Чому дорівнює похідна ln. Похідна функції

Складні похідні. Логарифмічна похідна.
Похідна статечно-показової функції

Продовжуємо підвищувати свою техніку диференціювання. На цьому уроці ми закріпимо пройдений матеріал, розглянемо складніші похідні, а також познайомимося з новими прийомами та хитрощами знаходження похідної, зокрема з логарифмічною похідною.

Тим читачам, які мають низький рівень підготовки, слід звернутися до статті Як знайти похідну? Приклади рішеньяка дозволить підняти свої навички практично з нуля. Далі необхідно уважно вивчити сторінку Похідна складної функції, зрозуміти та вирішувати Усенаведені приклади. Даний урок логічно третій за рахунком, і після його освоєння Ви впевнено диференціюватимете досить складні функції. Небажано дотримуватись позиції «Куди ще? Та й так вистачить!», оскільки всі приклади та прийоми рішення взяті з реальних контрольних робіт і часто трапляються на практиці.

Почнемо із повторення. На уроці Похідна складної функціїми розглянули низку прикладів із докладними коментарями. У ході вивчення диференціального обчислення та інших розділів математичного аналізу – диференціювати доведеться дуже часто, і не завжди буває зручно (та й завжди потрібно) розписувати приклади дуже докладно. Тому ми потренуємося в усному знаходженні похідних. Найкращими «кандидатами» для цього є похідні найпростіших із складних функцій, наприклад:

За правилом диференціювання складної функції :

При вивченні інших тем матану в майбутньому такий докладний запис найчастіше не потрібний, передбачається, що студент вміє знаходити подібні похідні на автопілоті автоматі. Припустимо, що о 3 годині ночі пролунав телефонний дзвінок, і приємний голос запитав: «Чому дорівнює похідна тангенса двох ікс?». На це має бути майже миттєва і ввічлива відповідь: .

Перший приклад буде одразу призначений для самостійного рішення.

Приклад 1

Знайти такі похідні усно, на одну дію, наприклад: . Для виконання завдання потрібно використовувати лише таблицю похідних елементарних функцій(Якщо вона ще не запам'яталася). Якщо виникнуть труднощі, рекомендую перечитати урок Похідна складної функції.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Відповіді наприкінці уроку

Складні похідні

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок.

(1) Беремо похідну від квадратного кореня.

(2) Беремо похідну від різниці, використовуючи правило

(3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

(4) Беремо похідну від косинуса.

(5) Беремо похідну від логарифму.

(6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» – логарифм: . Чому можна так зробити? А хіба - Це не твір двох множників і правило не працює? Нічого складного немає:

Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь? Наведемо вираз чисельника до спільного знаменника та позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Приклад 8

Знайти похідну функції

Тут можна піти довгим шляхом, використовуючи правило диференціювання складної функції:

Але перший крок відразу кидає у зневіру - належить взяти неприємну похідну від дробового ступеня, а потім ще й від дробу.

Тому перед тимяк брати похідну від «накрученого» логарифму, його попередньо спрощують, використовуючи відомі шкільні властивості:



! Якщо під рукою є зошит із практикою, перепишіть ці формули прямо туди. Якщо зошита немає, перемалюйте їх на листочок, оскільки приклади уроку, що залишилися, буду обертатися навколо цих формул.

Саме рішення можна оформити приблизно так:

Перетворимо функцію:

Знаходимо похідну:

Попереднє перетворення самої функції значно спростило рішення. Таким чином, коли для диференціювання запропоновано подібний логарифм, його завжди доцільно «розвалити».

А зараз кілька нескладних прикладів для самостійного вирішення:

Приклад 9

Знайти похідну функції

Приклад 10

Знайти похідну функції

Всі перетворення та відповіді в кінці уроку.

Логарифмічна похідна

Якщо похідна від логарифмів – це така солодка музика, виникає питання, а чи не можна в деяких випадках організувати логарифм штучно? Можна, можливо! І навіть треба.

Приклад 11

Знайти похідну функції

Подібні приклади ми нещодавно розглянули. Що робити? Можна послідовно застосувати правило диференціювання приватного, та був правило диференціювання твори. Недолік способу полягає в тому, що вийде величезний триповерховий дріб, з яким зовсім не хочеться мати справи.

Але в теорії та практиці є така чудова річ, як логарифмічна похідна. Логарифми можна організувати штучно, «навісивши» їх на обидві частини:

Примітка : т.к. функція може набувати негативних значень, то, взагалі кажучи, потрібно використовувати модулі: , які зникнуть внаслідок диференціювання Однак допустиме і поточне оформлення, де за умовчанням беруться до уваги комплекснізначення. Але якщо з усією суворістю, то і в тому, і в іншому випадку слід зробити застереження, що.

