были источниками земной воды.

Между составом астероида и его расстоянием от Солнца можно проследить вполне определенную зависимость. Например, каменные силикатные астероиды расположены намного ближе к светилу, чем углеродно-глинистые, содержащие следы воды в связанном состоянии и даже обычный водяной лед. У близких к Солнцу астероидов также более высокая отражательная способность, чем у центральных и периферийных. Астрономы объясняют это воздействием солнечной радиации, «выдувавшей» более легкие элементы, например воду и газы, на периферию. Таким образом, водяной лед сконденсировался на астероидах внешней области главного пояса.

Классификация астероидов

Из основных характеристик астероидов стоит упомянуть показатели их цветности, отражательной способности поверхности и характеристики спектра отраженного солнечного света. Изначально эта классификация определяла только три основных класса астероидов:

  • класс C - углеродные, 75 % известных астероидов;
  • класс S - силикатные, 17 % известных астероидов;
  • класс M - металлические, большинство остальных.

Этот список был позже расширен, и число классов продолжает расти по мере изучения астероидов.

Относительно высокая концентрация крупных и средних тел в центральной области главного пояса предполагает возможность их довольно частых, по астрономическим меркам, сокрушительных столкновений, происходящих не реже чем раз в десятки миллионолетий. При этом идет их дробление на отдельные фрагменты различных размеров. Впрочем, если астероиды встречаются на сравнительно небольших скоростях, возможен обратный процесс их «слипания», когда они объединяются в одно более крупное тело. В современную астрономическую эпоху, несомненно, доминируют дробление и рассеивание частей астероидов, но 4 млрд лет назад именно процессы укрупнения привели к образованию планет Солнечной системы.

С тех пор дробление астероидных фрагментов с превращением их в метеороиды полностью изменило внешний вид главного пояса астероидов, наполнив его обширными шлейфами мельчайших крупинок и пыли из микрочастиц радиусом в несколько сотен микрометров. Последствия подобного дробления, «перемеливания» и перемешивания с добавками, кроме астероидной, еще и пыли, выбрасываемой кометами, вызывают явление зодиакального света (слабое послезакатное и предрассветное свечение, наблюдаемое в плоскости эклиптики, имеющее вид расплывчатого треугольника).

Углеродные астероиды . Подобные тела составляют более трех четвертей населения главного пояса и содержат большой процент элементарных углеродных соединений. Их количество особенно велико во внешних районах главного пояса. Внешне углеродистые астероиды имеют тусклый темно-красный оттенок, и их довольно трудно обнаружить. Видимо, главный пояс астероидов содержит довольно много таких тел, которые можно найти по излучению в невидимом инфракрасном диапазоне из-за наличия в них воды. Крупнейший представитель углеродистых астероидов - Гигея.

Силикатные астероиды . Довольно распространенный класс астероидов - силикатные тела класса S, группирующиеся во внутренней части пояса. Их поверхность покрыта различными силикатами и некоторыми металлами, в основном железом и магнием, при полном отсутствии углеродных соединений. Все это результат значительных изменений, вызванных плавлением и разделением веществ.

Металлические астероиды . Так еще называют метеороиды класса M главного пояса. Они богаты никелем и железом. Их около 10 % всех тел. Имея умеренную отражательную способность, эти объекты могут быть частями металлических ядер астероидов, вроде Цереры, возникших при формировании Солнечной системы и разрушенных во взаимных столкновениях.

Поскольку кинетическая энергия столкновения астероидов способна достигать весьма существенных величин, их фрагменты могут разноситься по всей Солнечной системе, попадая и в атмосферу нашей планеты. Сегодня насчитываются десятки тысяч всяческих метеоритов, из которых практически все (99,8 %) прилетели из главного пояса астероидов.

Новый источник ресурсов

В задачах колонизации Солнечной системы астероидам отводится важная роль источника сырья для строительства и промышленного производства. Предполагается даже организовать транспортировку наиболее ценных астероидов на земную орбиту, где к тому времени будут работать космические металлургические предприятия. Астероиды главного пояса могут быть ценными источниками водяного льда, из которого возможно получение кислорода для дыхания и водорода как топлива. Ну и конечно же, космические геологи будущего надеются найти под тонкой коркой спекшихся базальтов разные редкие минералы и металлы, включая никель, железо, кобальт, титан, платину, молибден, родий и др.

Астероиды - практически неисчерпаемые источники ресурсов, всего лишь одно железоникелевое тело класса M километрового диаметра может содержать пару миллиардов тонн руды, в несколько раз превышая годовой объем добычи ископаемого на Земле. Еще более перспективно расположение металлургического производства в космосе с вакуумной плавкой и переплавом различной продукции космической инфраструктуры, необходимой для дальнейшего исследования и освоения ближнего и в перспективе дальнего космоса.

Церера

Церера была открыта в ночь на 1 января 1801 года итальянским астрономом Джузеппе Пиацци. Первоначально считалась планетой, а затем в течение двух столетий просто крупным астероидом. Окончательно была классифицирована как карликовая планета и названа в честь древнеримской богини плодородия и покровительницы Сицилии.

Веста

Тысячи маленьких небесных тел-астероидов бороздят просторы Солнечной системы. Они имеют неправильную осколочную форму, однако при этом могут достигать 500 км в диаметре, как Веста.

Веста - четвертый по времени открытия астероид (1807 год) и самый яркий из всех. В моменты наибольшего сближения с Землей Веста светит, как звезда 5-й величины. На темном небе ее можно разглядеть невооруженным глазом.

По размеру среди астероидов Веста - вторая после Паллады, поскольку в новой классификации из-за правильной шарообразной формы Цереру ученые отнесли не к астероидам, а к карликовым планетам. Если бы асимметрия Весты была меньше, этот астероид также записали бы в карлики.

В 2011 -2012 годах космический аппарат Dawn работал на орбите вокруг Весты и передал на Землю ее подробные снимки. Кратеры на них названы именами весталок - жриц римской богини Весты, чье имя носит астероид.

8890



Добавить свою цену в базу

Комментарий

В состав Солнечной системы, кроме самого Солнца и 8 объектов, имеющих статус планет, входит масса других объектов, также вращающихся по своим орбитам вокруг нашей звезды .

По степени удаленности от Солнца, физическим свойствам, предполагаемому химическому составу и другим характеристикам малые небесные тела классифицируются на две большие группы – астероиды и кометы .

Еще 10 лет назад Плутон входил в группу удаленных от Солнца планет, однако в 2006 году его исключили из планет-карликов, так как его размеры меньше размеров спутников других планет (Плутон в 5 раз меньше Земли и даже меньше Луны). Позже, благодаря тщательному исследованию Плутона и открытиям других планет-карликов, была выделена особая группа для объектов, занимающих промежуточную нишу между малой планетой и астероидом.

Транснептуновые объекты (Эрида, Плутон)

Для карликовых планет, которые были открыты после Плутона, и которые находятся дальше Плутона, ввели термин «транснептуновые объекты» . Сюда отнесли большую группу планет-карликов, от которых расстояние до Солнца больше, чем расстояние от Нептуна до Солнца. Планетную группу ТНО образуют: собственно Плутон, объекты Церера, Макемаке, Эрида, Седна, Хаумеа и другие . Всего группу транснептуновых объектов, по последним данным составляют более 1400 объектов.

Группа ТНО объединяет :

  • Объекты пояса Койпера (область от орбиты Нептуна и дальше в направлении от Солнца). В эту группу входят Плутон, Макемаке, Хаумеа и спутники Нептуна и Сатурна.
  • Объекты рассеянного диска (удаленный «уголок» Солнечной системы, в котором, в основном, ледяные глыбы)
  • Объекты облака Оорта (удаленная область СС, в существовании которой до сих пор сомневаются мировые ученые. В этой области, как полагают, рождаются долгопериодические кометы).
  • Обособленные ТНО (планеты и иные тела, удаленные от Солнца настолько, что не испытывают гравитационного притяжения со стороны Нептуна).