Тепер потрібно максимально розвалити логарифм правої частини (формули перед очима?). Я розпишу цей процес докладно:

Власне приступаємо до диференціювання.
Укладаємо під штрих обидві частини:

Похідна правої частини досить проста, її я не коментуватиму, оскільки якщо ви читаєте цей текст, то повинні впевнено з нею впоратися.

Як бути з лівою частиною?

У лівій частині у нас складна функція. Передбачаю питання: «Чому, там же одна буква «ігрок» під логарифмом?».

Справа в тому, що ця «одна літерка ігорок» – САМА ЗА СЕБЕ Є ФУНКЦІЄЮ(якщо не зрозуміло, зверніться до статті Похідна від функції, заданої неявно). Тому логарифм – це зовнішня функція, а «гравець» – внутрішня функція. І ми використовуємо правило диференціювання складної функції :

У лівій частині як за помахом чарівної палички у нас «намалювалася» похідна. Далі за правилом пропорції перекидаємо «ігрок» із знаменника лівої частини нагору правої частини:

А тепер згадуємо, про який такий «гравець»-функцію ми міркували під час диференціювання? Дивимося на умову:

Остаточна відповідь:

Приклад 12

Знайти похідну функції

Це приклад самостійного рішення. Зразок оформлення прикладу цього типу наприкінці уроку.

За допомогою логарифмічної похідної можна було вирішити будь-який з прикладів № 4-7, інша справа, що там функції простіші, і, можливо, використання логарифмічної похідної не надто й виправдане.

Похідна статечно-показової функції

Цю функцію ми ще розглядали. Ступінно-показова функція – це функція, у якої і ступінь та основа залежать від «ікс». Класичний приклад, який вам наведуть у будь-якому підручнику або на будь-якій лекції:

Як знайти похідну від статечно-показової функції?

Необхідно використовувати щойно розглянутий прийом – логарифмічну похідну. Навішуємо логарифми на обидві частини:

Як правило, у правій частині з-під логарифму виноситься ступінь:

У результаті в правій частині у нас вийшов добуток двох функцій, який диференціюватиметься за стандартною формулою .

Знаходимо похідну, для цього укладаємо обидві частини під штрихи:

Подальші дії нескладні:

Остаточно:

Якщо якесь перетворення не зовсім зрозуміле, будь ласка, уважно перечитайте пояснення Прикладу №11.

У практичних завданнях статечно-показова функція завжди буде складнішою, ніж розглянутий лекційний приклад.

Приклад 13

Знайти похідну функції

Використовуємо логарифмічну похідну.

У правій частині у нас константа та твір двох множників – «ікса» та «логарифма логарифма ікс» (під логарифм вкладено ще один логарифм). При диференціюванні константу, як ми пам'ятаємо, краще одразу винести за знак похідної, щоб вона не заважала під ногами; і, звичайно, застосовуємо знайоме правило :


Доказ та виведення формул похідної натурального логарифму та логарифму на підставі a. Приклади обчислення похідних від ln 2x, ln 3x та ln nx. Доказ формули похідної логарифму n-го порядку шляхом математичної індукції.

Зміст

Див. також: Логарифм - властивості, формули, графік
Натуральний логарифм - властивості, формули, графік

Виведення формул похідних натурального логарифму та логарифму на підставі a

Похідна натурального логарифму від x дорівнює одиниці, поділеній на x:
(1) (ln x)′ =.

Похідна логарифма на основі a дорівнює одиниці, поділеній на змінну x, помножену на натуральний логарифм від a :
(2) (log a x)′ =.

Доведення

Нехай є деяке позитивне число, що не дорівнює одиниці. Розглянемо функцію, яка залежить від змінної x , яка є логарифмом на підставі:
.
Ця функція визначена за . Знайдемо її похідну за змінною x. За визначенням, похідна є такою межею:
(3) .

Перетворимо цей вислів, щоб звести його до відомих математичних властивостей та правил. Для цього нам потрібно знати такі факти:
а)Властивості логарифму. Нам знадобляться такі формули:
(4) ;
(5) ;
(6) ;
Б)Безперервність логарифму та властивість меж для безперервної функції:
(7) .
Тут - деяка функція, у якої існує межа і ця межа позитивна.
в)Значення другої чудової межі:
(8) .

Застосовуємо ці факти до нашої межі. Спочатку перетворимо алгебраїчне вираз
.
Для цього застосуємо властивості (4) та (5).

.

Скористаємося властивістю (7) та другою чудовою межею (8):
.