Астероиды (пояс астероидов)

Астероид – планетоподобные тела, в силу малых размеров не наблюдаемые невооруженным глазом . Движутся по орбите вокруг Солнца. Основное скопление астероидов в Солнечной системе – область между орбитами Марса и Юпитера (главный пояс астероидов).

В Солнечной системе, по различным оценкам, может находиться до 1,9 миллионов объектов в статусе астероида (для этого объекту нужно иметь размеры более 1 км в диаметре).

Астероиды подразделяются на:

  • Объекты, сближающиеся с Землей (пересекают земную орбиту под различными углами; исходя из расположения их орбит по отношению к земной орбите, делятся на 4 группы: Атиры, Атоны, Аполлоны и Амуры).
  • Объекты, пересекающие орбиту Марса (пересекают орбиту Марса и попадают в его зону гравитации).
  • Астероиды главного пояса (находятся в промежутке от орбиты Марса до орбиты Юпитера. Ученые склонятся к мнению о том, что в главном поясе астероидов должна была быть сформирована или когда-то существовала еще одна планета).
  • Астероиды-троянцы (расположены в окрестностях точек Лагранжа L4 и L5 в орбитальном резонансе 1:1 любых планет – в том числе, Земли)
  • Астероиды-кентавры (расположены между орбитами Юпитера и Нептуна)
  • Дамоклоиды (движутся по траекториям, напоминающим траектории комет).

Кометы

Кометы – наиболее протяженные тела Солнечной систем, движущиеся по вытянутой эллипсоиде вокруг Солнца и обладающие ядром (ком газа, камень либо спрессованная косметическая пыль) и хвостом (облако испаряющихся газов, плазма или дым).

Предположительно, кометы «рождаются» и прилетают в Солнечную систему из облака Оорта, где находится огромное число мелких объектов. По неясным пока причинам некоторые из объектов могут изменить траекторию вращения и стать кометами.

По мере приближения кометы к Солнцу хвост объекта увеличивается – космические льды в ядре тают и испаряются с большей интенсивностью. Приблизившись к Солнцу, ядро кометы может окончательно разрушиться. Ядра некоторых известных астрономам комет в несколько раз превышали Солнце по размерам.

Метеорные тела, пыль и газ

Объекты меньшие по размерам, чем кометы, относятся к группе метеоров . По происхождению метеор может быть несгоревшим куском из ядра кометы, отнесенным солнечным ветром от ядра к хвосту. Некоторое время метеор сопровождает ядро кометы, затем, окончательно отделившись, переходит на орбиту кометы, и таких частиц, сопровождающих орбиту кометы, может быть миллионы, они образуют метеоритные потоки.

При пересечении Землей орбиты какой-либо кометы, наша планета ходит в метеорный поток, и мелкие объекты влетают в околоземную атмосферу. Большая часть из них сгорает на большой высоте, некоторые падают на поверхность планеты в виде метеоритов.

Наиболее известным метеоритным потокам присвоены названия, например, Персеиды или Леониды . Такие потоки пересекаются с земной орбитой через равные промежутки времени, поэтому определенные метеоритные дожди выпадают в одно и то же время.

Встречаются также и метеоры-одиночки – они не образуют потоков.

Межпланетная пыль

Состав межпланетной пыли идентичен составу метеоритов, однако размеры части межпланетной пыли не превышает доли микрона . Пыль – это частицы, образованные в результате разрушения комет и астероидов. В ясную погоду на закате можно увидеть светлый конус на горизонте – поток света, сверкающий от обилия космических пылинок.

Кометы Солнечной системы всегда интересовали исследователей космического пространства. Вопрос о том, что из себя представляют данные явления, волнует и людей, далеких от изучения комет. Попробуем разобраться, как выглядит это небесное тело, может ли оно влиять на жизнедеятельность нашей планеты.

Содержание статьи:

Комета - это небесное тело, образовавшееся в Космосе, размеры которого достигают масштаба небольшого населенного пункта. Состав комет (холодные газы, пыль и обломки камней) делает подобное явление поистине уникальным. Хвост кометы оставляет шлейф, который исчисляется миллионами километров. Данное зрелище завораживает своей грандиозностью и оставляет больше вопросов, чем ответов.

Понятие кометы как элемента Солнечной системы


Чтобы разобраться с данным понятием, следует отталкиваться от орбит комет. Немало этих космических тел проходит через Солнечную систему.

Рассмотрим подробно особенности комет:

  • Кометы - это так называемые снежки, проходящие по своей орбите и имеющие в составе пыльные, скалообразные и газообразные скопления.
  • Разогревание небесного тела происходит в течение периода приближения к главной звезде Солнечной системы.
  • У комет отсутствуют спутники, которые характерны для планет.
  • Системы образований в виде колец также не свойственны для комет.
  • Размер данных небесных тел определить сложно и порой нереально.
  • Кометы не поддерживают жизнь. Впрочем, их состав может служить определенным строительным материалом.
Все перечисленное свидетельствует о том, что данное явление изучается. Об этом же говорит наличие двадцати миссий по исследованию объектов. Пока наблюдение ограничивается в основном изучением через сверхмощные телескопы, но перспективы открытий в этой области очень впечатляют.

Особенности строения комет

Описание кометы можно распределить на характеристики ядра, комы и хвостовой части объекта. Это говорит о том, что нельзя назвать изучаемое небесное тело простой конструкцией.

Ядро кометы


Практически вся масса кометы заключена именно в ядре, которое является наиболее сложным объектом для изучения. Причина состоит в том, что ядро скрыто даже от самых мощных телескопов материей светящегося плана.

Существует 3 теории, которые по-разному рассматривают строение ядра комет:

  1. Теория «грязного снежка» . Это предположение наиболее распространено и принадлежит американскому ученому Фреду Лоуренсу Уипплу. По данной теории, твердый участок кометы - не что иное, как соединение льда и фрагментов вещества метеоритного состава. По мнению этого специалиста, различают старые кометы и тела более молодой формации. Структура их различна по причине того, что более зрелые небесные тела неоднократно приближались к Солнцу, что подплавило их изначальный состав.
  2. Ядро состоит из пыльного материала . Теория была озвучена в начале 21 столетия благодаря изучению явления американской космической станцией. Данные этой разведки говорят о том, ядро - это пыльный материал очень рыхлого характера с порами, занимающими большинство его поверхности.
  3. Ядро не может представлять из себя монолитную конструкцию . Далее гипотезы расходятся: подразумевают структуру в виде снежного роя, глыб каменно-ледяного скопления и метеоритного нагромождения вследствие влияния планетарных гравитаций.
Все теории имеют право оспариваться или быть поддержанными учеными, практикующимися в этой области. Наука не стоит на месте, поэтому открытия в изучении строения комет еще долго будут ошеломлять своими неожиданными находками.

Кома кометы


Вместе с ядром голову кометы формирует кома, которая представляет из себя туманообразную оболочку светлого цвета. Шлейф такой составляющей кометы тянется на довольно большое расстояние: от ста тысяч до почти полутора миллионов километров от основы объекта.