І, нарешті, застосуємо властивість (6):
.
Логарифм на підставі eназивається натуральним логарифмом. Він позначається так:
.
Тоді;
.

Тим самим ми отримали формулу (2) похідної логарифму.

Похідна натурального логарифму

Ще раз випишемо формулу похідної логарифму на підставі a:
.
Ця формула має найпростіший вид для натурального логарифму, для якого . Тоді
(1) .

Через таку простоту, натуральний логарифм дуже широко використовується в математичному аналізі та інших розділах математики, пов'язаних з диференціальним обчисленням. Логарифмічні функції з іншими основами можна виразити через натуральний логарифм, використовуючи властивість (6):
.

Похідну логарифму з основи можна знайти з формули (1), якщо винести постійну за знак диференціювання:
.

Інші способи підтвердження похідної логарифму

Тут ми припускаємо, що нам відома формула похідної експоненти:
(9) .
Тоді ми можемо вивести формулу похідної натурального логарифму з огляду на те, що логарифм є зворотною функцією до експоненти.

Доведемо формулу похідної натурального логарифму, застосувавши формулу похідної зворотної функції:
.
У нашому випадку . Зворотною функцією до натурального логарифму є експонент:
.
Її похідна визначається за такою формулою (9). Змінні можна позначити будь-якою літерою. У формулі (9) замінимо змінну x на y:
.
Оскільки , то
.
Тоді
.
Формулу доведено.


Тепер доведемо формулу похідної натурального логарифму за допомогою правила диференціювання складної функції. Оскільки функції і є зворотними одна до одної, то
.
Диференціюємо це рівняння по змінній x:
(10) .
Похідна від ікса дорівнює одиниці:
.
Застосовуємо правило диференціювання складної функції:
.
Тут. Підставимо в (10):
.
Звідси
.

приклад

Знайти похідні від ln 2x, ln 3xі ln nx.

Вихідні функції мають схожий вигляд. Тому ми знайдемо похідну від функції y = ln nx. Потім підставимо n = 2 та n = 3 . І, тим самим, отримаємо формули для похідних від ln 2xі ln 3x .

Отже, шукаємо похідну від функції
y = ln nx .
Уявімо цю функцію як складну функцію, що складається з двох функцій:
1) Функції, яка залежить від змінної: ;
2) Функції, яка залежить від змінної: .
Тоді вихідна функція складена з функцій та:
.

Знайдемо похідну від функції змінної x:
.
Знайдемо похідну від функції змінної :
.
Застосовуємо формулу похідної складної функції.
.
Тут ми підставили.

Отже, ми знайшли:
(11) .
Ми, що похідна залежить від n . Цей результат є цілком природним, якщо перетворити вихідну функцію, застосовуючи формулу логарифму від твору:
.
– це постійна. Її похідна дорівнює нулю. Тоді за правилом диференціювання суми маємо:
.

; ; .

Похідна логарифма модуля x

Знайдемо похідну від ще однієї дуже важливої ​​функції - натурального логарифму від модуля x:
(12) .

Розглянемо випадок. Тоді і функція має вигляд:
.
Її похідна визначається за формулою (1):
.

Тепер розглянемо випадок. Тоді і функція має вигляд:
,
де.
Але похідну цієї функції ми також знайшли у наведеному вище прикладі. Вона не залежить від n і дорівнює
.
Тоді
.

Об'єднуємо ці два випадки в одну формулу:
.

Відповідно, для логарифму на підставі a маємо:
.

Похідні вищих порядків натурального логарифму

Розглянемо функцію
.
Ми знайшли її похідну першого порядку:
(13) .

Знайдемо похідну другого порядку:
.
Знайдемо похідну третього порядку:
.
Знайдемо похідну четвертого порядку:
.

Можна помітити, що похідна n-го порядку має вигляд:
(14) .
Доведемо це методом математичної індукції.

Доведення

Підставимо у формулу (14) значення n = 1:
.
Оскільки , то за n = 1 , Формула (14) справедлива.

Припустимо, що формула (14) виконується за n = k . Доведемо, що з цього випливає, що формула справедлива за n = k + 1 .

Справді, за n = k маємо:
.
Диференціюємо по змінній x:

.
Отже, ми отримали:
.
Ця формула збігається з формулою (14) за n = k + 1 . Таким чином, з припущення, що формула (14) справедлива за n = k випливає, що формула (14) справедлива за n = k + 1 .

Тому формула (14) для похідної n-го порядку справедлива для будь-яких n .

Похідні вищих порядків логарифму на основі a

Щоб знайти похідну n-го порядку від логарифму на підставі a потрібно виразити його через натуральний логарифм:
.
Застосовуючи формулу (14), знаходимо n-ю похідну:
.