Можно обозначить три уровня комы, которые выглядят следующим образом:

  • Внутренняя часть химического, молекулярного и фотохимического состава . Строение ее определяется тем, что в этой области сосредоточены и наиболее активизируются основные изменения, происходящие с кометой. Реакции химического плана, распад и ионизация нейтрально заряженных частиц - все это характеризует процессы, которые протекают во внутренней коме.
  • Кома радикалов . Состоит из активных по своей химической природе молекул. В данном участке не наблюдается повышенной активности веществ, которая так характерна для комы внутреннего плана. Впрочем, и здесь продолжается процесс распада и возбуждения описываемых молекул в более спокойном и плавном режиме.
  • Кома атомного состава . Ее еще называют ультрафиолетовой. Эту область атмосферы кометы наблюдают в водородной линии Лайман-альфа в удаленном ультрафиолетовом спектральном участке.
Изучение всех этих уровней важно для более глубинного исследования такого явления, как кометы Солнечной системы.

Хвост кометы


Хвост кометы - это уникальное по своей красоте и эффектности зрелище. Обычно направляется он от Солнца и выглядит в виде газо-пылевого шлейфа вытянутой формы. Четких границ такие хвосты не имеют, и можно сказать, что их цветовая гамма близка к полной прозрачности.

Федор Бредихин предложил классифицировать сверкающие шлейфы по таким подвидам:

  1. Прямолинейные и узкоформатные хвосты . Данные составляющие кометы имеют направление от главной звезды Солнечной системы.
  2. Немного деформированные и широкоформатные хвосты . Эти шлейфы уклоняются от Солнца.
  3. Короткие и сильно деформированные хвосты . Такое изменение вызвано значительным отклонением от главного светила нашей системы.
Можно разграничить хвосты комет и по причине их образования, что выглядит следующим образом:
  • Пылевой хвост . Отличительной визуальной чертой данного элемента является то, что свечение его имеет характерный красноватый оттенок. Шлейф подобного формата - однородный по своей структуре, протягивается на миллион, а то и десяток миллионов километров. Образовался он за счет многочисленных пылинок, которые энергия Солнца отбросила на дальнее расстояние. Желтый оттенок хвоста объясняется рассеиванием пылинок солнечным светом.
  • Хвост плазменной структуры . Этот шлейф гораздо обширнее, чем пылевой, потому что протяженность его исчисляется десятками, а порой и сотнями миллионов километров. Комета вступает во взаимодействие с солнечным ветром, от чего и возникает подобное явление. Как известно, солнечные вихревые потоки пронизаны большим количеством полей магнитной природы образования. Они, в свою очередь, сталкиваются с плазмой кометы, что приводит к созданию пары областей с диаметрально различной полярностью. Временами происходит эффектный обрыв этого хвоста и образование нового, что выглядит очень впечатляюще.
  • Антихвост . Появляется он по другой схеме. Причина заключается в том, что направляется он в солнечную сторону. Влияние солнечного ветра на подобное явление крайне невелико, потому что в состав шлейфа входят пылевые частицы крупного размера. Наблюдать подобный антихвост реально только при моменте пересечения Землей орбитальной плоскости кометы. Дискообразное образование окружает небесное тело практически со всех сторон.
Осталось немало вопросов касаемо такого понятия, как кометный хвост, что дает возможность более углубленно изучать данное небесное тело.

Основные разновидности комет


Виды комет можно разграничить по времени их обращения вокруг Солнца:
  1. Короткопериодические кометы . Время обращения такой кометы не превышает 200 лет. На максимальной отдаленности от Солнца они не имеют хвостов, а только еле уловимую кому. При периодическом приближении к главному светилу шлейф появляется. Зафиксировано более четырехсот подобных комет, среди которых есть короткопериодичные небесные тела с термином обращения вокруг Солнца 3-10 лет.
  2. Кометы с долгим периодом обращения . Облако Оорта, по мнению ученых, периодически поставляет таких космических гостей. Орбитальный термин данных явлений превышает отметку в двести лет, что делает изучение подобных объектов более проблематичным. Двести пятьдесят таких пришельцев дают основание утверждать, что на самом деле их миллионы. Не все из них настолько приближаются к главной звезде системы, что появляется возможность наблюдать за их деятельностью.
Изучение данного вопроса всегда будет привлекать специалистов, которые хотят постичь тайны бесконечного космического пространства.

Самые известные кометы Солнечной системы

Существует большое количество комет, которые проходят через Солнечную систему. Но есть наиболее известные космические тела, о которых стоит поговорить.

Комета Галлея


Комета Галлея стала известна благодаря наблюдениям за ней известного исследователя, в честь которого она и получила свое название. Отнести ее можно к короткопериодическим телам, потому что возвращение ее к главному светилу исчисляется периодом в 75 лет. Стоит отметить изменение этого показателя в сторону параметров, которые колеблются в пределах 74-79 лет. Знаменитость ее заключается в том, что это первое небесное тело такого типа, орбиту которого удалось рассчитать.

Безусловно, некоторые долгопериодические кометы более эффектны, но 1P/Halley реально наблюдать даже невооруженным глазом. Этот фактор делает подобное явление уникальным и популярным. Практически тридцать зафиксированных появлений этой кометы порадовали сторонних наблюдателей. Периодичность их напрямую зависит от гравитационного влияния крупных планет на жизнедеятельность описанного объекта.

Скорость кометы Галлея по отношению к нашей планете поражает, потому что превышает все показатели деятельности небесных тел Солнечной системы. Сближение земной орбитальной системы с орбитой кометы можно наблюдать в двух точках. Это приводит к двум пыльным образованиям, которые в свою очередь формируют метеоритные потоки под названием Аквариды и Ореаниды.

Если рассматривать структуру подобного тела, то она мало чем отличается от других комет. При приближении к Солнцу наблюдается образование сверкающего шлейфа. Ядро кометы относительно мало, что может свидетельствовать о груде обломков в виде строительного материала для основы объекта.

Насладиться необыкновенным зрелищем прохождения кометы Галлея можно будет летом 2061 года. Обещается лучшая видимость грандиозного явления по сравнению с более чем скромным визитом в 1986 году.


Это достаточно новое открытие, которое было сделано в июле 1995 года. Два исследователя Космоса обнаружили эту комету. Причем, эти ученые вели отдельные друг от друга поиски. Существует множество разных мнений касательно описываемого тела, но специалисты сходятся на версии, что оно является одной из самых ярких комет прошлого столетия.

Феноменальность данного открытия заключается в том, что в конце 90-х годов комету наблюдали без специальных аппаратов в течение десяти месяцев, что само по себе не может не удивлять.

Оболочка твердого ядра небесного тела довольно неоднородна. Обледеневшие участки не перемешанных газов соединены с углеродной окисью и прочими природными элементами. Обнаружение минералов, которые характерны для структуры земной коры, и некоторые метеоритные образования лишний раз подтверждают, что комета Хейла-Бопа возникла в пределах нашей системы.

Влияние комет на жизнедеятельность планеты Земля


Существует много гипотез и предположений относительно этой взаимосвязи. Есть некоторые сравнения, которые носят сенсационный характер.

Исландский вулкан Эйяфьятлайокудль начал свою активную и разрушительную двухгодичную деятельность, которая удивила многих ученых того времени. Случилось это практически сразу после того, как знаменитый император Бонапарт увидел комету. Возможно, это совпадение, но есть и другие факторы, которые заставляют задуматься.

Ранее описываемая комета Галлея странно повлияла на активность таких вулканов, как Руис (Колумбия), Тааль (Филиппины), Катмай (Аляска). Свое воздействие от этой кометы почувствовали люди, проживающие рядом с вулканом Коссуин (Никарагуа), который начал одну из самых разрушительных деятельностей тысячелетия.

Комета Энке стала причиной мощнейшего извержения вулкана Кракатау. Все это может зависеть от солнечной активности и деятельности комет, которые провоцируют при своем приближении к нашей планете некоторые ядерные реакции.