Див. також:

Вам здається, що до іспиту ще багато часу? Це місяць? Два? Рік? Практика показує, що учень найкраще справляється з іспитом у разі, коли почав готуватися щодо нього заздалегідь. У ЄДІ чимало складних завдань, які стоять на шляху школяра та майбутнього абітурієнта до вищих балів. Ці перепони потрібно навчитися долати, до того ж робити це нескладно. Вам необхідно зрозуміти принцип роботи з різними завданнями з квитків. Тоді й із новими не виникне проблем.

Логарифми на перший погляд здаються неймовірно складними, але при детальному розборі ситуація значно спрощується. Якщо ви хочете здати ЄДІ на вищий бал, вам варто розібратися в поняття, що розглядається, що ми і пропонуємо зробити в цій статті.

Спочатку розділимо ці визначення. Що таке логарифм (log)? Це показник ступеня, в який треба звести основу, щоб отримати вказане число. Якщо незрозуміло, то розберемо елементарний приклад.

У цьому випадку основу, що стоїть внизу, необхідно звести на другий ступінь, щоб отримати число 4.

Тепер розберемося з другим поняттям. Похідна функції у вигляді називається поняття, що характеризує зміна функції у наведеній точці. Втім, це шкільна програма, і якщо ви маєте проблеми з даними поняттями окремо, варто повторити тему.

Похідна логарифма

У завдання ЄДІ з цієї теми можна навести кілька завдань як приклад. Для початку найпростіша логарифмічна похідна. Необхідно знайти похідну наступної функції.

Нам потрібно знайти наступну похідну

Існує спеціальна формула.

І тут x=u, log3x=v. Підставляємо значення нашої функції у формулу.

Похідна x дорівнюватиме одиниці. З логарифмом трохи складніше. Але принцип ви зрозумієте, якщо просто підставите значення. Нагадаємо, що похідною lg x називається похідна десяткового логарифму, а похідна ln х - це похідна від натурального логорифму (на підставі e).

Тепер просто підставте отримані значення формулу. Спробуйте самі, далі звіримо відповідь.

У чому може бути проблема для деяких? Ми запровадили поняття натурального логарифму. Розкажемо про нього, а заразом розберемося, як вирішувати завдання з ним. Нічого складного ви не побачите, особливо коли зрозумієте принцип його роботи. До нього вам варто звикнути, оскільки він часто використовується в математиці (у вищих навчальних закладах тим паче).

Похідна натурального логарифму

За своєю суттю, це похідна логарифма на основі e (це ірраціональне число, яке дорівнює приблизно 2,7). Насправді ln дуже простий, тому часто використовується в математиці загалом. Власне, вирішення завдання з ним також не стане проблемою. Варто запам'ятати, що похідна від натурального логарифму з основи е дорівнює одиниці поділеної на x. Найпоказовішим буде рішення наступного прикладу.

Уявімо її як складну функцію, що складається з двох простих.

Достатньо перетворити

Шукаємо похідну від u до x

Продовжимо з другої

Використовуємо спосіб вирішення похідної складної функції, підставляючи u=nx.

Що сталося в результаті?

А тепер пригадаймо, що в цьому прикладі означало n? Це будь-яке число, яке може зустрітися у натуральному логарифмі перед x. Вам важливо зрозуміти, що від неї не залежить відповідь. Підставляйте будь-що, відповідь все одно буде 1/x.

Як бачите, нічого складного тут немає, достатньо лише зрозуміти принцип, щоб швидко та ефективно вирішувати завдання з цієї теми. Тепер ви знаєте теорію, що залишилося закріпити на практиці. Тренуйтеся у вирішенні завдань, щоб надовго запам'ятати принцип їх вирішення. Можливо, вам і не знадобиться це знання після закінчення школи, але на іспиті воно буде як ніколи актуальним. Удачі вам!

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студент цієї помилки вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка - механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

А перевірити розв'язання задачі на похідну можна на .

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричні функції, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Перевірити рішення задачі на похідну можна на калькуляторі похідних онлайн .

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм – функції унікально прості з погляду похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того, як ми пройдемо правила диференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (похідна однакова у всіх точках, оскільки це лінійна функція, пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функцію і знайдемо її збільшення:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

І тому скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто не записати в більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

    Зауважимо, що тут приватне двох функцій, тому застосуємо відповідне правило диференціювання:

    У цьому прикладі добуток двох функцій:

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічної функцій майже не зустрічаються в ЄДІ, але не буде зайвим знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні дії у зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для прикладу, .

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливість складних функцій: зміна порядку дій функція змінюється.

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягуємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.
Подібні публікації