Падение комет является довольно редким. Однако некоторые специалисты считают, что Тунгусский метеорит относится как раз к подобным телам. В качестве аргументов они приводят такие факты:

  • За пару дней до катастрофы наблюдалось появление зорь, которые своей пестротой свидетельствовали об аномальности.
  • Возникновение такого явления, как белые ночи, в несвойственных для него местах сразу после падения небесного тела.
  • Отсутствие такого показателя метеоритности, как наличие твердого вещества данной конфигурации.
Сегодня нет вероятности повторения подобного столкновения, но не стоит забывать, что кометы - это объекты, траектория которых может измениться.

Как выглядит комета - смотрите на видео:


Кометы Солнечной системы - тема увлекательная и требующая дальнейшего изучения. Ученые всего мира, занимающиеся исследованием Космоса, стараются разгадать тайны, которые несут в себе эти небесные тела поразительной красоты и мощи.

помогут изучению небольших объектов Солнечной системы. Вы откроете для себя много нового и полезного, так много тайн хранит относительное безмолвие мироздания, находящегося в постоянном движении и развитии.

  1. Комета - космическое тело, существующее в пределах Солнечной системы, движущееся по орбите вокруг Солнца. Кометы появились вместе с возникновением Солнечной системы четыре с половиной миллиарда лет назад .
  2. У названия - греческое происхождение . «Комета» - слово греческое, что означает «длиннохвостый», поскольку это тело именно так издревле ассоциировалось с людьми, чьи волосы развевались на сильном ветру. Ближайшей точкой орбиты по отношению к Солнцу является перигелий, самой далекой – афелий.

  3. Комета – грязный снег . Химический состав: вода, метандростенолон, замороженный аммиак, пыль, камни, космический мусор. Хвостовая часть появляется при максимальном приближении к Солнцу. На значительном расстоянии она выглядит как темный объект, представляющий сгусток льда. Центральная часть представлена каменным ядром. Оно имеет темную поверхность, его состав точно неизвестен.

  4. При приближении к Солнцу комета разогревается и тает . Таяние льда при приближении к солнечному светилу приводит к образованию пылевого облака, что создает эффект хвоста. Во время приближения к светилу, тело разогревается, вызывая процесс сублимации. При нахождении льда близко к поверхности, он разогревается и создает струю, извергаясь как гейзер.

  5. Существует множество комет. Маленькая из них имеет ядро диаметром шестнадцать километров, самая крупная – сорок . Размер хвоста достигает огромных размеров. Хиякутаке имеет хвост пятьсот восемьдесят миллионов километров. В «Облаке Оорта», которое окутывает пространство, можно насчитать несколько триллионов экземпляров. Всего насчитывается около четырех тысяч комет.

  6. Юпитер может влиять на движение комет . Самая большая планета способна влиять на направление движения этих небесных тел. Сила притяжения планеты настолько велика, что Шумейкер Леви 9 разрушилась, ударившись об атмосферу планеты.

  7. Под воздействием гравитации хвостатая комета приобретает форму сферы . Астероид довольно мал для формирования сферы, напоминает форму гантели. Астероиды скапливаются в груды, имея в составе материалы различного происхождения. Наибольший - Цецера в диаметре равен девятьсот пятидесяти километрам. Астероид, вошедший в планетарную атмосферу, называют метеором, при падении на землю – это метеорит.

  8. Комета – потенциальная угроза землянам . Нашу цивилизацию может уничтожить попадание метеора диаметром один километр. Необходимо продолжение исследований для понимания природы хвостатых, конструирования оптимальных методов защиты от них. Еще в древние времена эти тела считали знамением, которое может принести бедствие.

  9. Комета Галлея периодически посещает Солнечную систему . В 1910 году вблизи от Земли прошла комета Галлея, которая заходит в пределы Солнечной системы каждые 76 лет. Отдельные предприимчивые коммерсанты использовали этот факт для увеличения числа продаж противогазов, снадобий от комет, зонтов.

  10. У комет обычно два хвоста . Первый, пылевой, можно наблюдать невооруженным глазом. Второй хвост состоит из газов, растягиваясь до трехсот шестидесяти миль. Ионный хвост является результатом воздействия солнечного ветра. Орбита вращения у комет напоминает эллиптическую форму. Когда тело приближается к Солнцу, ледяная составляющая начинает разогреваться, вызывая испарение. Газы вместе с пылью образуют облако, называемое комой, которое движется за телом. По мере продвижения к светилу пыль с мусором сдуваются с тела, образуя пылевой хвост.

  11. Чем дальше от Солнца, тем больше комета представляет собой обыкновенную каменную глыбу . Газовый хвост становится видимым под воздействием солнечной радиации. По мере удаления от Солнца тело охлаждается, у него остается лишь ледяное ядро.

  12. Ученые предполагают, что кометами была занесена вода на Землю . Вода на земной шар могла попасть из кометы, так же как многие органические вещества. Они явились средством зарождения жизни.

  13. Некоторые ученые считают, что шестьдесят пять миллионов лет назад крупный астероид мог коснуться поверхности, в результате чего вымерли динозавры .

  14. Кометы подвержены исчезновению или уходу из пределов Солнечной системы . Они покидают пределы системы или тают по мере многократного воздействия тепла.

  15. Только раз в десятилетие мы можем наблюдать комету в небесном пространстве . Хвост кометы можно наблюдать на протяжении нескольких дней или целых недель.

Страх столкновения кометы с Землей всегда будет жить в сердцах наших ученых. А пока они будут бояться, давай вспомним о самых нашумевших кометах, которые когда-либо будоражили человечество.

Комета Лавджоя

В ноябре 2011 года австралийский астроном Терри Лавджой обнаружил одну из крупнейших комет околосолнечной группы Крейца, диаметром около 500 метров. Она пролетела сквозь солнечную корону и не сгорела, была хорошо видна с Земли и даже сфотографирована с Международной космической станции.

Источник: space.com

Комета Макнота

Первая ярчайшая комета XXI века, также названная «Большая комета 2007 года». Открыта астрономом Робертом Макнотом в 2006 году. В январе и феврале 2007 была отлично видна невооруженным глазом жителям южного полушария планеты. Следующее возвращение кометы нескоро — через 92600 лет.


Источник: wyera.com

Кометы Хейла-Боппа и Хякутакэ

Появились одна за другой — в 1996 и 1997 годах, соревнуясь в яркости. Если комета Хейла-Боппа была открыта еще в 1995 и летела строго «по расписанию», Хякутакэ обнаружили лишь за пару месяцев до ее сближения с Землей.


Источник: сайт

Комета Лекселя

В 1770 году комета D/1770 L1, открытая русским астрономом Андреем Ивановичем Лекселем, прошла на рекордно близком расстоянии от Земли — лишь 1,4 миллиона километров. Это примерно в четыре раза дальше, чем от нас находится Луна. Комета была видна невооруженным глазом.


Источник: solarviews.com

Комета затмения 1948 года

1 ноября 1948 года во время полного солнечного затмения астрономы неожиданно обнаружили яркую комету неподалеку от Солнца. Официально названная C/1948 V1, она являлась последней «внезапной» кометой нашего времени. Ее можно было разглядеть невооруженным глазом вплоть до конца года.


Источник: philos.lv

Большая январская комета 1910 года

Появилась в небе за пару месяцев до кометы Галлея, которую все ждали. Первой новую комету заметили шахтеры из алмазных шахт Африки 12 января 1910 года. Как и многие сверхяркие кометы, ее было видно даже днем.


Источник: arzamas.academy

Большая мартовская комета 1843 года

Также входит в семейство околосолнечных комет Крейца. Она пролетела лишь в 830 тысячах километров от центра Солнца и была хорошо заметна с Земли. Ее хвост — один из самых длинных среди всех известных комет = две астрономических единицы (1 астрономическая единица равняется расстоянию между Землей и Солнцем).


Похожие публикации